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CUBIC s-REGULAR GRAPHS OF ORDER 12p, 36p, 44p, 52p,

66p, 68p AND 76p†

JU-MOK OH

Abstract. A graph is s-regular if its automorphism group acts regularly
on the set of its s-arcs. In this paper, the cubic s-regular graphs of order

12p, 36p, 44p, 52p, 66p, 68p and 76p are classified for each s ≥ 1 and each
prime p. The number of cubic s-regular graphs of order 12p, 36p, 44p, 52p,
66p, 68p and 76p is 4, 3, 7, 8, 1, 4 and 1, respectively. As a partial result,
we determine all cubic s-regular graphs of order 70p except for p = 31, 41.
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1. Introduction

Throughout this paper, graphs are finite, simple, undirected and connected.
For a graph X, let V (X), E(X) and Aut(X) denote the vertex set, the edge
set and the full automorphism group of X, respectively. An s-arc in a graph
X is an ordered (s + 1)-tuple (v0, v1, . . . , vs) of vertices of X such that vi−1 is
adjacent to vi for 1 ≤ i ≤ s, and vi−1 ̸= vi+1 for 1 ≤ i < s. A graph X is
said to be s-arc-transitive if Aut(X) is transitive on the set of s-arcs in X. A
0-arc-transitive graph is called vertex-transitive, and a 1-arc-transitive graph is
called arc-transitive or symmetric. A subgroup of the automorphism group of a
graph X is said to be s-regular if it acts regularly on the set of s-arcs of X. In
particular, if the subgroup is the full automorphism group Aut(X) of X then X
is said to be s-regular. Thus, if a graph X is s-regular then Aut(X) is transitive
on the set of s-arcs and the only automorphism fixing an s-arc is the identity
automorphism of X.

Tutte [18] showed that every finite cubic symmetric graph is s-regular for some
s ≥ 1, and that this s is at most five. It follows that a connected cubic symmetric
graph of order n is s-regular if and only if the order of its automorphism group
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is n · 3 · 2s−1. Conder and Dobcsányi [3, 4] classified the cubic s-regular graphs
up to order 2048. Cheng and Oxley [2] classified the cubic s-regular graphs
of order 2p (in fact, they classified the symmetric graphs of order 2p with any
valency). Feng et al. [7, 8, 9, 10, 11, 12] classified the cubic s-regular graphs with
order 2p2, 2p3, 4pi, 6pi, 8pi and 10pi for any prime p and each i = 1, 2. Using
those results, Feng and Zhou [13] completed the classification of cubic s-regular
graphs of order 2pq for any primes p and q. The author [14, 15] classified the
cubic s-regular graphs of order 16p and 18p for any prime p.

2. Main results

Lemma 2.1. Let p, q and r be primes.

(1) If a and b be non-negative integers, then every group of order paqb is
solvable [17, Theorem 8.5.3].

(2) Every group of order pqr is solvable [17, Theorem 5.4.1].
(3) Every finite group of odd order is solvable [6, Feit-Thompson Theorem].

Let X be a graph and let N be a subgroup of Aut(X). Denote by X the
quotient graph corresponding to the orbits of N , that is the graph having the
orbits of N as vertices with two orbits adjacent in X whenever there is an edge
between those orbits in X.

Lemma 2.2 (Theorem 9, [16]). Let X be a connected symmetric graph of prime
valency and G an s-arc-transitive subgroup of Aut(X) for some s ≥ 1. If a
normal subgroup N of G has more than two orbits, then it is semiregular and
G/N is an s-arc-transitive subgroup of Aut(X) where X is the quotient graph of
X corresponding to the orbits of N .

Because we only deal with simple connected graphs, the smallest cubic sym-
metric graph is the complete graph K4 of order 4. The first few orders of cubic
symmetric graphs are 4, 6, 8, 10, 14, 16, 18, 20, 24, 26, 28, 30, 32, 38, 40, 42, 48,
50, 54, 56, 56, 56, 60, 62, 64, 72, 74, 78 and 80 (see [4]). Hence there do not exist
cubic symmetric graphs of order 12, 22, 34, 36, 44, 46, 52, 58, 66, 68, 70 and
76. This fact is used to prove Theorem 2.4. In view of Lemma 2.2, one might
see that there exist only finitely many cubic symmetric graphs of order 12p, 22p,
34p, 36p, 44p, 46p, 52p, 58p, 66p, 68p, 70p and 76p. Since the cases for 22p, 34p,
46p and 58p were already treated by Feng and Zhou [13] (these cases can be also
done by a similar method to that described in the proof Theorem 2.4), we only
consider the remaining cases in this paper.

By [3, 4], we have the following lemma.

Lemma 2.3. Let p be a prime. Let X be a cubic symmetric graph.

(1) If X has order 12p and p ≤ 71, then X is isomorphic to one of the
graphs in Table 1.

(2) If X has order 36p and p ≤ 53, then X is isomorphic to one of the
graphs in Table 2.
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(3) If X has order 44p and p ≤ 43, then X is isomorphic to one of the
graphs in Table 3.

(4) If X has order 52p and p ≤ 37, then X is isomorphic to one of the
graphs in Table 4.

(5) If X has order 66p and p ≤ 31, then X is isomorphic to the graph in
Table 5.

(6) If X has order 68p and p ≤ 29, then X is isomorphic to one of the
graphs in Table 6.

(7) If X has order 70p and p ≤ 29, then X is isomorphic to one of the
graphs in Table 7.

(8) If X has order 76p and p ≤ 23, then X is isomorphic to the graph in
Table 8.

Table 1. Cubic symmetric graphs of order 12p with p ≤ 71

Graph Order s-regular Girth Diameter Bipartite?
F24 12 · 2 = 24 2 6 4 Yes
F60 12 · 5 = 60 2 9 5 No
F84 12 · 7 = 84 2 7 7 No
F204 12 · 17 = 204 4 12 9 Yes

Table 2. Cubic symmetric graphs of order 36p with p ≤ 53

Graph Order s-regular Girth Diameter Bipartite?
F72 36 · 2 = 72 2 6 8 Yes
F108 36 · 3 = 108 2 9 7 No
F468 36 · 13 = 468 5 12 13 Yes

Table 3. Cubic symmetric graphs of order 44p with p ≤ 43

Graph Order s-regular Girth Diameter Bipartite?
F220A 44 · 5 2 10 9 Yes
F220B 44 · 5 2 10 9 No
F220C 44 · 5 3 10 10 Yes
F1012A 44 · 23 2 11 11 No
F1012B 44 · 23 3 16 12 Yes
F1012C 44 · 23 3 11 11 No
F1012D 44 · 23 3 11 11 No

The following is the main result of this paper.

Theorem 2.4. Let p be a prime. Let X be a cubic symmetric graph.
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Table 4. Cubic symmetric graphs of order 52p with p ≤ 37

Graph Order s-regular Girth Diameter Bipartite?
F104 52 · 2 1 6 9 Yes
F364A 52 · 7 2 7 12 No
F364B 52 · 7 2 7 11 No
F364C 52 · 7 2 12 10 Yes
F364D 52 · 7 2 12 9 No
F364E 52 · 7 2 12 9 Yes
F364F 52 · 7 2 7 13 No
F364G 52 · 7 3 12 12 Yes

Table 5. Cubic symmetric graphs of order 66p with p ≤ 31

Graph Order s-regular Girth Diameter Bipartite?
F726 66 · 11 2 6 22 Yes

Table 6. Cubic symmetric graphs of order 68p with p ≤ 29

Graph Order s-regular Girth Diameter Bipartite?
F204 68 · 3 4 12 9 Yes
F240A 68 · 5 2 9 10 No
F240B 68 · 5 2 10 11 Yes
F240C 68 · 5 2 8 10 Yes

Table 7. Cubic symmetric graphs of order 70p with p ≤ 29

Graph Order s-regular Girth Diameter Bipartite?
F350 70 · 5 1 6 17 Yes
F2030A 70 · 29 2 7 16 No
F2030B 70 · 29 2 10 13 No
F2030C 70 · 29 3 15 15 No

(1) If X has order 12p, then X is isomorphic to the 2-regular graphs F24, F60, F84

or the 4-regular graph F204.
(2) If X has order 36p, then X is isomorphic to the 2-regular graphs F72, F108

or the 5-regular graph F468.
(3) If X has order 44p, then X is isomorphic to the 2-regular graphs F220A, F220B,

F1012A or the 3-regular graphs F220C , F1012B, F1012C , F1012D.
(4) If X has order 52p, then X is isomorphic to the 1-regular graph F104, the

2-regular graphs F364A, F364B,F364C ,F364D,F364E,F364F or the 3-regular
graph F364G.

(5) If X has order 66p, then X is isomorphic to the 2-regular graph F726.
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Table 8. Cubic symmetric graphs of order 76p with p ≤ 23

Graph Order s-regular Girth Diameter Bipartite?
F152 76 · 2 1 6 11 Yes

(6) If X has order 68p, then X is isomorphic to the 2-regular graphs F240A,
F240B, F240C or the 4-regular graph F204.

(7) If X has order 70p with p ̸= 31, 41, then X is isomorphic to the 1-regular
graph F350, the 2-regular graphs F2030A, F2030B or the 3-regular graph
F2030C .

(8) If X has order 76p, then X is isomorphic to the 1-regular graph F152.

Remark 2.1. If there exists a cubic symmetric graph X of order 70 · 31 = 2170
and 70 · 41 = 2870, respectively, then by following the proof of Theorem 2.4(7),
one can see that X is 5-regular and 3-arc-transitive whose automorphism group
contains PSL2(31) and PSL2(41) as a minimal normal subgroup. The author
could not determine their existence.

Proof. By Lemma 2.3, it suffices to prove that there does not exist a cubic
symmetric graph of order 12p, 36p, 44p, 52p, 66p, 68p, 70p and 76p if p > 71,
53, 43, 37, 31, 29, (p > 31, p ̸= 41) and 23, respectively. Throughout the proof
we let A := Aut(X) and let P be a Sylow p-subgroup of A and NA(P ) by the
normalizer of P in A. Then by Sylow theorem the number of Sylow p-subgroups
of A is np+ 1 = |A : NA(P )| for some non-negative integer n. By Tutte [18] X
is at most 5-regular, and hence |A| is a divisor of 3 · 24 · |V (X)| = 48 · |V (X)|.
(1) Suppose that there exists a cubic symmetric graph X of order 12p with
p > 71. If P is normal in A, by Lemma 2.2 the quotient graph ofX corresponding
to the orbits of P is a cubic symmetric graph of order 12, which is impossible
by [4]. Thus P is not normal in A. Since |A| is a divisor of 48 · 12p, np + 1
is a divisor of 48 · 12 = 26 · 32. Furthermore, since np + 1 ≥ 74, we have
(n, p) = (1, 191) and np + 1 = 26 · 3. This implies that X is 5-regular. Let
M be a minimal normal subgroup of A and let X be the quotient graph of X
corresponding to the orbits of M .

If M is elementary abelian then X is 5-regular with order 4 · 191 or 6 · 191,
which is impossible by [3]. Thus M = T1 × T2 × · · · × Tt where Ti (1 ≤ i ≤ t)
are isomorphic non-abelian simple groups. By Lemma 2.1, |Ti| has at least three
prime factors and even order. Notice that |A| is a divisor of 26 · 32 · 191. Then
t = 1 and M is a non-abelian simple group. Thus M has order 2ℓ1 · 3ℓ2 · 191 for
some 1 ≤ ℓ1 ≤ 6 and 1 ≤ ℓ2 ≤ 2. However, there is no simple group with such
orders (see [5]).
(2) Suppose that there exists a cubic symmetric graph X of order 36p with
p > 53. Since there is no cubic symmetric graph of order 36, P is not normal
in A. Since |A| is a divisor of 48 · 36p, np + 1 | 48 · 36. Furthermore, since
np+1 ≥ 60, we have (n, p) = (1, 71), (1, 107), (11, 157), (1, 191), (1, 431), (1, 863)
and np+1 = 23 ·32, 22 ·33, 26 ·33, 26 ·3, 24 ·33, 25 ·33. This implies that if p ̸= 107,
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then X is at least 2-arc-transitive. Let M be a minimal normal subgroup of A
and X the quotient graph of X corresponding to the orbits of M .

If M is elementary abelian, then X is symmetric with order 4p, 12p or 18p
where p = 71, 107, 157, 191, 431, 863 (in particular, if p ̸= 107, by Lemma 2.2
X is at least 2-arc-transitive), which is impossible by [9, Theorem 6.2], (1) and
[15, Theorem 2.4]. Thus M = T1 × T2 × · · · × Tt where Ti (1 ≤ i ≤ t) are
isomorphic non-abelian simple groups. By Lemma 2.1, |Ti| has at least three
prime factors and even order. Since |A| is a divisor of 26 · 33p, t = 1 and M
is a non-abelian simple group. Thus M has order 2ℓ1 · 3ℓ2p where 1 ≤ ℓ1 ≤ 6,
1 ≤ ℓ2 ≤ 3 and p = 71, 107, 157, 191, 431, 863. However, there is no simple group
with such orders (see [5]).
(3) Suppose that there exists a cubic symmetric graph X of order 44p with
p > 43. Since there is no cubic symmetric graph of order 44, P is not normal in
A. Since np + 1 ≥ 48 and np + 1 | 26 · 3 · 11, we have (n, p) = (1, 47), (1, 131),
(1, 191), (5, 211), (1, 263), (1, 2111) and np+1 = 24 · 3, 22 · 3 · 11, 26 · 3, 25 · 3 · 11,
23 · 3 · 11, 26 · 3 · 11. This implies that if p ̸= 131, X is at least 2-arc-transitive.
Let M be a minimal normal subgroup of A and X the quotient graph of X
corresponding to the orbits of M .

If M is elementary abelian, then X is symmetric with order 4p or 22p where
p = 47, 131, 191, 211, 263, 2111 (in particular, if p ̸= 131, X is at least 2-arc-
transitive), which is impossible by [9, Theorem 6.2] and [13]. Thus, like in the
proof of (2), one can see that M is a non-abelian simple group and has order
2ℓ · 3 · 11, 2ℓ · 11p, 2ℓ · 11p or 2ℓ · 3 · 11p where 1 ≤ ℓ ≤ 6 and p = 47, 131, 191,
211, 263, 2111. However, there is no simple group with such orders (see [5]).
(4) Suppose that there exists a cubic symmetric graph X of order 52p with
p ≥ 41. Since there is no cubic symmetric graph of order 52, P is not normal in
A. Since np + 1 ≥ 42 and np + 1 | 26 · 3 · 13, we have (n, p) = (29, 43), (1, 47),
(5, 83), (7, 89), (1, 103), (1, 191), (3, 277), (1, 311), (5, 499) and np+1 = 25 ·3 ·13,
24 · 3, 25 · 13, 24 · 3 · 13, 23 · 13, 26 · 3, 26 · 13, 23 · 3 · 13, 26 · 3 · 13. This implies
that X is at least 2-arc-transitive. Let M be a minimal normal subgroup of A
and X the quotient graph of X corresponding to the orbits of M .

If M is elementary abelian, then X is 2-arc-transitive with order 4p or 26p
where p = 43, 47, 83, 87, 103, 191, 277, 311, 499, which is impossible by [9,
Theorem 6.2] and [13]. Thus, like in the proof of (2), M is a non-abelian simple
group and has order 2ℓ · 3 · 13, 2ℓ · 3p, 2ℓ · 13p or 2ℓ · 3 · 13p where 1 ≤ ℓ ≤ 6 and
p = 43, 47, 83, 87, 103, 191, 277, 311, 499. However, there is no simple group
with such orders (see [5]).
(5) Suppose that there exists a cubic symmetric graph X of order 66p with
p ≥ 37. Since there is no cubic symmetric graph of order 66, P is not normal in
A. Since np+1 ≥ 38 and np+1 | 25·32·11, we have (n, p) = (7, 41), (1, 43), (1, 47),
(1, 71), (5, 79), (7, 113), (1, 131), (1, 197), (5, 211), (1, 263), (1583), (1, 3167) and
np+ 1 = 25 · 32, 22 · 11, 24 · 3, 23 · 32, 22 · 32 · 11, 23 · 32 · 11, 22 · 3 · 11, 2 · 32 · 11,
25 · 3 · 11, 23 · 3 · 11, 24 · 32 · 11, 25 · 32 · 11. This implies that if p ̸= 197, X is
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at least 2-arc-transitive. Let M be a minimal normal subgroup of A and X the
quotient graph of X corresponding to the orbits of M .

If M is elementary abelian, then X is symmetric with order 6p or 22p where
p = 41, 43, 47, 71, 79, 113, 131, 197, 211, 263, 1583, 3167 (in particular, if
p ̸= 197, then X is 2-arc-transitive), which is impossible by [9, Theorem 5.2] and
[13]. Thus, like in the proof of (2), M is a non-abelian simple group and has
order 2ℓ1 ·3ℓ2 ·11, 2ℓ1 ·3ℓ2p, 2ℓ1 ·11p or 2ℓ1 ·3ℓ3 ·11p where 1 ≤ ℓ1 ≤ 5, 1 ≤ ℓ2 ≤ 2
and p = 41, 43, 47, 71, 79, 113, 131, 197, 211, 263, 1583, 3167. However, there
is no simple group with such orders (see [5]).
(6) Suppose that there exists a cubic symmetric graph X of order 68p with
p ≥ 31. Since there is no cubic symmetric graph of order 68, P is not normal in
A. Since np + 1 ≥ 32 and np + 1 | 26 · 3 · 17, we have (n, p) = (1, 31), (11, 37),
(1, 47), (1, 67), (1, 101), (5, 163), (3, 181), (1, 191), (7, 233), (13, 251), (1, 271),
(1, 1087) and np + 1 = 25, 23 · 3 · 17, 24 · 3, 22 · 17, 2 · 3 · 17, 24 · 3 · 17, 25 · 17,
26 · 3, 25 · 3 · 17, 26 · 3 · 17, 24 · 17, 26 · 17. This implies that if p ̸= 67, 101, X is
at least 2-arc-transitive. Let M be a minimal normal subgroup of A and X the
quotient graph of X corresponding to the orbits of M .

If M is elementary abelian, then X is symmetric with order 4p or 34p where
p = 31, 37, 47, 67, 101, 163, 181, 191, 233, 251, 271, 1087 (in particular, if
p ̸= 67, 101, then X is 2-arc-transitive), which is impossible by [9, Theorem 6.2]
and [13]. Thus, like in the proof of (2), M is a non-abelian simple group and
has order 2ℓ · 3 · 17, 2ℓ · 3p, 2ℓ · 17p or 2ℓ · 3 · 17p where 1 ≤ ℓ ≤ 6 and p = 31,
37, 47, 67, 101, 163, 181, 191, 233, 251, 271, 1087. However, there is no simple
group with such orders (see [5]).
(7) Suppose that there exists a cubic symmetric graphX of order 70p with p > 31
and p ̸= 41. Since there is no cubic symmetric graph of order 70, P is not normal
in A. Since np+1 ≥ 38 and np+1 | 25 ·3 ·5 ·7, we have (n, p) = (3, 37), (13, 43),
(1, 47), (3, 53), (1, 59), (11, 61), (5, 67), (23, 73), (1, 79), (1, 83), (1, 139), (1, 167),
(1, 223), (1, 239), (3, 373), (1, 419), (1, 479), (1, 839), (1, 3359) and np+1 = 24 ·7,
24 · 5 · 7, 24 · 3, 25 · 5, 22 · 3 · 5, 25 · 3 · 7, 24 · 3 · 7, 24 · 3 · 5 · 7, 24 · 5, 22 · 3 · 7, 22 · 5 · 7,
23 · 3 · 7, 25 · 7, 24 · 3 · 5, 25 · 5 · 7, 22 · 3 · 5 · 7, 25 · 3 · 5, 23 · 3 · 5 · 7, 25 · 3 · 5 · 7. This
implies that X is at least 2-arc-transitive. Let M be a minimal normal subgroup
of A and X the quotient graph of X corresponding to the orbits of M .

If M is elementary abelian, then X is 2-arc-transitive with order 10p or 14p
where p = 37, 43, 47, 53, 59, 61, 67, 73, 79, 83, 139, 167, 223, 239, 373, 419, 479,
839, 3359, which is impossible by [8, Theorem 5.1] and [13]. Thus, like in the
proof of (2), M is a non-abelian simple group and has order 2ℓ · 3 · 5, 2ℓ · 3 · 7,
2ℓ · 3p, 2ℓ · 5 · 7, 2ℓ · 5p, 2ℓ · 7p, 2ℓ · 3 · 5 · 7, 2ℓ · 3 · 5p, 2ℓ · 3 · 7p, 2ℓ · 5 · 7p or
2ℓ · 3 · 5 · 7p where 1 ≤ ℓ ≤ 5 and p = 37, 43, 47, 53, 59, 61, 67, 73, 79, 83, 139,
167, 223, 239, 373, 419, 479, 839, 3359. By checking the orders of finite simple
groups (see [5]), we have M ∼= A5 or PSL2(7) of order 2

2 · 3 · 5 or 23 · 3 · 7. By
Proposition 2.2, M is semiregular. But, in both cases |M | has divisor 22 and M
is not semiregular, a contradiction.
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(8) Suppose that there exists a cubic symmetric graph X of order 76p with
p ≥ 29. Since there is no cubic symmetric graph of order 76, P is not normal in A.
LetNA(P ) be the normalizer of P in A. Since np+1 ≥ 30 and np+1 | 26·3·19, we
have (n, p) = (1, 31), (1, 37), (1, 47), (3, 101), (1, 113), (1, 151), (1, 191), (1, 227),
(7, 521), (1, 607), (1, 911), (1, 1823) and np+1 = 25, 2 · 19, 24 · 3, 24 · 19, 2 · 3 · 19,
23 · 19, 26 · 3, 22 · 3 · 19, 26 · 3 · 19, 25 · 19, 24 · 3 · 19, 25 · 3 · 19. In particular, this
implies that if p ̸= 37, 113, 227, then X is at least 2-arc-transitive. Let M be a
minimal normal subgroup of A and X the quotient graph of X corresponding to
the orbits of M .

Suppose that M is elementary abelian. Then M ∼= Z2 or Z19, and so X
is symmetric with order 4p or 38p where p = 31, 37, 47, 101, 113, 151, 191,
227, 521, 607, 911, 1823 (in particular, if p ̸= 37, 113, 227, X is at least 2-arc-
transitive). The cases except for p ̸= 37 are impossible by [9, Theorem 6.2] and
[13]. Now, assume p = 37. If A has a normal subgroup, say K, of order 19,
then the quotient graph of X corresponding to the orbits of K is symmetric
with order 22 · 37 = 148, which is impossible by [4]. Hence, M ∼= Z2 and X
is isomorphic to one of the two cubic 1-regular graphs F1406A and F1406B by
[3]. Hence A/M = Aut(F1406A) or Aut(F1406B). Let L/M be a minimal normal
subgroup of A/M . Since |A/M | = 2 · 19 · 37 · 3 = 4218, A/M is solvable and
so L/M ∼= Z19 or Z37. Since |M | = 2, the Sylow 19- or 37-subgroup of L is
characteristic in L and hence normal in A, a contradiction. Thus, like in the
proof of (2), M is a non-abelian simple group and has order 2ℓ · 3 · 19, 2ℓ · 3p,
2ℓ · 19p or 2ℓ · 3 · 19p where 1 ≤ ℓ ≤ 6 and p = 31, 37, 47, 101, 113, 151, 191,
227, 521, 607, 911, 1823. However, there is no simple group with such orders
(see [5]). �

Remark 2.2. After writing this paper, the author was acknowledged that
Alaeiyan and Hosseinipoor [1] already classified cubic s-regular graphs of or-
ders 12p and 12p2.
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