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Abstract—We present efficient algorithms for
solving the piecewise-cubic approximation problems
in the plane. Given a set D of » points in the plane,
we find a piecewise-cubic polynomial curve passing
through only the points of a subset § of D and
approximating the other points using the uniform metric.
The goal is to minimize the size of § for a given error
tolerance ¢, called the min-# problem, or to minimize
the error tolerance ¢ for a given size of §, called the
min-¢ problem. We give algorithms with running times
O(n*logn) and O(n*) for both problems, respectively.

Index Terms — piecewise-cubic, approximation,
uniform metric.

L. INTRODUCTION

The polynomial curve fitting problem is to construct a
piecewise-polynomial curve p(x) passing through a
sequence of data points D ={(x,,5,):i=0,1,..,n} and
satisfying the tangents at points, that is, ¢, = p'(x,). This
problem arises in many applications, such as CAD/CAM,
CAGD (Computer Aided Geometric Design), Computer

Graphics, etc. But it may be redundant to construct the
curve passing through all p, . We are interested in finding

a piecewise-polynomial curve p(x) to pass through a
subset S of original data set D and to approximate
the points in D—§. The measure of the approximating

error is desired to be the well-known uniform metric, that
is,

"P_D“w = max Iyi_p(xi)

iel,2,...,n}

>

which is also known as the [_ or Chebychev metric.

In particular, we consider piecewise-cubic polynomial
curves in this paper. Also we deal with two optimization
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problems, which are formally stated as follows:

The Min-# problem: Let a data set D in the plane
and ¢£>0 be given. Find a piecewise-cubic polynomial
curve that passes through the smallest number of points
in D among all approximating curves whose errors are
atmost ¢.

The Min-¢ problem: Let a data set D in the plane
and an integer k& be given. Find a piecewise-cubic
polynomial curve that minimizes the error among all
approximating curves passing through at most & points
of D.

II. Related Work

The previous works are mainly focused on the
piecewise-linear polynomial curves. That is, the
polynomial segments of the curve are line segments.

Imai and Iri [5], and Melkman and O’Rourke [6] study
the min-# and min-¢ polygonal-lines approximation
problems in the plane, that is, the 2-D space. For the I,

metric, they achieve algorithms whose running times are
O(n*logn) and O(n*log’n), respectively, and using
O(n*) space, for the two problems. Chan and Chin [2]
reduce the time complexities of both results to O(n?)
and O(n’logn), respectively. Furthermore, Chen and

Daescu [3] show that the algorithms of [2] can use only
O(n) space without increasing their running times.

Hakimi and Schmeichel [4] deal with [_ metric.
They give algorithms whose running times are O(n?)
and O(n’logn) for min# and min-¢ problems,
respectively. For [ metric, Varadarajan [8] studies the

both problems for 2-D polygonal-lines that are monotone,
1.e., any line parallel to the y axis intersects the line in a
point. He proposes O(n***?) time and space algorithms
for both problems, where §>0 is an arbitrarily small
constant.

For the 3-dimensional space, Barequet et.al. [1] give
algorithms with running times O(n’logn) and
O(n*log’ n) for the min-# and min-¢ problems in L,
metric, respectively. For [_ metric, the times are
reduced to O(n*) and O(n’logn), respectively.
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II1. Min-# problem

The data points p, =(x,, y,) are given sorted, that is,
X, <X, and the tangents ¢, at p are also given. For
an error bound ¢>0, we construct a graph G=(V, E),
where each vertex y, in ¥ represents a point p,, and
each edge v, v;) is in G if and only if there is a
cubic polynomial f such that y = f(x),7 = f'(x),
¥, =ty = f(x)), and

|yk —f(xk)ls‘e forallk,i<k<j.

Then we will find a shortest path in G from v, to
v, » which corresponds to the approximating curve

satisfying the error tolerance <g and having the
minimum number of (cubic) polynomial segments. The
shortest path can be easily found by a breadth-first
search and the overall time is depended on the size of
the graph G . So we concentrate on finding an efficient
method for constructing G and we call the graph G
a shortcut graph ([Fig. 1]).

Fig. 1 Shortcut graph

Suppose a cubic polynomial segment is denoted by
f(x)=ax’ +bx* +cx+d . We shall test whether there is

an edge v v,) in (. First, we see that v, =f(x,)
and ¢, = f'(x,). From these equations, there are the
g and A of (q,b) such that
c=g(a,b) and d=h(a,b). If the segment satisfies the

error tolerance, then the following inequalities are
satisfied. Forall k i<k<j,

linear functions

v, —€<ax, +bx} +gla,b)x, +h(a,b)< y, +&

’ s
b 4’/”,'// -
//// ey
P -
T //
T -
2 s L
rrrrr 7 e
e g
P /&/""/
,/ /// /
/7 /,,,1 s
s /
a

Fig. 2 Intersection of corridors

Each of the above inequalities represents the
intersection of two half-planes, say a corridor in
(a,b)—plane([Fig. 2]). A point (q,b) satisfying all the
inequalities belongs to the intersection of the corridors.
From the equations y, = f(xj) and t= f’(x,») , We can
get a point (a,,b,) in (a,b)—plane. Thus there is an
edge v, v) in G if and only if the point (a,,b,)
belongs to the intersection of the corridors. This is a

special case of the point location problem for convex
polygonal regions, which is solved in O(logn) time [7].

Also we can easily show that it is solved in O(logn)

time to get the intersection of corridors when the
corridors are given incrementally. Therefore, for a fixed
node y,, we can test whether there is an edge from v,

to v, forall ;j>i,totallyin O(nlogn) time.

Theorem 1 For given » points and an error bound
£ , we can construct the shortcut graph G in

O(n*logn) time.

Proof. Let a node v, be fixed. Then we incrementally
consider the nodes Vi J>i Suppose it is time to test
whether there is an edge from v, to v, - Then we
already get the intersection I, of corridors from the
inequalities for the points p, , i<k<j—1. Thus we
can find the intersection 7 _ of I,, and the corridor
for the point P,y I O(logn) time, because we can
find the intersection points of I, and the supporting

lines of the corridor by the binary search on the boundary
chain of 7 _,. Then the point location of (g,,b,) for

v, on [ issolvedin O(logn) time.

From the above argument, we can find the all edges
going from a node in O(nlogn) time. So all edges in

G canbe obtained in O(n” logn) time.

From Theorem 1, we get the shortcut graph G . Then
we can find a shortest path in G from v, to v in

O(rn*) time. So the overall time is O(n’ logn) -

Theorem 2 For given » data points and an error
bound £, we can solve the min-# problem in
O(n*logn) time.

IV.Min-z problem

In this section, the min-¢ problem is considered.
Suppose we are given a set D of (sorted) points
p, =(x,,y,) with tangents ¢ in the plane and a fixed
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integer k. Then we wish to find the smallest £>0
such that there is a piecewise-cubic polynomial curve
that has the error <¢ and that passes through at most
k points of D, satisfying the tangents at the points to
be passed.

For any polynomial £, let d,(f) be defined by

dij(f) = maxb’k _f(xk)’ :

isksj

Then for the (unique) polynomial s satisfying that
Y= F )t = 1)y, = f(x )1, = f'(x,), the error
constant ¢, is determined by ¢, =d (). This is easily
obtained in O(n) time. Thus the constants & (<))

are the candidates of the smallest error bound ¢ for the
min-¢ problem. Then for a candidate £, WE solve the

min-# problem. If the curve of the solution passes
through the points >k, then g <& Otherwise, &2

So we can perform the binary search over the & 's, the

number of which is O(n?).

Theorem 3 For given » points and an integer k20,
we can solve the min- £ problemin O(»’) time.

Proof. From the above statements, we can get all the
constants g for j<j in O(n’). Since we can solve

the min-# problem in O(n’logn) , it takes totally
O(n’* log® n) time to perform the binary search over the
£,'s. So we can find the smallest error bound ¢ for the

min-¢ problem. It takes the overall time of O(n*).
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