• Title/Summary/Keyword: crosslinked-polymer

Search Result 266, Processing Time 0.027 seconds

The Crosslinking Characteristic of Poly(vinyl alcohol) by Natural Dye (천연 염료에 의한 폴리(비닐 알코올)의 가교 특성)

  • Kim, Gwan-Hoon;Kim, Hyo-Gap;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.72-76
    • /
    • 2011
  • The physical properties of crosslinked poly(vinyl alcohol)(PVA) by natural dyes as crosslinking agents were investigated and a comparison was made with chemically crosslinked PVA by Polycup 172. It was found that natural anthocyanin and crocin made possible to crosslink PVA physically through the hydrogen bonding of OH in both PVA and natural dyes in the present with NaCl as a catalyst. The water swellability dramatically decreased and the physical crosslinking led to decreasing of crystallinity of PVA. The lowering of thermal stability was noticed in the physically crosslinked PVA compared to chemically crosslinked PVA due to its lower crosslink density. However even natural dyes have polysaccharides in their chain, their thermal stability was higher than uncrosslinked PVA.

Proton Conducting Crosslinked Membranes by Polymer Blending of Triblock Copolymer and Poly(vinyl alcohol)

  • Lee, Do-Kyoung;Park, Jung-Tae;Choi, Jin-Kyu;Roh, Dong-Kyu;Lee, Jung-Hyun;Shul, Yong-Gun;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.549-554
    • /
    • 2008
  • Proton conducting crosslinked membranes were prepared using polymer blends of polystyrene-b-poly(hydroxyethyl acrylate)-b-poly(styrene sulfonic acid) (PS-b-PHEA-b-PSSA) and poly(vinyl alcohol) (PVA). PS-b-PHEA-b-PSSA triblock copolymer at 28:21:51 wt% was synthesized sequentially using atom transfer radical polymerization (ATRP). FT-IR spectroscopy showed that after thermal ($120^{\circ}C$, 2 h) and chemical (sulfosuccinic acid, SA) treatments of the membranes, the middle PHEA block of the triblock copolymer was crosslinked with PVA through an esterification reaction between the -OH group of the membrane and the -COOH group of SA. The ion exchange capacity (IEC) decreased from 1.56 to 0.61 meq/g with increasing amount of PVA. Therefore, the proton conductivity at room temperature decreased from 0.044 to 0.018 S/cm. However, the introduction of PVA resulted in a decrease in water uptake from 87.0 to 44.3%, providing good mechanical properties applicable to the membrane electrode assembly (MEA) of fuel cells. Transmission electron microscopy (TEM) showed that the membrane was microphase-separated with a nanometer range with good connectivity of the $SO_3H$ ionic aggregates. The power density of a single $H_2/O_2$ fuel cell system using the membrane with 50 wt% PVA was $230\;mW/cm^2$ at $70^{\circ}C$ with a relative humidity of 100%. Thermogravimetric analysis (TGA) also showed a decrease in the thermal stability of the membranes with increasing PVA concentration.

Preparation of Valuable Compounds Encapsulated Polymer Nanoparticles with High Payload Using Core-crosslinked Amphiphilic Polymer Nanoparticles (코아 가교 양친성 고분자 나노입자를 이용한 고함량 유용 약물 담지 고분자 나노입자 제조)

  • Kim, Nahae;Kim, Juyoung
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.26-34
    • /
    • 2016
  • In this study, core-crosslinked amphiphilic polymer (CCAP) nanoparticles prepared using a reactive amphiphilic polymer precursor (RARP) were used for preparing some valuable compounds encapsulated polymer nanoparticles with high payload through nanoprecipitation process. Various solvents (acetone, ethanol, and THF) having different polarity and CCAP nanoparticles prepared using different amphiphilicity were used for the preparation of ${\alpha}$-tocopherol encapsulated polymer nanoparticles to investigate their effects on the encapsulation efficiency, payload, nanoparticle size, and stability. CCAP dissolved in hydrophobic solvent, THF, could form ${\alpha}$-tocopherol encapsulated polymer nanoparticles dispersed in water with the high payload of ${\alpha}$-tocopherol and encapsulation efficiency. Because of their physically and chemically robust nano-structure originated from crosslinking of the hydrophobic core, CCAP nanoparticles could encapsulate ${\alpha}$-tocopherol with the high payload (33 wt%) and encapsulation efficiency (97%), and form 70 nm-sized stable nanoparticles in water.

Constitutive equations for polymer mole and rubbers: Lessons from the $20^{th}$ century

  • Wagner, Manfred H.
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.4
    • /
    • pp.293-304
    • /
    • 1999
  • Refinements of classical theories for entangled or crosslinked polymeric systems have led to incommensurable models for rubber networks and polymer melts, contrary to experimental evidence, which suggests a great deal of similarity. Uniaxial elongation and compression data of linear and branched polymer melts as well as of crosslinked rubbers were analyzed with respect to their nonlinear strain measure. This was found to be the result of two contributions: (1) affine orientation of network strands, and (2) isotropic strand extension. Network strand extension is caused by an increasing restriction of lateral movement of polymer chains due to deformation, and is modelled by a molecular stress function which in the tube concept of Doi and Edwards is the inverse of the relative tube diameter. Up to moderate strains, $f^2$ is found to be linear in the average stretch for melts as well as for rubbers, which corresponds to a constant tube volume. At large strains, rubbers show maximum extensibility, while melts show maximum molecular tension. This maximum value of the molecular stress function governs the ultimate magnitude of the strain-hardening effect of linear and long-chain branched polymer melts in extensional flows.

  • PDF

Characteristics and Drug Release Control of Crosslinked Poloxamer Hydrogel (가교 폴록사머 하이드로겔 물성 및 약물 조절 방출)

  • Byun, Eun-Jung;Lee, Seung-Jin;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.201-205
    • /
    • 1996
  • Poloxamer, block copolymers of ethylene oxide and propylene oxide was crosslinked by diisocyanates and triisocyanates to form water-swellable, physically strong, rubber-like elastic, high biocompatible polyurethanes. The isocyanate-hydroxyl stoichiometry was kept 1:1, but the crosslinking density was varied. The variations examined were the ratio of diisocyanate and triisocyanate. The delivery of two drugs of different water solubilities from hydrogel matrices was studied. It appeared that the drug nature greatly influenced its release kinetics possibly due to drug-polymer interactions. The release profiles, however, could be modified to a great extent by adjusting the polymer network structure Generally the high crosslinking density was required for prolonged drug delivery.

  • PDF

Peculiar Temperature Dependence on the Binding of Acid Dye by Crosslinked Poly(4-vinylpyridine) -The Effect of Inorganic Electrolytes- (가교폴리(4-비닐피리딘)과 산성염료와의 결합에 대한 특이한 온도의존성 - 무기전해질의 효과 -)

  • Lee, Suk Kee
    • Textile Coloration and Finishing
    • /
    • v.9 no.2
    • /
    • pp.25-31
    • /
    • 1997
  • The extent of binding of acid dye (methyl orange) by crosslinked poly-(4-vinylpyridine) (CHP4VP) has been investigated in aqueous solution containing of inorganic electrolytes such as NaCl and NaSCN. It was found that the first binding constants ($K_{1}$) in the presence of the salts were smaller than those in the absence of the salts and the values of $K_{1}$ showed a bell-shaped curve against temperature. These results are discussed in terms of both the competition binding between the dye and salt anions for the crosslinked polymer and the change of hole size of CHP4VP with the addition of the salts.

  • PDF

Development of Optically Active Chelate Resin for Direct Resolution of Enantiomers(III)-Synthesis of Copper(II) L-Proline Chelate Resin and Resolution of Enantiomers- (Enantiomer의 분리에 이용될 수 있는 Chelate Resin의 개발(제 3보)-Copper(II) L-Proline Chelate Resin의 제조 및 Enantiomer 분리-)

  • Kim, Kil-Soo;Jeon, Dong-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.3
    • /
    • pp.117-121
    • /
    • 1989
  • A metal complex, copper (II) L-proline was chemically bound to ethylene glycol dimethacrylate and divinylbenzene crosslinked chloromethylated polystyrene and they were used as chiral chelate resin matrix for column chromatography to resolve enantiomers of DL-amino acids. The L-enantiomers eluted first and the degree of resolution on the polymer crosslinked with ethylene glycol dimethacrylate was superior to the polymer crosslinked with divinylbenzene.

  • PDF

Optimization of the Water Absorption by Crosslinked Agar-g-Poly(acrylic acid) (Agar 그래프트 폴리아크릴산 겔의 흡수능 최적화)

  • Wuttisela, Karntarat;Panijpan, Bhinyo;Triampo, Wannapong;Triampo, Darapond
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.537-543
    • /
    • 2008
  • Crosslinked agar-g-poly(acrylic acid) (x-agar-g-PAA) super absorbent with a water absorbency ($Q_{H2O}$) of approximately 660 g/g was synthesized by the copolymerization of agar with an acrylic acid monomer. KPS and MBA were used as the initiator and crosslinker, respectively. Grafting was performed in air. Infrared spectroscopy was used to identify the product of copolymerization. The optimum conditions to synthesize the x-agar-g-PAA superabsorbent were 0.1 g of agar, 0.1 g of the KPS initiator, for 15 min; 50% AA monomer, 0.005 g of the MBA crosslinker, for a propagation time of 5 min; and 1 M NaOH for 15 min to allow for saponification. The reaction temperature was $80{^\circ}C$.

Properties of Blood Compatible Crosslinked Blends of $Pellethene^{(R)}$/Multiblock Polyurethanes Containing Phospholipid Moiety/C-18 Alkyl Chain

  • Yoo, Hye-Jin;Kim, Han-Do
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.596-603
    • /
    • 2008
  • To improve the mechanical properties, dimensional stability and blood compatibility, the biomedical material $Pellethene^{(R)}$ was blended with multiblock polyurethane (MPU) containing phospopholipid/long alkyl chain (C-18) at the various MPU contents and crosslinked using dicumyl peroxide as a crosslinking agent. The maximum MPU content for stable $Pellethene^{(R)}$/MPU blended films was approximately 30 wt%. The optimum crosslinking agent content and crosslinking time with respect to the mechanical properties were 4 wt% and 3 h, respectively. The mechanical properties (tensile strength and elongation at break) and water absorption of the crosslinked blend film increased with increasing MPU content. The test of platelet adhesion on the surfaces of the crosslinked blend film showed a decrease in the level of platelet adhesion from 70% to 6% with increasing MPU content from 0 to 30 wt%. These results suggest that the crosslinked $Pellethene^{(R)}$/MPU-30 (MPU content: 30 wt%) sample has strong potential as a novel material for blood compatible material applications.