Proton Conducting Crosslinked Membranes by Polymer Blending of Triblock Copolymer and Poly(vinyl alcohol)

  • Lee, Do-Kyoung (Department of Chemical Engineering, Yonsei University) ;
  • Park, Jung-Tae (Department of Chemical Engineering, Yonsei University) ;
  • Choi, Jin-Kyu (Department of Chemical Engineering, Yonsei University) ;
  • Roh, Dong-Kyu (Department of Chemical Engineering, Yonsei University) ;
  • Lee, Jung-Hyun (Department of Chemical Engineering, Yonsei University) ;
  • Shul, Yong-Gun (Department of Chemical Engineering, Yonsei University) ;
  • Kim, Jong-Hak (Department of Chemical Engineering, Yonsei University)
  • Published : 2008.08.31

Abstract

Proton conducting crosslinked membranes were prepared using polymer blends of polystyrene-b-poly(hydroxyethyl acrylate)-b-poly(styrene sulfonic acid) (PS-b-PHEA-b-PSSA) and poly(vinyl alcohol) (PVA). PS-b-PHEA-b-PSSA triblock copolymer at 28:21:51 wt% was synthesized sequentially using atom transfer radical polymerization (ATRP). FT-IR spectroscopy showed that after thermal ($120^{\circ}C$, 2 h) and chemical (sulfosuccinic acid, SA) treatments of the membranes, the middle PHEA block of the triblock copolymer was crosslinked with PVA through an esterification reaction between the -OH group of the membrane and the -COOH group of SA. The ion exchange capacity (IEC) decreased from 1.56 to 0.61 meq/g with increasing amount of PVA. Therefore, the proton conductivity at room temperature decreased from 0.044 to 0.018 S/cm. However, the introduction of PVA resulted in a decrease in water uptake from 87.0 to 44.3%, providing good mechanical properties applicable to the membrane electrode assembly (MEA) of fuel cells. Transmission electron microscopy (TEM) showed that the membrane was microphase-separated with a nanometer range with good connectivity of the $SO_3H$ ionic aggregates. The power density of a single $H_2/O_2$ fuel cell system using the membrane with 50 wt% PVA was $230\;mW/cm^2$ at $70^{\circ}C$ with a relative humidity of 100%. Thermogravimetric analysis (TGA) also showed a decrease in the thermal stability of the membranes with increasing PVA concentration.

Keywords

References

  1. M. Rikukawa and K. Sanui, Prog. Polym. Sci., 25, 1463 (2000) https://doi.org/10.1016/S0079-6700(00)00032-0
  2. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev., 104, 4587 (2004) https://doi.org/10.1021/cr020711a
  3. N. W. Deluca and Y. A. Elabd, J. Polym. Sci. Part B: Polym. Phys., 44, 2201 (2006) https://doi.org/10.1002/polb.20861
  4. P. X. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, and S. Kaliagune, J. Polym. Sci. Part A: Polym. Chem., 42, 2866 (2004) https://doi.org/10.1002/pola.20152
  5. J. Won, S. M. Ahn, H. D. Cho, J. Y. Ryu, H. Y. Ha, and Y. S. Kang, Macromol. Res., 15, 459 (2007) https://doi.org/10.1007/BF03218814
  6. S. D. Mikhailenko, K. P. Wang, S. Kaliaguine, P. X. Xing, G.. P. Robertson, and M. D. Guiver, J. Membr. Sci., 233, 93 (2004)
  7. D. K. Lee, Y. W. Kim, J. K. Choi, B. R. Min, and J. H. Kim, J. Appl. Polym. Sci., 107, 819 (2008) https://doi.org/10.1002/app.27122
  8. J. H. Chen, M. Asano, T. Yamaki, and M. Yoshida, J. Power Source, 158, 69 (2006) https://doi.org/10.1016/j.jpowsour.2005.09.024
  9. Y. Yin, S. Hayashi, O. Yamada, H. Kita, and K. Okamoto, Macromol. Rapid Commun., 26, 696 (2005) https://doi.org/10.1002/marc.200500014
  10. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, Solid State Ionics, 176, 117 (2005) https://doi.org/10.1016/j.ssi.2004.07.011
  11. M. W. Matsen and F. S. Bates, Macromolecules, 29, 1091 (1996) https://doi.org/10.1021/ma951138i
  12. D. A. Davidock, M. A. Hillmyer, and T. P. Lodge, Macromolecules, 36, 4682 (2003) https://doi.org/10.1021/ma034364y
  13. R. Laurent, S. Zhiqing, D. Olivier, H. Steven, and J. F. Barbara, Macromolecules, 39, 720 (2006) https://doi.org/10.1021/ma0520139
  14. P. Vie, M. Paronen, M. Stromgard, E. Rauhala, and F. Sundholm, J. Membr. Sci., 204, 295 (2002) https://doi.org/10.1016/S0376-7388(02)00054-6
  15. J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, Sep. Pur. Tech., 41, 207 (2005) https://doi.org/10.1016/j.seppur.2004.07.018
  16. A. Taeger, C. Vogel, D. Lehmann, W. Lenk, K. Schlenstedt, and J. Meier-Haack, Macromol. Symp., 210, 175 (2004)
  17. A. Taeger, C. Vogel, D. Lehmann, D. Jehnichen, H. Komber, J. Meier-Haack, N. A. Ochoa, S. P. Nunes, and K. V. Peinemann, React. Funct. Polym., 57, 77 (2003) https://doi.org/10.1016/j.reactfunctpolym.2003.10.001
  18. S. Bryan, B. S. Pivovar, Y. Wang, and E. L. Cussler, J. Membr. Sci., 154,155 (1999) https://doi.org/10.1016/S0376-7388(98)00264-6
  19. S.Y. Kim, H. S. Shin, Y. M. Lee, and C. N. Jeong, J. Appl. Polym. Sci., 73, 1675 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990829)73:9<1675::AID-APP8>3.0.CO;2-9
  20. D. S. Kim, M. D. Guiver, M. Y. Seo, H. I. Cho, D. H. Kim, J. W. Rhim, G.. Y. Moon, and S. Y. Nam, Macromol. Res., 15, 412 (2007) https://doi.org/10.1007/BF03218807
  21. H. Okamura, Y. Takatori, M. Tsunooka, and M. Shirai, Polymer, 43, 3155 (2002) https://doi.org/10.1016/S0032-3861(02)00162-3
  22. I. Koji, S. Junichiro, and S. Atsushi, J. Colloid Interf. Sci., 274, 472 (2004) https://doi.org/10.1016/j.jcis.2004.03.044
  23. J. -W. Rhim, H. B. Park, C.-S. Lee, J.-H. Jun, D. S. Kim, and Y. M. Lee, J. Membr. Sci., 238, 143 (2004) https://doi.org/10.1016/j.memsci.2004.03.030
  24. H. S. Huang, C. Y. Chen, S. C. Lo, C. J. Lin, S. J. Chen, and L. J. Lin, Appl. Surf. Sci., 253, 2685 (2006) https://doi.org/10.1016/j.apsusc.2006.05.048
  25. J. Ding, C. Chuy, and S. Holdcroft, Chem. Mater., 13, 2231 (2001) https://doi.org/10.1021/cm010144s