Browse > Article

The Crosslinking Characteristic of Poly(vinyl alcohol) by Natural Dye  

Kim, Gwan-Hoon (Center for Photofunctional Energy Materials, Department of Polymer Science and Engineering, Dankook University)
Kim, Hyo-Gap (Center for Photofunctional Energy Materials, Department of Polymer Science and Engineering, Dankook University)
Kang, Ho-Jong (Center for Photofunctional Energy Materials, Department of Polymer Science and Engineering, Dankook University)
Publication Information
Polymer(Korea) / v.35, no.1, 2011 , pp. 72-76 More about this Journal
Abstract
The physical properties of crosslinked poly(vinyl alcohol)(PVA) by natural dyes as crosslinking agents were investigated and a comparison was made with chemically crosslinked PVA by Polycup 172. It was found that natural anthocyanin and crocin made possible to crosslink PVA physically through the hydrogen bonding of OH in both PVA and natural dyes in the present with NaCl as a catalyst. The water swellability dramatically decreased and the physical crosslinking led to decreasing of crystallinity of PVA. The lowering of thermal stability was noticed in the physically crosslinked PVA compared to chemically crosslinked PVA due to its lower crosslink density. However even natural dyes have polysaccharides in their chain, their thermal stability was higher than uncrosslinked PVA.
Keywords
poly (vinyl alcohol); natural crosslinking agent; anthocyanin; crocin; swellability;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 G. Kelta and A. Ricard, Polym. Bull., 24, 627 (1990).   DOI   ScienceOn
2 N. A. Peppas and R. E. Benert, Biomaterials, 1, 158 (1980).   DOI   ScienceOn
3 M. Dimonie, H. D. Schell, G. Hubca, M. A. Mateescu, C. G. Oprescu, S. Todireanu, O. Mario, and M. Iosif, J. Macro. Sci. Chem., A22, 729 (1985).
4 G. Mazza and R. Brouillard, Food Chemistry, 35, 422 (1987).   DOI
5 F. J. Francis, Crit. Rev. Food Sci. Nutr., 28, 273 (1989).   DOI   ScienceOn
6 F. Urushizaki, H. Yamaguchi, K. Nakamura, S. Numajiri, K. Augibayashi, and Y. Morimoto, Int. J. Pharm., 58, 135 (1990).   DOI   ScienceOn
7 G. Mazza and E. Miniati, Anthocyanins in Fruits, Vegetables, and Grains, CRC Press, London, 1993.
8 P. Bridle and C. F. Timberlake, Food Chem., 58, 103 (1997).   DOI   ScienceOn
9 S. Y. Nam, K. S. Sung, S. W. Chon, and J. W. Rihm, Membrane J., 12, 225 (2002).
10 C. R. Nuttelman, D. J. Mortisen, S. M. Henry, and K. S. Anseth, J. Biomed. Mater. Res., 57, 217 (2001).   DOI   ScienceOn
11 X. Wang, D. Fang, K. Yoon, B. S. Hsiao, and B. Chu, J. Membrane Sci., 278, 261 (2006).   DOI
12 H. Fujiwara, M. Shibayama, J. H. Chen, and S. Nomura, J. Appl. Polym. Sci., 37, 1403 (1989).   DOI
13 M. Iwaseya, N. Katsuyama, and K. Yamaura, J. Mater. Sci., 41, 1979 (2006).   DOI   ScienceOn
14 S. G. Lee, J. P. Kim, I. C. Kwon, K. H. Park, S. K. Noh, S. S. Han, and W. S. Lyoo, J. Polym. Sci. Part A: Polym. Chem., 44, 11 (2006).
15 E. Lavin and L. Snelgrove, Encyclopedia of Chemical Technology, John Wiley, New York, pp 808-821 (1983).
16 N. Chigurupati, L. Saiki, C. Gayser, Jr., and A. K. Dash, Inter. J. Pharm., 241, 293 (2002).   DOI   ScienceOn
17 P. Martens and K. S. Anseth, Polymer, 41, 7715 (2000).   DOI   ScienceOn