Browse > Article

Properties of Blood Compatible Crosslinked Blends of $Pellethene^{(R)}$/Multiblock Polyurethanes Containing Phospholipid Moiety/C-18 Alkyl Chain  

Yoo, Hye-Jin (Department of Organic Material Science and Engineering, College of Engineering, Pusan National University)
Kim, Han-Do (Department of Organic Material Science and Engineering, College of Engineering, Pusan National University)
Publication Information
Macromolecular Research / v.16, no.7, 2008 , pp. 596-603 More about this Journal
Abstract
To improve the mechanical properties, dimensional stability and blood compatibility, the biomedical material $Pellethene^{(R)}$ was blended with multiblock polyurethane (MPU) containing phospopholipid/long alkyl chain (C-18) at the various MPU contents and crosslinked using dicumyl peroxide as a crosslinking agent. The maximum MPU content for stable $Pellethene^{(R)}$/MPU blended films was approximately 30 wt%. The optimum crosslinking agent content and crosslinking time with respect to the mechanical properties were 4 wt% and 3 h, respectively. The mechanical properties (tensile strength and elongation at break) and water absorption of the crosslinked blend film increased with increasing MPU content. The test of platelet adhesion on the surfaces of the crosslinked blend film showed a decrease in the level of platelet adhesion from 70% to 6% with increasing MPU content from 0 to 30 wt%. These results suggest that the crosslinked $Pellethene^{(R)}$/MPU-30 (MPU content: 30 wt%) sample has strong potential as a novel material for blood compatible material applications.
Keywords
polyurethane; phospholipids; biomaterials; platelet adhesion;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 J. G. F. Boats, L. van der Does, and A. Bantjes, Brit. Polym. J., 19, 527 (1987)   DOI   ScienceOn
2 J. H. Lee, Y. M. Ju, and D. M. Kim, Biomaterials, 21, 683 (2000)   DOI   ScienceOn
3 A. Korematsu, Y. Takemoti, T. Nakaya, and H. Inoue, Biomaterials, 23, 263 (2002)   DOI   ScienceOn
4 K. D. Park, Y. S. Kim, D. K. Han, Y. H. Kim, E. H. Lee, H. Suh, and K. S. Choi, Biomaterials, 22, 851 (1998)
5 S. L. Cooper, J. Biomater. Sci.-Polym. E, 10, 679 (1999)   DOI   ScienceOn
6 M. D. Lelah and S. L. Cooper, Polyurethane in Medicine, FL, CRC Press, 1986, pp 57-110
7 A. Korematsu, Y. J. Li, T. Murakami, and T. Nakaya, J. Mater. Res., 14, 378 (1999)
8 M. S. Munro, R. C. Eberhart, N. J. Naki, B. E. Brink, and W. J. Fry, Amer. Soc. Artif. Int. Organs J., 6, 65 (1983)
9 R. S. Edmundson, Chem. Ind. (London), 20, 828 (1962)
10 E. Brinkman, A. Poot, T. Beugeling, L. van der Does, and A. Bantjes, Int. J. Artif. Organs, 12, 390 (1989)   DOI
11 W. Marconi, A. Galloppa, A. Mattinell, and A. Piozzi, Biomaterials, 16, 449 (1995)   DOI   ScienceOn
12 Y. J. Li, T. Nakaya, and Z. Zhang, J. Biomater. Appl., 12, 167 (1997)   DOI
13 J. R. Frautschi, M. S. Munro, D. R. Lloyd, and R. C. Eberhart, Trans. Amer. Soc. Artif. Int. Organs, 29, 242 (1983)
14 F. E. Bailey and J. Y. Koleske, Poly(ethylene oxide), Academic Press, New York, 1976, p 20
15 D. K. Han, K. D. Park, and Y. H. Kim, J. Biomater. Sci.-Polym. E, 9, 163 (1998)   DOI   ScienceOn
16 Y. J. Li, K. Mattews, H. M. Kodama, and T. Nakaaya, Macromol. Chem. Phys., 196, 143 (1995)
17 L. L. Yung and S. L. Cooper, Biomaterials, 19, 31 (1998)   DOI   ScienceOn
18 A. A. Durrani, J. A. Hayward, and D. Chapman, Biomaterials, 7, 121 (1986)   DOI   ScienceOn
19 G. A. Abraham and J. S. Roman, Biomaterials, 23, 1625 (2002)   DOI   ScienceOn
20 J. G. F. Boats, L. van der Does, and A. Bantjes, Biomaterials, 7, 393 (1986)   DOI   ScienceOn
21 T. G. Grasel, J. A. Pierce, and S. L. Cooper, J. Biomed. Mater. Res., 21, 815 (1987)   DOI   ScienceOn
22 J. H. Lee and S. H. Kim, Polymer(Korea), 21, 332 (1997)
23 Y. Uyama, K. Kato, and Y. Ikada, Adv. Polym. Sci., 137, 3 (1998)