Browse > Article

Proton Conducting Crosslinked Membranes by Polymer Blending of Triblock Copolymer and Poly(vinyl alcohol)  

Lee, Do-Kyoung (Department of Chemical Engineering, Yonsei University)
Park, Jung-Tae (Department of Chemical Engineering, Yonsei University)
Choi, Jin-Kyu (Department of Chemical Engineering, Yonsei University)
Roh, Dong-Kyu (Department of Chemical Engineering, Yonsei University)
Lee, Jung-Hyun (Department of Chemical Engineering, Yonsei University)
Shul, Yong-Gun (Department of Chemical Engineering, Yonsei University)
Kim, Jong-Hak (Department of Chemical Engineering, Yonsei University)
Publication Information
Macromolecular Research / v.16, no.6, 2008 , pp. 549-554 More about this Journal
Abstract
Proton conducting crosslinked membranes were prepared using polymer blends of polystyrene-b-poly(hydroxyethyl acrylate)-b-poly(styrene sulfonic acid) (PS-b-PHEA-b-PSSA) and poly(vinyl alcohol) (PVA). PS-b-PHEA-b-PSSA triblock copolymer at 28:21:51 wt% was synthesized sequentially using atom transfer radical polymerization (ATRP). FT-IR spectroscopy showed that after thermal ($120^{\circ}C$, 2 h) and chemical (sulfosuccinic acid, SA) treatments of the membranes, the middle PHEA block of the triblock copolymer was crosslinked with PVA through an esterification reaction between the -OH group of the membrane and the -COOH group of SA. The ion exchange capacity (IEC) decreased from 1.56 to 0.61 meq/g with increasing amount of PVA. Therefore, the proton conductivity at room temperature decreased from 0.044 to 0.018 S/cm. However, the introduction of PVA resulted in a decrease in water uptake from 87.0 to 44.3%, providing good mechanical properties applicable to the membrane electrode assembly (MEA) of fuel cells. Transmission electron microscopy (TEM) showed that the membrane was microphase-separated with a nanometer range with good connectivity of the $SO_3H$ ionic aggregates. The power density of a single $H_2/O_2$ fuel cell system using the membrane with 50 wt% PVA was $230\;mW/cm^2$ at $70^{\circ}C$ with a relative humidity of 100%. Thermogravimetric analysis (TGA) also showed a decrease in the thermal stability of the membranes with increasing PVA concentration.
Keywords
polymer electrolyte membrane fuel cell (PEMFC); crosslinked; triblock copolymer; proton conductivity; polymer blend;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 12  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev., 104, 4587 (2004)   DOI   ScienceOn
2 N. W. Deluca and Y. A. Elabd, J. Polym. Sci. Part B: Polym. Phys., 44, 2201 (2006)   DOI   ScienceOn
3 J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, Sep. Pur. Tech., 41, 207 (2005)   DOI   ScienceOn
4 A. Taeger, C. Vogel, D. Lehmann, W. Lenk, K. Schlenstedt, and J. Meier-Haack, Macromol. Symp., 210, 175 (2004)
5 J. Ding, C. Chuy, and S. Holdcroft, Chem. Mater., 13, 2231 (2001)   DOI   ScienceOn
6 S. Bryan, B. S. Pivovar, Y. Wang, and E. L. Cussler, J. Membr. Sci., 154,155 (1999)   DOI   ScienceOn
7 J. H. Chen, M. Asano, T. Yamaki, and M. Yoshida, J. Power Source, 158, 69 (2006)   DOI   ScienceOn
8 M. W. Matsen and F. S. Bates, Macromolecules, 29, 1091 (1996)   DOI   ScienceOn
9 H. Okamura, Y. Takatori, M. Tsunooka, and M. Shirai, Polymer, 43, 3155 (2002)   DOI   ScienceOn
10 M. Rikukawa and K. Sanui, Prog. Polym. Sci., 25, 1463 (2000)   DOI   ScienceOn
11 D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, Solid State Ionics, 176, 117 (2005)   DOI   ScienceOn
12 S. D. Mikhailenko, K. P. Wang, S. Kaliaguine, P. X. Xing, G.. P. Robertson, and M. D. Guiver, J. Membr. Sci., 233, 93 (2004)
13 I. Koji, S. Junichiro, and S. Atsushi, J. Colloid Interf. Sci., 274, 472 (2004)   DOI   ScienceOn
14 D. S. Kim, M. D. Guiver, M. Y. Seo, H. I. Cho, D. H. Kim, J. W. Rhim, G.. Y. Moon, and S. Y. Nam, Macromol. Res., 15, 412 (2007)   과학기술학회마을   DOI
15 R. Laurent, S. Zhiqing, D. Olivier, H. Steven, and J. F. Barbara, Macromolecules, 39, 720 (2006)   DOI   ScienceOn
16 H. S. Huang, C. Y. Chen, S. C. Lo, C. J. Lin, S. J. Chen, and L. J. Lin, Appl. Surf. Sci., 253, 2685 (2006)   DOI   ScienceOn
17 J. Won, S. M. Ahn, H. D. Cho, J. Y. Ryu, H. Y. Ha, and Y. S. Kang, Macromol. Res., 15, 459 (2007)   과학기술학회마을   DOI
18 S.Y. Kim, H. S. Shin, Y. M. Lee, and C. N. Jeong, J. Appl. Polym. Sci., 73, 1675 (1999)   DOI   ScienceOn
19 J. -W. Rhim, H. B. Park, C.-S. Lee, J.-H. Jun, D. S. Kim, and Y. M. Lee, J. Membr. Sci., 238, 143 (2004)   DOI
20 P. X. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, and S. Kaliagune, J. Polym. Sci. Part A: Polym. Chem., 42, 2866 (2004)   DOI   ScienceOn
21 A. Taeger, C. Vogel, D. Lehmann, D. Jehnichen, H. Komber, J. Meier-Haack, N. A. Ochoa, S. P. Nunes, and K. V. Peinemann, React. Funct. Polym., 57, 77 (2003)   DOI   ScienceOn
22 D. A. Davidock, M. A. Hillmyer, and T. P. Lodge, Macromolecules, 36, 4682 (2003)   DOI   ScienceOn
23 P. Vie, M. Paronen, M. Stromgard, E. Rauhala, and F. Sundholm, J. Membr. Sci., 204, 295 (2002)   DOI
24 D. K. Lee, Y. W. Kim, J. K. Choi, B. R. Min, and J. H. Kim, J. Appl. Polym. Sci., 107, 819 (2008)   DOI   ScienceOn
25 Y. Yin, S. Hayashi, O. Yamada, H. Kita, and K. Okamoto, Macromol. Rapid Commun., 26, 696 (2005)   DOI   ScienceOn