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Abstract

Refinements of classical theories for entangled or crosslinked polymeric systems have led to incommensu-
rable models for rubber networks and polymer melts, contrary to experimental evidence, which suggests a
great deal of similarity. Uniaxial elongation and compression data of linear and branched polymer melts as
well as of crosslinked rubbers were analyzed with respect to their nonlinear strain measure. This was found
to be the result of two contributions: (1) affine orientation of network strands, and (2) isotropic strand exten-
sion. Network strand extension is caused by an increasing restriction of lateral movement of polymer chains
due to deformation, and is modelled by a molecular stress function f, which in the tube concept of Doi and
Edwards is the inverse of the relative tube diameter. Up to moderate strains, f %is found to be linear in the
average stretch for melts as well as for rubbers, which corresponds to a constant tube volume. At large
strains, rubbers show maximum extensibility, while melts show maximum molecular tension. This maximum
value of the molecular stress function governs the ultimate magnitude of the strain-hardening effect of linear

and long-chain branched polymer melts in extensional flows.

1. Introduction: Classical Theories

Modelling a flexible macromolecule as a linear array of
a large number of point masses connected by freely-jointed
links has been a basic feature of any kinetic theory relating
stress and strain of polymeric materials. A rubber consists
of a single coherent network of flexible macromolecules,
which are crosslinked at certain isolated points along the
molecular chains. If intermolecular interaction between
network strands and intramolecular interaction along a
strand are neglected, and if crosslinks are assumed to move
affinely with the macroscopic deformation, kinetic theory
leads to the classical stress-strain relation for a rubber:

o(t) =-pE+G..C{'(ty) )]

o is the stress tensor, p the isotropic pressure, E the unit
tensor, G, the small-strain equilibrium shear modulus,
which is given by

G..=kTN 2

(k is Boltzmann's constant, T the absolute temperature, and
N the number of strands in unit volume). C;'(t,)is the Fin-
ger strain tensor relating the deformed state at time t to the
undeformed state at time t.
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Classical network theory is well suited to explain elasticity
of elastomers qualitatively. Quantitatively, however, mechanical
behaviour of real systems of crosslinked polymer chains is
influenced by intermolecular interactions: The number of
possible conformations available to network strands is
reduced due to topological constraints. This "entanglement”
contribution to the entropic force does not only determine
the time dependence of the transient part of the stress, it
also affects the relationship between equilibrium stress and
strain, and invalidates the simple proportionality of eq. (2)
between the small strain equilibrium shear modulus, G..,
and the number of network strands in unit volume, N.

Elastic recovery of polymer melts can be as high as
recovery of crosslinked elastomers (Wagner and Meissner,
1980). Polymer melts are viscoelastic liquids and do not
possess permanent crosslinks. Therefore all entropic
elasticity has to be attributed to the action of "entangle-
ments". Temporary junction network theories (Green and
Tobolsky, 1946; Yamamoto, 1956; Lodge, 1956) were the
first to explain elasticity of rubberlike liquids. They model
entanglements as physical junctions defined by "two points
of two molecular chains moving together for at least a
certain minimum length of time greater than the fluctu-
ation period which is needed for the molecular chains to
pass through almost all of their thermodynamic states”. If
the further assumptions are made that creation and decay
mechanisms of network strands are not affected by flow,
the rubberlike-liquid constitutive equation is obtained
(Lodge, 1956):
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o(t) =—pE +iaﬂatt,;t')C;1(t‘)dt' 3)

G(t) is the linear-viscoelastic shear relaxation modulus.
Again, many aspects of viscoelasticity are explained qual-
itatively by the rubberlike-liquid constitutive equation, while
its strain measure fails quantitatively at higher strains, indi-
cating that the entanglement structure of the temporary
junction network is strain dependent (Wagner and Meissner,
1980; Wagner, 1976).

The equivalence of the strain measure in eqs. (1) and (3)
is evident, and indeed eq. (1) is comprised in eq. (3) as
long-time limit with

mG() = G. )

The origin of the "universality" of this particular strain
measure for rubbers and polymer melts can be traced back
to the freely-jointed chain with neglect of molecular
interactions except at isolated (permanent or temporary)
junctions. Later refinements of molecular theory have
resulted in mutually exclusive models for rubber networks
and polymer melts, and we will consider just a few exam-
ples which are of relevance here.

2. Theories from Continuum Mechanics and Their
Microscopic Equivalents

Eq. (3) can be generalized by continuum mechanics
arguments to

o(t) =—pE + [ m(t—t)S,(t)dt )

which preserves the experimentally well documented
separability of time and deformation (Wagner, 1976; Laun,
1978; Wagner and Laun, 1978), and is sometimes called a
separable Rivlin-Sawyers equation (Larson, 1988). In terms
of continuum mechanics, the nonlinear strain measure S
can be expressed by

S = hy(1,1))C +hy(I,1,)C ©6)

as a linear combination of the Finger strain tensorC™' and
the Cauchy strain tensor C, where the dependence on the
observation time t and the past time t' is taken for
granted. The strain functions h; and h, depend on defor-
mation via the first and second invariant I, and I, of the
Finger strain tensor. In the limit of h; =1, h, =0, eq.(5)
reduces to the rubberlike-liquid constitutive equation of
Lodge, eq. (3). If the strain functions h, and h, can be
derived from a strain energy function, eq. (5) is referred to
as being of the K-BKZ type (Kay, 1962; Bernstein and
co-workers, 1963). If h, and h, are assumed to be con-
stants, eq. (5) in the long-time limit is equivalent to the
well-known Mooney-Rivlin equation:
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o(t) = -pE+2C,C; (1) -2C,Ci(ty) @)

In microscopic terms, stress in polymeric systems
originates from extension of entropic springs, which can
be thought of e.g. representing molecular strands between
entanglements. An isotropic distribution of molecular
strands normalized with respect to their equilibrium length
can be described by an isotropic distribution of unit vectors
u. Assuming affine deformation, the inverse deforma-
tion gradient F' transforms a unit vector u into a
deformed vector u',

u=F'u (8)
The Finger strain tensor can then be expressed as
C™'=3(uu) )

<..> denotes an integral over an isotropic distribution of
unit vectors before deformation,

(...)=4%tj...d£2 (10)

where dQ is an infinitesimal solid angle, and the integra-
tion is over the surface of a unit sphere.

A similar scheme can be used to find a microscopic
representation of the Cauchy strain tensor C. If n represents
an isotropic distribution of unit surfaces, and if these are
assumed to be deformed affinely, the deformation gradient F
transforms a unit surface vector n into the deformed sur-
face vector n',

n'=nF arn
The Cauchy strain tensor C can then be expressed as
C=3(n'n") (12)

Considering further that the invariants I, and I, are equiv-
alent to

I, =3(? (13)
L =3(n"% (14)

where u' and n' are the length of the vector u' and n'
respectively,

u=Ju-u (15)
and
n'=,/n"-n' (16)

the strain measure S of eq.(6) can be expressed in
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microscopic terms as
S = H,((u), (o) {u'u) + K;((u?), (0™))(n'm) (17

where the strain functions H; and H, converge to H;+H,=3
in the linear-viscoelastic limit (Wagner and co-workers,
1998).

3. Modelling Topological Constraints

While eq. (17) expresses the strain measure S of eq. (6)
in terms of the primitive quantities u and m, it is by no
means guaranteed that this is the most appropriate
representation of the strain measure when taking into
account topological constraints of the macromolecular chains.

The kinetic theory of Doi and Edwards (1978) models
intermolecular interaction for concentrated systems of
monodisperse linear polymer chains by the tube concept:
The mesh of constraints caused by surrounding chains
confines the molecular chain laterally to a tubelike region.
Relaxation occurs by two mechanisms: "chain retraction”
by equilibration along the tube contour, and "chain dif-
fusion" by reptation out of the tube. As chain retraction is
fast compared to chain diffusion, this model explains
naturally the experimentally observed time-deformation
separability of the nonlinear relaxation modulus for times
greater than the equilibration time.

Assuming that the diameter of the tube is not changed by
deformation, or equivalently that the tension in the deformed
polymer chain is equal to its equilibrium value, Doi and
Edwards derived (by use of the independent alignment
assumption IAA) a single integral constitutive equation of
the form

o) =—pE+5 | 0L hyar (18)

As shown by Doi and Edwards, the strain measure in eq.
(18) can be expressed in terms of eq. (6); however, the
resulting strain functions h; and h, are not analytic
functions of the strain invariants. The Doi-Edwards (IAA)
strain measure is equivalent to the second rank orientation
tensor.

For monodisperse polymer solutions, the Doi-Edwards
strain measure seems to give an acceptable description of
material behaviour in step-shear experiments. For poly-
disperse linear and branched polymer melts, on the other
hand, although time-deformation separability often works
over most or even the entire (experimentally attainable)
time range, the measured stresses in shear and extensional
flows are often much higher than predicted by the Doi-
Edwards strain measure (Wagner, 1980; Leblans and
Scholtens, 1987; Larson, 1988; Wagner, 1990).

Marrucci (1979) and Graessley (1982) extended the tube
idea of Doi and Edwards to crosslinked systems. By
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assuming equilibration of tension in the network strands
between crosslinks, they derived the following stress-
strain relation for rubbers:

0= -pE+26. ()Ll (19)

However, the difference between eqs. (1) and (19) is
much too small to account for the observed experimental
deviations from classical stress-strain behaviour. It is
obvious that the strain measures of eqgs. (18) and (19),
although based on the same physical principle, predict
different strain dependences and are mutually exclusive for
either polymer melts or rubbers, respectively.

Flory and Erman (1977; 1978) assume that junction
fluctuations are restricted by neighboring chains, which
confine junctions initially to spherical domains. Upon
deformation, these domains are transformed into ellip-
soids, and junction fluctuations become anisotropic. By
use of a parameter k, which is a measure of the severity of
entanglement constraints on junctions, deviations of real
rubber networks from the stress-strain relation of eq. (1)
can be fitted successfully. It is obvious that this theory
which restricts itself to permant networks with fixed cycle
rank and does not consider time dependence, cannot be
generalized in any simple way to comprise both rubbers
and polymer melts.

In the model of Ball, Doi, Edwards, and Warner (1981)
for rubber elasticity, slip links provide a sliding contact
between polymer chains. By use of a parameter h, which
is a relative measure of freedom of a slip link to slide,
stress-strain relations of real networks can be fitted
successfully (Thirion and Weil, 1984; Edwards and
Vilgis, 1986; Brereton and Klein, 1988). Again, this model
is restricted exclusively to crosslinked rubbers.

Thus, refinements of the classical theory have lead to
incommensurable models for rubber networks and polymer
melts. On the other hand, experimental evidence suggests
a great deal of similarity between material behaviour of
rubbers and polymer melts. The most dramatic single point
of similarity is large elastic recoil as already mentioned;
others are:

(1) time-deformation separability, which is observed by
rubbers (Smith, 1962; Tsuge et al., 1978; Scholtens and
Leblans, 1986) and polymer melts (Laun, 1978; Wagner
and Laun, 1978; Wagner, 1978; Raible er al., 1982), and
which allows the experimental determination of strain
measures (Smith, 1962; Wagner, 1978; Wagner and
Demarmels, 1990);

(2) irreversible strain effects in polymer melts (Wagner
and Stephenson, 1979; Wagner et al., 1998) and in rubbers
(Roland, 1989);

(3) similar strain measures for polymer melts and rubber
networks: in uniaxial elongation for both melts and rubbers
the classical strain measure of eq. (1) represents the upper
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limit, and the Doi-Edwards strain measure of eq. (18) the
lower limit (Wagner, 1980; Leblans and Scholtens, 1987).

In the following, we will first concentrate on the sim-
ilarities of strain measures for polymer melts and rubbers.
We restrict attention to increasing uniaxial elongation and
compression (which is equivalent to equibiaxial extension)
starting from the isotropic, stress-free state, and compare
the experimentally determined strain measures of polymer
melts and crosslinked rubbers. We will then present a
generalized strain measure for melts and rubbers, and
discuss shortly its dependence on crosslink density, before
we consider some more recent developments.

4. Mooney Stress and Damping Function for
Rubbers and Melts

For uniaxial elongation (extension ratio A > 1) and
compression (A < 1) at constant volume, classical rubber
elasticity theory, eq. (1), predicts a true stress 6, = Gy - Oz,

1
6,=G.("7) (20)
To emphasize deviations of material behaviour from eq.
(20), it is customary to define a Mooney stress (or reduced
stress) Om

Oy = c/(xz_%) 1)

and to present elongation and compression data as
Mooney-Rivlin plots (Mooney stress Gy versus 1/A).

Similarily, in polymer melt rheology, damping functions
are used to assess deviations from the rubberlike-liquid
strain measure C;' (Wagner, 1976). For relaxation
experiments in elongation/compression, the damping function
h is defined as

011 =033 Om
' Go(x-1) G @2
A
Note that due to time-deformation separability, h can also
be calculated from constant strain-rate start-up flows
(Wagner, 1978; Wagner, 1979).

From the definition of the damping function for uniaxial
elongation/compression, eq. (22), it is obvious that h can be
considered as Mooney stress normalized by the linear-
viscoelastic shear relaxation modulus. The damping
function approach can be applied to both polymer melts
and rubbers. If the equilibrium stress is measured for a
rubber, the corresponding modulus is G.,.

Forty years of research into the elongation/compres-
sion behaviour of rubbers are summerized in Fig. 1,
where the damping function h, i.e. the Mooney stress Gy
normalized by the small-strain equilibrium shear mod-
ulus G..,
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Om

h=3" (23)
is presented for several rubber networks crosslinked in bulk
(Wagner and Schaeffer, 1993). Contrary to customary
Mooney-Rivlin plots, a logarithmic scale is used to ensure
equal representation of elongation and compression data.
Data (symbols) are for a randomly crosslinked natural
rubber (Rivlin and Saunders, 1951), two randomly
crosslinked PDMS networks (Pak and Flory, 1979), and
three endlinked PDMS networks (Xu and Mark, 1990). It
is obvious from Fig. 1 that within experimental scatter,
the strain data of these six different rubber networks
superimpose. For elongation, the data can be approximated
by a (normalized) Mooney-Rivlin equation,

2C
h = (2C, +T2)/ G.. 24

with 2C,=0.55G. and 2C,=0.45G,, (broken line in
Fig. 1). As is well known this approximation fails in
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Fig. 1. Normalized Mooney stress h = Oy/G.. of several cross-
linked rubbers (symbols) as a function of inverse
extension ratio 1/A. Broken line is given by normalized
Mooney-Rivlin equation (24). Solid line represents Doi-
Edwards damping function from eq. (18) in elongation
and compression.

T T 71 T LR
1| © 8 oPB J
- ]

c - / -
L T, 1
A o
Af Elongation Compression—s

0'1 i Al?l 1 1 1 1 bt i i £} A 1 S |

0.02 o1 1 10 100 200

/% —

Fig. 2. Damping function of PIB melt (symbols) as a function of

inverse extension ratio 1/A. Solid line represents Doi-

Edwards damping function from eq. (18) in elongation and
compression.
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compression, where the data show a maximum in the
damping function at A=0.5. Also shown in Fig. 1 is the
Doi-Edwards strain measure (line) from eq. (18). Note
that although the Doi-Edwards damping function fails
quantitatively, its general shape is in qualitative agreement
with the data.

The strain dependence of a well characterized polyisobutene
(PIB) melt as measured by Demarmels and Meissner
(1985; 1986) was analyzed by Wagner and Demarmels
(1990), and Wagner and Schaeffer (1992). In Fig. 2, the
damping function h for uniaxial elongation and compression
of this PIB is plotted as a function of 1/A (symbols). The
data were converted from Hencky strain € to extension
ratio A by the relations A =exp(e) (elongational strain €)
and A =exp(-2¢€) (equibiaxial strain €) respectively. Also
shown in Fig. 2 is the Doi-Edwards damping function,
which again fails quantitatively to describe the data
(Wagner, 1990).

5. A Generalized Strain Measure for Extension
of Melts and Rubbers

It is obvious from Fig. 2 that Doi-Edwards' assumption
of constant tube diameter or constant molecular tension is
not supported by the data, not even in first order in strain.
The tension of the average polymer chain increases with
increasing deformation. We defined a "molecular stress
function” f(<u">), which is a representation of the mean
stress field of the surrounding polymer chains and its effect
on the macromolecule considered. The molecular stress
function f describes the tension in the chain relative to its
equilibrium value, and depends on the average stretch <u'>.
This is in contrast to a similar approach taken by Marrucci
et al. Marrucci and de Cindio, 1980; Marrucci and Hermans,
1980), where f is assumed to depend on the stretch of
individual segments, u', of the tube.

The molecular stress function constitutive equation is
given by (Wagner and Schaeffer, 1992)

o() = -pE+5 | 2000 Ul L (25)
o u

The strain measure of eq. (25) is seen as being the result of

two contributions:

(1) affine orientation of network strands, i.e. a network
strand characterized by a unit vector u is orientated in the
new direction w'/u’;

(2) isotropic strand extension, i.e. a network strand of
unit length is extended to length f(<u™>).

Note that strand extension is independent of strand
orientation, i.e. all strands in all directions are subject to
the same extension, which is represented by the molecular
stress function f. In the tube concept, extension of a
network strand can only be achieved by reduction of the
tube diameter (there are no "Maxwellian demons" pulling
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at the ends of the chain, while there is an increasing
restriction of lateral motion of the chain caused by the
surrounding chains), and indeed it can be shown that f is
the inverse of the relative tube diameter (Wagner and
Schaeffer, 1992). At small strains, {2 is found to be linear
in <u™>. This can be rationalized in terms of the tube
concept by the assumption of a constant volume V = V; of
the tube: with tube diameter a, and a, and contour length
Lo and L =L, - <u"> in the undeformed and deformed
state respectively, and

2
Ny _aLl _ (26)

2= a—§=£=(u') (27)

Alternatively, eq. (27) can be considered as resulting
from an affine deformation of the tube diameter a, which
represents the mean field of the topological constraints. At
higher average stretches, a maximum molecular stress
function, f., corresponding to a minimum tube diameter,
A, 18 reached for polymer melts, the level of which is
clearly depending on the degree of long-chain branching
(Wagner and Schaeffer, 1992).

Inserting eq. (27) into eq. (25) results in the constitutive
equation of the linear molecular stress function theory:

t e ot
o) =—pE-+5 | 2800y (Mar (28)
The corresponding damping function can be solved by

closed integration for uniaxial elongation and compression,
and the result is for elongation (A>1):

_L A% [ sinhT JAP-1) | 3R] (l_tan_l JA-1]
Wl A ) (R -1

for compression (A<1):

sin ' J1-2"] | 3% (l_tanh"‘ (EVS
3 1_;\_3 1—7\.3

h

(29)

h=

1)
= 1
47»3—1[ =
(30)

Predictions (line) of eqs. (29) and (30) are compared
with experimental data for PIB melt (symbols) in Fig. 3.
Deviations of data and theory at small strains A=1 can
be attributed to measurement errors, while deviations at
large strains (A << 1 and A >> 1) are related to the plateau
value of f>

Fig. 4 shows a comparison of rubber data (symbols from
Fig. 1) with predictions of the linear molecular stress
function theory (line). For all six rubber networks at small
and medium strains agreement of data and theory is
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Fig. 3. Damping function for PIB melt (symbols) as a function
of inverse extension ratio 1/A. Solid line is prediction
by the linear molecular stress theory, in elongation,
eq. (29), and compression, eq. (30). Broken line represents
Doi-Edwards damping function from eq. (18).
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Fig. 4. Normalized Mooney stress h = Ou/G.. of several rubbers
(symbols) as a function of inverse extension ratio 1/ A
Solid line is prediction by the linear molecular stress the-
ory, in elongation, eq. (29), and compression, eq. (30).
Broken line represents Doi-Edwards damping function
from eq. (18).

remarkable. Note that this agreement is obtained by use of
a single scaling parameter, G.,. Deviations at large strains
are due to finite extensibility of crosslinked networks
(Wagner and Schaeffer, 1993).

6. Influence of Crosslink Density

The success of the molecular stress function theory, eq.
(25), for rubbers was further substantiated by Wagner
(1994). To assess the influence of crosslink density on the
strain dependence of rubber networks, the extensive data
set of Mullins (1959) on uniaxial elongation of peroxid
cured natural rubber was considered. An analysis of these
data shows that eq. (25) or equivalently its long-time limit,

6 =—pE+35G.(1Y) 31
u
describes the strain dependence of elongational stress at
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small and moderate crosslink densities. When G.,
reaches a critical niveau G;, which corresponds to the
plateau modulus Gy of the un-crosslinked parent melt,
chemical crosslinks have effectively replaced all entangle-
ments of the melt state, and the average distance between
crosslinks is equal to the tube diameter a, of the melt. For
G..<G, the strain measure of the rubber is indistinguishable
from the strain measure of the corresponding melt for
small and moderate strains, and the stress calculator is
given by eq. (31) with G,, being a measure of the tube
diameter a, of the rubber.

Note that in contrast to other theories employing the tube
model in rubber elasticity, eq. (31) does not distinguish
between the contribution of covalent bonds (chemical
junctions) and the effect of entanglements: for G..<G?, the
strain measure of physical entanglements is the same as the
strain measure of chemical junctions. However, higher
crosslink densities result in a classical contribution to the
strain measure which reflects phantom chain behaviour.
This can be rationalized by considering that short network
strands with length scale below the entanglement spacing
(or tube diameter a;) are not restricted by neighboring
chains. The stress calculator is then given by

6 = pE+5G: ()" L) +3G,(u'w) (32)
u

with

G.=G:+G, (33)

We call G; the critical "entanglement" contribution,
which is a measure of the tube diameter a, of the un-
crosslinked parent melt and therefore represents the
maximum entanglement effect of neighboring chains, and
G. the "classical", phantom-chain contribution to the
equilibrium modulus G...

7. The Molecular Stress Function of Melts and
Rubbers

By the early nineties it became clear that the strain
behaviour of linear as well as long-chain branched
polymer melts and rubber networks below a critical
equilibrium modulus G; (which corresponds to the
plateau modulus Gy of the uncrosslinked parent system) is
univeral for small and moderate increasing strains starting
from the isotropic, stress-free state. This result is summer-
ized in Fig. 5: for polymer melts as well as crosslinked
homopolymers, the square of the molecular stress func-
tion, f 2 is linear in the average stretch <u'> up to moderate
strains. f was calculated from data of Demarmels and
Meissner (Demarmels and Meissner, 1986; Wagner and
Schaeffer, 1992) for PIB melt and from data of Laun
(1980) for several linear (PS, HDPE) and branched
(LDPE 111, LDPE IUPAC A) polymer melts (Wagner and
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Fig. 5. Square of molecular stress function, f°, as a function of
average stretch <u’> for several linear and branched
polymer melts, and for several crosslinked rubbers.

Schaeffer, 1992).

At large deformations, polymer melts show a maximum
molecular tension f,, (corresponding to a minimum tube
diameter). The plateau value increases with the degree of
long-chain branching. Molecular tension increase due to tube
deformation is limited by "chain slip" or "constraint release”.

Crosslinked polymer networks show finite extensibilty,
i.e. f diverges at finite deformation. Maximum deformation
is much less than would be expected from phantom chain
theory. This is due to topological constraints ("trapped
entanglements”) which are permanent in crosslinked
networks, because there is no chain slip. At higher defor-
mations these permanent constraints (both chemical and
physical) cause deviation from Gaussian chain behaviour.

8. Recent Developments

A special version of the molecular stress function theory
can be derived by generalizing the strain energy function of
the Doi-Edwards model (Wagner et al., 1998). The strain
energy function is a scalar integral of the strain measure; it
thus reduces a tensorial quantity (the stress tensor) to a
scalar one. The strain energy function Wpg of the Doi-
Edwards (IAA) theory is (Larson, 1988; Currie, 1982;
Marrucci and Grizzuti, 1983)

Woe = 5] m(s)(In(u"))ds (34)

Upon deformation, the entropy of a tube segment
represented by its unit vector, is reduced by 3k<In(u')>,
and the free energy is increased by 3kT<In(u')>. The quan-
tity <In(u')> in eq. (34) is thus seen to represent the relative
orientational free energy of the average tube segment,
normalized with respect to 3kT. It is important to note that
the (scalar) stretch field L/L, experienced by the average
tube segment can be expressed as

In(L/Lg) = {In(u")) (35)

Korea-Australia Rheology Journal

or

L= Loe"” (36)
Generalizing eq. (34) to

W= 5[ (s)w(CIn(u))ds 37

with w(<In(u')>) being a dimensionless strain energy func-
tion of the average logarithmic stretch, leads to a strain
measure

_s_Ow __uuw
S =33y’ 9

This is clearly of the molecular stress function-type of eq.
(25), with

2 8 ow
/= ag ~ 9(In(u") %)

The molecular stress function f and the tube diameter a
are thus seen to depend now on the orientational free
energy <In(u')>.

To find specific expressions for the molecular stress
function f, we need again additional assumptions. For
linear polymers, the most natural assumption on the basis
of the tube concept seems to be again the constant tube
volume assumption, which leads to

Ja I (40)

2
a

As f? is linear in the scalar stretch field L/L,, we call eq.
(40) again the "Linear Molecular Stress Function theory",
and abbreviate it by LMSE.

To derive an expression for the molecular stress function
of longchain-branched polymer melts, we treat branch
points simplisticly as junctions of a crosslinked system and
resort to the theory of rubber elasticity. Following Flory
(Flory, 1977), we allow for junction fluctuations, which
leads to a molecular stress function of the form (Wagner
et al., 1999)

2_ 1 2¢m@y 1
p= Lo d @)

Eq. (41) reduces to eq. (40) in first order of <In(u'y>. We
will therefore use eq.(41) in the following to describe
the strain-hardening behaviour of long-chain branched
polymer melts. As f* is quadratic in the stretch, we call it
the "Quadratic Molecular Stress Function (QMSF) theory".

9. Strain Hardening of Linear and Long-chain
Branched Polymer Melts in Extensional Defor-
mations

Fig. 6 shows the uniaxial (U,), equibiaxial (u.), and
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Fig. 6. Time-dependent extensional viscosities (symbols) of
HDPE. Lines are predictions using the Doi-Edwards (DE)
model, eq. (18), the Linear Molecular Stress Function
(LMSF) theory, eq. (40), and the one-parameter Molecular
Stress Function (MSF) theory, eq. (42).

planar (u, and M) viscosities of HDPE measured at
150°C and at constant strain rates (Wagner et al., 1999).
The definition of extensional viscosities U as used here
includes normalisation constants, which rescale all
viscosities in the linear-viscoelastic limit to the time-
dependent zero-shear viscosity Mo(t), which is also shown
in Fig. 6. »

Fig. 6 also presents the extensional viscosities calculated

300

by use of eq. (18) for the Doi-Edwards (DE) model, as well
as the LMSF model according to eq. (40). It is obvious
from Fig.6 that the Doi-Edwards model does not predict
any strain-hardening in extensional flow, while the
molecular stress function theory with the simple exponen-
tial dependence on the average logarithmic stretch gives
an accurate description of the strain-hardening behaviour
up to large deformations. Note that this is a zero-parameter
theory! It is also seen that within experimental accuracy,
time-strain separability is a valid assumption, i.e. the
calculated viscosities do not exhibit any systematic
deviation from the upturn of the measured viscosities as
a function of strain rate.

At large deformations, the Linear Molecular Stress
Function theory predicts an unbounded growth of the
uniaxial (W,), equibiaxial (|L.), and planar (1) viscosities,
while the experimental data indicate the existence of
steady-state viscosities. To model this saturation effect, we
allow for increasing slip between the stretching of a test
chain and the stretch field, which can be modelled e.g. by

) e(ln(ll')) -1
f =1 +f;f1ax — 1[1 —€xXp + (_ﬁ)} (42)

foax, the maximum value of the molecular stress function,
is the only free nonlinear material parameter of the theory.
For small deformations, eq. (42) reduces to eq. (40). From
the data in Fig. 6, a value of f 2 =30 can be estimated,
which corresponds to a maximum stretch ratio of the
macromolecular chains of f;,,,=5.5.

As seen from Fig. 6, the HDPE melt investigated shows
a considerable "strain-hardening” effect in the extensional
viscosities. Usually, strain-hardening is considered to be
mainly an effect of long-chain branching, and it might be
argued that the strain-hardening of these HDPE melts is
caused by a small amount of long-chain branching.
However, investigations by Linster and Meissner on HDPE
indicated that also a small amount of very long, linear
molecules in the molecular weight distribution of the
polymer with no or almost no long-chain branching leads
to the same phenomenon.

A polymer clearly free of any long-chain branching is
radically polymerized polystyrene (PS). Fig. 7 presents the
uniaxial (i,) and equibiaxial (U.) viscosities of the PS
considered here measured at a temperature of T=170°C
(Hachmann, 1996), which shows strain-hardening in uniaxial
elongation, but very little strain-hardening in equibiaxial
extension. The damping function h, and h, in uniaxial and
equibiaxial extension were evaluated and are also shown
in Fig.7. (For the definition of damping functions in
extensional flows see e.g. Wagner (1978), and Wagner et
al. (1998; 1998) Time-deformation separability is well
observed in uniaxial extension for 2 decades of strain rate,
while for equibiaxial extension (being a more difficult
experiment to perform), h, shows some scatter at small
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Fig. 7. Damping functions and extensional viscosities (symbols)
of PS. Lines are predictions using the Doi-Edwards (DE)
model, eq. (18), the Linear Molecular Stress Function
(LMSF) theory, eq. (40), and the one-parameter Molecular
Stress Function (MSF) theory, eq. (42).

strain rates. Included in Fig. 7 are the predictions of the
Doi-Edwards model, the LMSF model of eq. (40) and the
one-parameter version of eq. (42) with f32,, =13 or f,,,=3.6.
It is obvious that the molecular stress function model
describes the strain measure in uniaxial and equibiaxial
extension and the corresponding viscosities of this PS melt
quantitatively. While the viscosity upturn and the strain-
hardening behaviour is captured correctly by the Linear
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Molecular Stress Function model, the value of the
steady-state viscosities is fully determined by f,.. If £«
is small enough, as in this case, very little or no strain-
hardening (in the usual sense of a viscosity above the
linear-viscoelastic start-up curve) is observed in equib-
iaxial extension.

To summarize the results, we can state that all linear
polymer melts investigated so far show strain hardening in
extensional flows, whereby we define strain-hardening as
an extensional viscosity upturn above the Doi-Edwards
prediction. This means that all polymer melts considered
show chain stretching in irrotational flows. The strain-
dependence of the viscosity upturn is the same for all
linear polymer melts investigated: it can consistently be
described by the Linear Molecular Stress Function model
with an exponential dependence of the molecular stress
function on the orientational free energy, indicating an
affine deformation of the average tube diameter. The
ultimate magnitude of the strain-hardening effect is
limited by the maximum value of the molecular stress
function, f,... This material property governs the maximum
stretch of the macromolecular chain, and the minimum
tube diameter a.;,. fi.x is intimately related to the strain-
hardening effect of the elongational viscosity: a large value
of f..x indicates a large strain-hardening effect, while for
polymer melts that are usually considered to be "non-
strain-hardening”, small values for f,,, are found. In the
lower limit of f,,.=1, the Doi-Edwards model is recovered.
So far, no molecular arguments are known which would
allow calculation of f.x, or equivalently of a minimum
tube diameter, from molecular properties of the polymer
melt. Clearly molecular weight distribution is important,
but probably not enough.

We now consider the strain-hardening behaviour of
long-chain branched polymer melts. Fig. 8 shows the
uniaxial (W), equibiaxial (\l.), and planar (U, and L) vis-
cosities of LDPE measured at 150°C and at constant strain
rates (Hachmann, 1996). Also included in Fig.8 are the
predictions of the Doi-Edwards model and of the Linear
Molecular Stress Function theory of eq. (40). It is impor-
tant to note that as expected, the upturn of the exten-
sional viscosities of the longchain-branched LDPE is more
pronounced than predicted by the LMSF model and there-
fore more severe than for linear polymer melts. As shown
in Fig. 9, we can describe this upturn quite accurately for
all deformation modes with the Quadratic Molecular
Stress Function theory of eq. (41), which is again a zero-
parameter model! It is thus seen that the enhancement of
the viscosity upturn due to the presence of longchain
branches can indeed be represented by a molecular
stress function derived from the junction fluctuation
theory of rubber networks.

To model the steady-state extensional viscosities at large
deformations, a limiting value of the molecular stress has
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Fig, 8. Time-dependent extensional viscosities (symbols) of LDPE.
Lines are predictions using the Doi-Edwards (DE) model,
eq. (18), and the Linear Molecular Stress Function
(LMSF) theory, eq. (40).

again to be considered, e.g. by
=14+ (f2,-1)| 1 e 43
=1+ ){ —exp +(—mﬂ (43)

For small deformations, eq. (43) reduces to eq. (41).
Using eq. (43) and a value of f2,, =100 corresponding to
an average stretch of the macromolecules by a factor of 10,
the steady-state viscosities can be modelled qualitively.
However, there is a systematic discrepancy between the
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Fig. 9. Time-dependent extensional viscosities (symbols) of LDPE.
Lines are predictions using the Doi-Edwards (DE) model,
eq. (18), the Quadratic Molecular Stress Function (QMSF)
theory, eq. (41), and the one-parameter Molecular Stress
Function (MSF) theory, eq. (43).

steady-state viscosities predicted and observed, which is
probably outside experimental uncertainty. This means that
the upturn of the extensional viscosities is time-deforma-
tion separable, while the ultimate steady-state value is not,
i.e. the strain measure is the same for all relaxation modes
up to a value of f,.,, which might not be a strict constant
but might depend on the relaxation time.

The uniaxial elongational viscosity h, and the damping
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Fig. 10. Damping function h, and elongational viscosity M, of
long-chain branched PP. Lines are predictions using the
Doi-Edwards (DE) model, eq. (18), the Linear Molecular
Stress Function (LMSF) theory, eq. (40), and the Qua-
dratic Molecular Stress Function (QMSF) theory, eq. (41).

function h, of a longchain-branched polypropylene PP are
presented in Fig. 10 (Kurzbeck ef al., 1999). This polymer
shows extreme strain-hardening, which can be described
quantitatively by the Quadratic Molecular Stress Function
model of eq. (41) up to the maximum strains investigated.
Also shown in Fig.10 are the damping functions for the
Doi-Edwards model as well as for the Linear Molecular
Stress Function theory. Neglecting the scatter at small
Hencky strains, which is due to experimental difficuities,
the LMSF theory is seen to give a good description of the
experimentally determined damping function up to a
Hencky strain of about € = 1; at larger strains, the data
indicate a plateau, which is well described by the Quadratic
Molecular Stress Function model. No steady-state value
was reached for the elongational viscosity in constant
strain-rate elongation. However, three experiments with
Hencky strains up to € =4 indicate that f> approaches
saturation at high strains.

In summary, long-chain branched polymer melts show a
more severe upturn of the extensional viscosities with
increasing deformation than linear polymer melts (Wagner
et al., 1999). We can quantify this by use of the Quadratic
Molecular Stress Function theory which has a quadratic
dependence on the scalar stretch field L/L,, and is derived
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from the junction fluctuation theory of Flory (1977) for
polymer networks. While for the upturn of the extensional
viscosities time-deformation separability is well observed,
the maximum value £, of the molecular stress function
might depend on the relaxation mode and seems to
increase with longer relaxation times.

10. Open questions

Besides questions mentioned or discussed in this paper,
like irreversibility of strain effects or the relation of the
maximum value of the molecular stress function, f,., or
the minimum value of the tube diameter, amin, to molecular
parameters, the most pressing question is certainly a uni-
fying description of irrotational (extensional) and rotational
(shear) flows. Constitutive equations discussed so far are
all of the Rivlin-Sawyers or K-BKZ-type. It is well
established by now that single-integral equations of this
type are unable to describe irrotational and rotational flows
by use of the same strain measure (see e.g. Wagner et al.
(1998), and references therein). Integro-differential equa-
tions of the type suggested e.g. by Pearson et al., (1989),
Mead et al., (1998) and Mcleish and Larson (1998) seem
to offer a way out or around this problem. These equations
are of the form

6= pE+5) | LM g (44)
u

-0

where A is a chain stretch parameter which is modelled by
a differential equation. The structure of these equations
with the square of the chain stretch parameter in front of
the integral do not seem to be commensurable with
experimental evidence in planar extension of polymer
melts (Rubio and Wagner, 2000): the same ratio of strain-
hardening is predicted for the planar viscosities L, and [,
while experimentally very little strain-hardening in the 2-
direction is observed as seen in Figs. 6, 8 and 9. However,
defining chain stretch by a rate equation might allow to
differentiate between strain measures for simple shear
and pure shear.

11. Lessons from the 20" Century

At the end of this century, we have to admit that we still
do not know a constitutive equation describing irrespective
of the type of flow, the nonlinear rheological behaviour of
"simple" polymer melts like polyethylene or polystyrene,
which are produced commercially by the millions of tons.
However, some basic features became apparent: the
importance of topological constraints, the advantage of
the orientation tensor over the classical strain measures,
allowing the modelling of all types of irrotational flows,
the similarities of the strain measures for polymer melts
and rubbers. The quest goes on to find the most simple but

December 1999 Vol. 11, No. 4 303



Manfred H. Wagner

unifying picture to model the complex nonlinear material
behaviour of polymer melts and rubbers. Clearly, the tube
model proposed by Doi and Edwards has been of tremen-
dous help. But as Albert Einstein once said: "We should
simplify as much as possible, but not further.”
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