The Crosslinking Characteristic of Poly(vinyl alcohol) by Natural Dye

천연 염료에 의한 폴리(비닐 알코올)의 가교 특성

  • Kim, Gwan-Hoon (Center for Photofunctional Energy Materials, Department of Polymer Science and Engineering, Dankook University) ;
  • Kim, Hyo-Gap (Center for Photofunctional Energy Materials, Department of Polymer Science and Engineering, Dankook University) ;
  • Kang, Ho-Jong (Center for Photofunctional Energy Materials, Department of Polymer Science and Engineering, Dankook University)
  • 김관훈 (광에너지 소재연구센터, 단국대학교 고분자시스템공학과) ;
  • 김효갑 (광에너지 소재연구센터, 단국대학교 고분자시스템공학과) ;
  • 강호종 (광에너지 소재연구센터, 단국대학교 고분자시스템공학과)
  • Received : 2010.09.20
  • Accepted : 2010.10.19
  • Published : 2011.01.25

Abstract

The physical properties of crosslinked poly(vinyl alcohol)(PVA) by natural dyes as crosslinking agents were investigated and a comparison was made with chemically crosslinked PVA by Polycup 172. It was found that natural anthocyanin and crocin made possible to crosslink PVA physically through the hydrogen bonding of OH in both PVA and natural dyes in the present with NaCl as a catalyst. The water swellability dramatically decreased and the physical crosslinking led to decreasing of crystallinity of PVA. The lowering of thermal stability was noticed in the physically crosslinked PVA compared to chemically crosslinked PVA due to its lower crosslink density. However even natural dyes have polysaccharides in their chain, their thermal stability was higher than uncrosslinked PVA.

폴리(비닐 알코올)(PVA)의 수분 팽윤성 조절을 위하여 천연 색소 기교제로 PVA를 가교한 후, 이들의 물성을 화학 가교된 PVA와 함께 비교하였다. 천연 가교제로 사용된 안토시아닌 그리고 크로신에 함유된 하이드록시기는 NaCl 촉매 하에서 PVA의 하이드록시기와 수소 결합하여 PVA를 물리적으로 가교시킴을 알 수 있었다. 화학 가교제인 Polycup 172에 의하여 가교된 PVA와 비교하여 수분 팽윤성이 현저히 감소하며 또한 가교에 의한 결정화도가 감소함을 확인하였다. 천연 가교제로 가교된 PVA는 화학 가교된 PVA에 비하여 상대적으로 열안정성이 떨어지나 함유된 다당류에도 불구하고 순수 PVA보다는 높은 열안정성을 가짐을 알 수 있었다.

Keywords

References

  1. F. Urushizaki, H. Yamaguchi, K. Nakamura, S. Numajiri, K. Augibayashi, and Y. Morimoto, Int. J. Pharm., 58, 135 (1990). https://doi.org/10.1016/0378-5173(90)90251-X
  2. C. R. Nuttelman, D. J. Mortisen, S. M. Henry, and K. S. Anseth, J. Biomed. Mater. Res., 57, 217 (2001). https://doi.org/10.1002/1097-4636(200111)57:2<217::AID-JBM1161>3.0.CO;2-I
  3. S. Y. Nam, K. S. Sung, S. W. Chon, and J. W. Rihm, Membrane J., 12, 225 (2002).
  4. X. Wang, D. Fang, K. Yoon, B. S. Hsiao, and B. Chu, J. Membrane Sci., 278, 261 (2006). https://doi.org/10.1016/j.memsci.2005.11.009
  5. H. Fujiwara, M. Shibayama, J. H. Chen, and S. Nomura, J. Appl. Polym. Sci., 37, 1403 (1989). https://doi.org/10.1002/app.1989.070370522
  6. M. Iwaseya, N. Katsuyama, and K. Yamaura, J. Mater. Sci., 41, 1979 (2006). https://doi.org/10.1007/s10853-006-3082-0
  7. S. G. Lee, J. P. Kim, I. C. Kwon, K. H. Park, S. K. Noh, S. S. Han, and W. S. Lyoo, J. Polym. Sci. Part A: Polym. Chem., 44, 11 (2006).
  8. P. Martens and K. S. Anseth, Polymer, 41, 7715 (2000). https://doi.org/10.1016/S0032-3861(00)00123-3
  9. E. Lavin and L. Snelgrove, Encyclopedia of Chemical Technology, John Wiley, New York, pp 808-821 (1983).
  10. G. Kelta and A. Ricard, Polym. Bull., 24, 627 (1990). https://doi.org/10.1007/BF00300159
  11. N. A. Peppas and R. E. Benert, Biomaterials, 1, 158 (1980). https://doi.org/10.1016/0142-9612(80)90039-3
  12. M. Dimonie, H. D. Schell, G. Hubca, M. A. Mateescu, C. G. Oprescu, S. Todireanu, O. Mario, and M. Iosif, J. Macro. Sci. Chem., A22, 729 (1985).
  13. G. Mazza and R. Brouillard, Food Chemistry, 35, 422 (1987). https://doi.org/10.1021/jf00075a034
  14. F. J. Francis, Crit. Rev. Food Sci. Nutr., 28, 273 (1989). https://doi.org/10.1080/10408398909527503
  15. G. Mazza and E. Miniati, Anthocyanins in Fruits, Vegetables, and Grains, CRC Press, London, 1993.
  16. P. Bridle and C. F. Timberlake, Food Chem., 58, 103 (1997). https://doi.org/10.1016/S0308-8146(96)00222-1
  17. N. Chigurupati, L. Saiki, C. Gayser, Jr., and A. K. Dash, Inter. J. Pharm., 241, 293 (2002). https://doi.org/10.1016/S0378-5173(02)00246-6