Browse > Article
http://dx.doi.org/10.14478/ace.2015.1094

Preparation of Valuable Compounds Encapsulated Polymer Nanoparticles with High Payload Using Core-crosslinked Amphiphilic Polymer Nanoparticles  

Kim, Nahae (Department of Materials engineering, Kangwon National University)
Kim, Juyoung (Department of Materials engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.1, 2016 , pp. 26-34 More about this Journal
Abstract
In this study, core-crosslinked amphiphilic polymer (CCAP) nanoparticles prepared using a reactive amphiphilic polymer precursor (RARP) were used for preparing some valuable compounds encapsulated polymer nanoparticles with high payload through nanoprecipitation process. Various solvents (acetone, ethanol, and THF) having different polarity and CCAP nanoparticles prepared using different amphiphilicity were used for the preparation of ${\alpha}$-tocopherol encapsulated polymer nanoparticles to investigate their effects on the encapsulation efficiency, payload, nanoparticle size, and stability. CCAP dissolved in hydrophobic solvent, THF, could form ${\alpha}$-tocopherol encapsulated polymer nanoparticles dispersed in water with the high payload of ${\alpha}$-tocopherol and encapsulation efficiency. Because of their physically and chemically robust nano-structure originated from crosslinking of the hydrophobic core, CCAP nanoparticles could encapsulate ${\alpha}$-tocopherol with the high payload (33 wt%) and encapsulation efficiency (97%), and form 70 nm-sized stable nanoparticles in water.
Keywords
amphiphilic polymer; nanoparticles; ${\alpha}$-tocopherol; nano-encapsulation; nanoprecipitation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. P. Reis, R. J. Neufeld, A. J. Ribeiro, and F. Veiga, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles, Nanomedicine: Nanotechnology, Biology and Medicine, 2, 8-21 (2006).
2 L. N. Bell, Stability testing of nutraceuticals and functional foods, In: Handbook of nutraceuticls and functional foods, Wildman REC (ed), CRC Press, New York, 501 (2001).
3 R. C. Metha, B. C. Thanoo, and P. P. Deluca, Peptide containing microspheres from low molecular weight and hydrophilic poly(d,l-lactide-co-glycolide), J. Controlled. Release, 41, 249-257 (1996).   DOI
4 R. Brigelius-Flohe and M. G. Traber, Vitamin E: function and metabolism, FASEB Journal, 13, 1145-1155 (1999).   DOI
5 S. H. Yoo, Y. B. Song, P. S. Chang, and H. G. Lee, Microencapsulation of $\alpha$-tocopherol using sodium alginate and its controlled release properties, Int. J. Biol. Macromol., 38, 25-30 (2006).   DOI
6 K. A. Jhonson, Preparation of peptide and protein powders for inhalation, Adv. Drug Deliv. Rev., 26, 3-15 (1997).   DOI
7 S. J. Park, Y. J. Yang, J. R. Lee, and H. B. Lee, Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone) Microcapsules Containing Erythromycin by Emulsion Solvent Evaporation Technique, Polymer(Korea), 26, 326-334 (2002).
8 B. O'Donnell and J. W. McGinity, Preparation of microspheres by the solvent evaporation technique, Drug Deliv. Rev., 28, 25-42 (1997).   DOI
9 S. Takada, Y. Yamagata, M. Misaki, K. Taira, and T. Kurokawa, Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique, J. Controlled Release, 88, 229-242 (2003).   DOI
10 U. Bilati, E. Allemann, and E. Doelker, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, Eur. J. Pharm. Sci., 24, 67-75 (2005).   DOI
11 D. Q. Guerrero, E. Allemann, H. Fessi, and E. Doelker, Preparation techniques and mechanisms of formation of biodegradable nanoparticles from performed polymers, Drug Dev. Ind. Pharm., 24, 1113-1128 (1998).   DOI
12 J. S. Chawla and M. M. Amiji, Int., Biodegradable poly($\varepsilon$ -caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, J. Pharm., 249, 127-138 (2002).
13 H. S. Yoo, H. K. Choi, and T. G. Park, Protein-fatty acid complex for enhanced loading and stability within biodegradable nanoparticles, J. Pharm. Sci., 90, 194-201 (2001).   DOI
14 U. Edlund and A.-C. Albertsson, Degradable polymer microspheres for controlled drug delivery, Albertsson, A.-C.(Ed), 157, 67, Degradable Alphatic polyesters, Advances in Polymer Science, Springer-Verlag, Berlin (2002).
15 N. B. Viswanathan, S. S. Patil, J. K. Pandit, A. K. Lele, M. G. Kulkarni, and R. A. J. Mashelkar, Morphological changes is degrading PLGA and PLA microspheres: implications for the design of controlled release system, J. Microencapsul., 18, 783-800 (2001).   DOI
16 C. R. Miller, R. Vogel, P. P. T. Surawski, S. R. Corrie, A. Ruhmann, and M. Trau, Biomolecular screening with novel organosilica microspheres, Chem. Commun., 14, 4783-4785 (2005).
17 Y. Yang, C. Hua, and C. M. Dong, Synthesis, Self-Assembly, and In Vitro Doxorubicin Release Behavior of Dendron-like/Linear/ Dendron-like Poly($\varepsilon$-caprolactone)-b-Poly(ethylene glycol)-b-Poly ($\varepsilon$-caprolactone) Triblock Copolymers, Biomacromolecules, 10, 2310-2318 (2009).   DOI
18 E. Chiellini, E. E. Chiellini, F. Chiellini, and R. Solaro, Targeted Administration of Proteic Drugs. I. Preparation of Polymeric Nanoparticles, J. Bioact. Compat. Polym., 16, 441-465 (2001).   DOI
19 A. Rosler, G. W. M. Vandermeulen, and H. A. Klok, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug Delivery Rev., 53, 95-108 (2001).   DOI
20 K. Letchford and H. Burt, Eur., A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes, J. Pharm. Biopharm., 65(3), 259-269 (2007).   DOI
21 F. Quaglia, L. Ostacolo, G. De Rosa, M. I. La Rotonda, M. Ammendola, G. Nese, G. Maglio, R. Palumbo, and C. Vauthier, Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers, Int. J. Pharm., 324(1), 56-66 (2006).   DOI
22 G. A. Husseini and W. G. Pitt, Micelles and nanoparticles for ultrasonic drug and gene delivery, Adv. Drug Delivery Rev., 60, 1137-1152 (2008).   DOI
23 J. X. Zhang, K. Ellsworth, and P. X. Ma, Hydrophobic pharmaceuticals mediated self-assembly of $\beta$-cyclodextrin containing hydrophilic copolymers: Novel chemical responsive nano-vehicles for drug delivery, J. Controlled Release, 145, 116-123 (2010).   DOI
24 P. J. Gandhi and Z. V. P. Murthy, Solubility and Crystal Size of Sirolimus in Different Organic Solvents, J. Chem. Eng. Data, 55, 5050-5054 (2010).   DOI
25 L. Philippe, L. Sylviane, B. Amelie, G. Ruxandra, R. Wouter, B. Gillian, and V. Christine, Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation, Int. J. Pharm., 344, 33-43 (2007).   DOI
26 J. Y. Kim, D. H. Shin, K. J. Ihn, and C. W. Nam, Synthesis of Magnetic Nanocomposite Based on Amphiphilic Polyurethane Network Films, Macromol. Chem. Phys., 203, 2454-2462 (2002).   DOI
27 J. Y. Kim, D. H. Shin, and K. J. Ihn, Synthesis of Poly(urethane acrylate-co-styrene) Films Containing Silver Nanoparticles by a Simultaneous Copolymerization/in situ Electron Transfer Reaction, Macromol. Chem. Phy., 206, 794-801 (2005).   DOI
28 J. Y. Kim, J. Wainaina, J. H. Kim, and J. K. Shim, Use of Polymer Nanoparticles as Functional Nano-Absorbents for Low- Molecular Weight Hydrophobic Pollutants, J. Nanosci. Nanotechnol., 7, 4000-4004 (2007).   DOI
29 J. Y. Kim, H. M. Kim, D. H. Shin, and K. J. Ihn, Synthesis of CdS Nanoparticles Dispersed Within Poly(urethane acrylate-costyrene) Films Using an Amphiphilic Urethane Acrylate Nonionomer, Macromol. Chem. Phys., 207, 925-932 (2006).   DOI
30 J. Maia and M. Santana, The effect of some processing conditions on the characteristics of biodegradable microspheres obtained by an emulsion solvent evaporation process, Brazilian J. Chem. Eng., 21, 1-12 (2004).   DOI
31 J. Y. Kim, J. Wainaina, and J. S. Na, Synthesis of amphiphilic silica/ polymer composite nanoparticles as water-dispersible nano-absorbent for hydrophobic pollutants, J. Ind. Eng. Chem., 17, 681-690 (2011).   DOI
32 I. G. Zigoneanu, C. E. Astete, and C. M. Sabliov, Nanoparticles with entrapped $\alpha$-tocopherol: synthesis, characterization, and controlled release, Nanotech., 19, 105606-105613 (2008).   DOI
33 T. B. Shea, D. Ortiz, R. J. Nicolosi, R. Kumar, and A. C. Watterson, Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta, J. of Alzh. Dis., 7, 297-301 (2005).   DOI
34 Y. J. Byun, J. B. Hwang, S. H. Bang, D. Darby, K. Cooksey, P. L. Dawson, H. J. Park, and S. Whiteside, Formulation and characterization of $\alpha$-tocopherol loaded poly $\varepsilon$-caprolactone (PCL) nanoparticles, LWT-Food Sci. and Tech., 44, 24-28 (2011).   DOI