• 제목/요약/키워드: critical point equation

검색결과 117건 처리시간 0.021초

The Critical Point Equation on 3-dimensional α-cosymplectic Manifolds

  • Blaga, Adara M.;Dey, Chiranjib
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.177-183
    • /
    • 2020
  • The object of the present paper is to study the critical point equation (CPE) on 3-dimensional α-cosymplectic manifolds. We prove that if a 3-dimensional connected α-cosymplectic manifold satisfies the Miao-Tam critical point equation, then the manifold is of constant sectional curvature -α2, provided Dλ ≠ (ξλ)ξ. We also give several interesting corollaries of the main result.

STABLE MINIMAL HYPERSURFACES IN A CRITICAL POINT EQUATION

  • HWang, Seung-Su
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.775-779
    • /
    • 2005
  • On a compact n-dimensional manifold $M^n$, a critical point of the total scalar curvature functional, restricted to the space of metrics with constant scalar curvature of volume 1, satifies the critical point equation (CPE), given by $Z_g\;=\;s_g^{1\ast}(f)$. It has been conjectured that a solution (g, f) of CPE is Einstein. The purpose of the present paper is to prove that every compact stable minimal hypersurface is in a certain hypersurface of $M^n$ under an assumption that Ker($s_g^{1\ast}{\neq}0$).

ASYMPTOTICALLY LINEAR BEAM EQUATION AND REDUCTION METHOD

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • 제19권4호
    • /
    • pp.481-493
    • /
    • 2011
  • We prove a theorem which shows the existence of at least three ${\pi}$-periodic solutions of the wave equation with asymptotical linearity. We obtain this result by the finite dimensional reduction method which reduces the critical point results of the infinite dimensional space to those of the finite dimensional subspace. We also use the critical point theory and the variational method.

THE CRITICAL POINT EQUATION ON A FOUR DIMENSIONAL WARPED PRODUCT MANIFOLD

  • Hwang, Seung-Su;Chang, Jeong-Wook
    • 대한수학회보
    • /
    • 제43권4호
    • /
    • pp.679-692
    • /
    • 2006
  • On a compact oriented n-dimensional manifold $(M^n,\;g)$, it has been conjectured that a metric g satisfying the critical point equation (2) should be Einstein. In this paper, we prove that if a manifold $(M^4,\;g)$ is a 4-dimensional oriented compact warped product, then g can not be a solution of CPE with a non-zero solution function f.

ON THE EXISTENCE OF STABLE MINIMAL HYPERSURFACES OF THE THREE DIMENSIONAL CRITICAL POINT EQUATION

  • CHANG, JEONGWOOK
    • 호남수학학술지
    • /
    • 제28권3호
    • /
    • pp.409-415
    • /
    • 2006
  • On a compact oriented smooth 3-dimensional manifold (M, g), we consider the critical point equation(CPE) defined as $z_g=s^{{\prime}*}_g(f)$. Under CPE, it is shown in [5] that every stable minimal hypersurface in M is contained in ${\varphi}^{-1}(0)$ for ${\varphi}{\in}$ ker $s^{{\prime}*}_g$. We study analytic and geometric conditions under which the stable minimal hypersurface in M does not exist.

  • PDF

TOPOLOGICAL ASPECTS OF THE THREE DIMENSIONAL CRITICAL POINT EQUATION

  • CHANG, JEONGWOOK
    • 호남수학학술지
    • /
    • 제27권3호
    • /
    • pp.477-485
    • /
    • 2005
  • Let ($M^n$, g) be a compact oriented Riemannian manifold. It has been conjectured that every solution of the equation $z_g=D_gdf-{\Delta}_gfg-fr_g$ is an Einstein metric. In this article, we deal with the 3 dimensional case of the equation. In dimension 3, if the conjecture fails, there should be a stable minimal hypersurface in ($M^3$, g). We study some necessary conditions to guarantee that a stable minimal hypersurface exists in $M^3$.

  • PDF

CRITICAL POINTS AND WARPED PRODUCT METRICS

  • Hwang, Seung-Su;Chang, Jeong-Wook
    • 대한수학회보
    • /
    • 제41권1호
    • /
    • pp.117-123
    • /
    • 2004
  • It has been conjectured that, on a compact orient able manifold M, a critical point of the total scalar curvature functional restricted the space of unit volume metrics of constant scalar curvature is Einstein. In this paper we show that if a manifold is a 3-dimensional warped product, then (M, g) cannot be a critical point unless it is isometric to the standard sphere.

NONLINEAR BIHARMONIC PROBLEM WITH VARIABLE COEFFICIENT EXPONENTIAL GROWTH TERM

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • 제18권3호
    • /
    • pp.277-288
    • /
    • 2010
  • We consider the nonlinear biharmonic equation with coefficient exponential growth term and Dirichlet boundary condition. We show that the nonlinear equation has at least one bounded solution under the suitable conditions. We obtain this result by the variational method, generalized mountain pass theorem and the critical point theory of the associated functional.

NONLINEAR BIHARMONIC EQUATION WITH POLYNOMIAL GROWTH NONLINEAR TERM

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Korean Journal of Mathematics
    • /
    • 제23권3호
    • /
    • pp.379-391
    • /
    • 2015
  • We investigate the existence of solutions of the nonlinear biharmonic equation with variable coefficient polynomial growth nonlinear term and Dirichlet boundary condition. We get a theorem which shows that there exists a bounded solution and a large norm solution depending on the variable coefficient. We obtain this result by variational method, generalized mountain pass geometry and critical point theory.