Bull. Korean Math. Soc. 43 (2006), No. 4, pp. 679-692

THE CRITICAL POINT EQUATION ON A FOUR
DIMENSIONAL WARPED PRODUCT MANIFOLD

SEUNGSU HWANG* AND JEONGWOOK CHANG

ABSTRACT. On a compact oriented n-dimensional manifold (M™,
g), it has been conjectured that a metric g satisfying the critical
point ecuation (2) should be Einstein. In this paper, we prove that
if a manifold (M*,g) is a 4-dimensional oriented compact warped
product, then g can not be a solution of CPE with a non-zero
solution function f.

1. Introduction

Let M be an n-dimensional compact orientable manifold. Denoting
the space of all smooth Riemannian metrics on M by RM, let M be the
quotient of RM by the group of all diffeomorphisms of M. Then, for
a given smooth structure g € M, its scalar curvature s, is an element
of the space of C*°(M) functions, and the linearization of the scalar
curvature is given by

sg(h) = —Agtrh+ 6,850 — g(h,ry),

where Ay is the negative Laplacian of g, rg its Ricci tensor, § the diver-
gence operato:, and 0 is the formal adjoint of §. Also, the L?—adjoint
operator s, of sy is given by

(1) S/g*(f) = —gAyf + Dydf — fry
and the critical point equation, denoted CPE hereafter, is given by ([1])
(2) 29 = 55 (f),

where z; is the traceless Ricci tensor, and f a function on M™ with
vanishing mean value.
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For the case that the function f in CPE is trivial, it is clear that
the metric g is Einstein. Therefore, all considerations in this paper are
restricted to a non-trivial function f only. For the case that f is a smooth
non-trivial function, the following statement has been conjectured ([1]):

CONJECTURE A. If CPE holds for a non-trivial function f, then the
metric g of the manifold M is Einstein.

If this conjecture is true, it is known that (M,g) is isometric to a
standard sphere S™ [10]. It turns out to be difficult to solve Conjecture A
even with additional assumptions imposed on the metric. However, there
are some partial answers to Conjecture A, such as those in [4] and [9]
for example.

The purpose of the present paper is to prove the following Main
Theorem as a partial (negative) answer to Conjecture A:

MAIN THEOREM. Let (M,g) be a 4-dimensional oriented compact
warped product given by (M,g) = (B, §) X2 (F,§) with 1) > 0. Then g
can not be a solution of CPE with a non-zero solution function f.

REMARK 1. Fisher and Marsden suggested the F-M conjecture in [3],
stating that if a smooth function f satisfies s;*( f) =0, then a solution
metric g is isometric to the standard sphere. For the relationships be-
tween Conjecture A and F-M conjecture may be found in [5]. However,
counter-examples of F-M conjecture were found (e.g., see [8]), mostly
warped product manifolds. Therefore, it naturally arises a question to
ask whether there exists a warped product metric which constitutes a
counter-example of Conjecture A.

Contrary to the case of F-M conjecture, our Main Theorem shows that
no 4-dimensional warped products satisfy CPE unless they are isometric
to standard spheres. Combining this result with that of 3-dimensional
case in [6], we may conclude that the answer to the question in the
previous paragraph is no for n < 4.

It is natural to ask a similar question for n > 5. However, the dif-
ficulty for answering the question increases greatly, and is beyond our
current understanding of the problem.

REMARK 2. For a 4-dimensional warped product manifold (M, g) =
(B, 9) xy2 (F,g) with ¢ > 0, it is clear that B is complete if M is
complete. If we consider the case when the 1-dimensional base space B
is incomplete with ¥ > 0 and the fiber F' is Einstein, we may conclude
that if ¢ is a solution metric of (3) with a non-zero solution function f,
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then (M, g) is isometric to the standard sphere S*(Proposition 11). It
will be shown in Section 5.

In the present paper, our Main Theorem will be proved as follows.
For a 4-dimensional warped product manifold (M, g) = (B, §) X2 (F, §),
only the following 3 cases are possible with respect to the dimension of
B and F:

Case 1. dmB=1,dimF =3
Case 2. dmB =2, dimF =2
Case 3. dim B =3, dim F = 1.

For the case that B is complete, we prove a non-existence theorem (Main
Theorem) in Section 3. For the case that B is not complete with dim B =
1, a rigidity result is shown in Section 5.

2. Preliminaries

This section is a brief collection of notations and results, which are
needed in our subsequent considerations.

Among the partial answers to the conjecture A given in section 1,
the following three theorems, which hold on an n-dimensional manifold
(M, g), are needed in the next sections.

THEOREM 1. Let g be a solution metric of CPE. If g is conformally
flat, then (M, g) is isometric to a standard sphere [9].

THEOREM 2. Let (g, f) be a solution of CPE. If f always takes values

greater than or equal to —1, then (M, g) is isometric to a standard sphere
[4].

THEOREM 3. Let g be a solution metric of CPE. If the metric g is
Einstein, (M, ¢) is isometric to a standard sphere S™ [10].

Furthermore, using (1) and (2) we have another useful representation
of CPE on an n-dimensional manifold (M, g), which may be written as

(3) (1+ f)zy = Dydf + W"?—_%g.

Taking the trace of (3), we have A,f = —% f. Note that the scalar
curvature s, o the metric g satisfying CPE is assumed to be constant
([1]). Therefore we have | u f =0, and hence f takes both positive and
negative values.
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Finally, on a 4-dimensional compact warped product manifold (M, g)
= (B7g) xl,/)2 (Fag)a let

7, & the lifts to M of Ricci and scalar curvature of B, respectively
#,§: the Ricci and scalar curvature of F, respectively

X; : alifted horizontal orthonormal frame field, ¢ = 1,...,dim B
U; : alifted vertical orthonormal frame field, j =1,...,dim F

V : the vertical distribution.

Then, the following two propositions hold on M for each of 3 cases
mentioned in the last paragraph of section 1:

PROPOSITION 4. We have ([1])
Case 1. dim B =1 and dim F = 3;

(X, X) = —%—”
// 2
a@U) fW@%)+@hU)( L —2%;)

-6 (% + %)
Case 2. dim B =2 and dim F = 2;
r(X;, X;) = 7(Xi, X;) — 2 Ddy(X;, X;)
r(Us, Uy) = #(Us, Uy) + (Ui, Uy) (—% - 1)
s=5+ 4 — 452 —oltl
Case 3. dim B =3 and dim F = 1;
r(Xi, Xj) = #(X;, X;) — 5 Ddp(Xi, X;)

r(U,U) = 52

s=8§~—2

<&

The next corollary follows from Proposition 4.

COROLLARY 5. If the scalar curvature s of M is constant, then the
scalar curvature § of F' is constant.

Proof. Proposition 4 gives § = ¢?s + 6(3)"1 + 1'?) in the Case 1.
Since § is a function on F, and the right-hand side of this equation is
a function on B, § should be a constant function on F', ie., F is of
constant scalar curvature. In the Case 2, this corollary follows similarly,
since we have § = 1%(s — 3) + 4 Ay + 2|dy|2. Finally, we have § = 0 in
the Case 3. O
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3. Proof of main theorem

This section is devoted to the proof of our Main Theorem. Through-
out this section we assume that B is complete with ¢ > 0. The proof of
Main Theorem follows directly from the following lemmas. For the Case
1 (dim B = 1), Lemma 6 and 7 give the proof. Lemma 8 and 9 give the
proof of the Case 2 (dim B = 2). For the remaining Case 3 (dim B = 3),
the proof follows from Lemma, 10.

LEMMA 6. Let (M,g) = (B,§) xy2 (F,§) with the 1-dimensional
complete base B. Suppose that f is a function of B only. Then g can
not be a solution of (3).

Proof. First note that

y ¥'f
where we used the fact that Dy,df = %‘Z—t[Ui (1]. Now, from (3) we have
I w// ¢/2 s\ _ / , ﬁ
a+0) (o) -4 -2 - 5) = Sr+ 1

Then it is easy to see that #(Uy, Uy) = #(Us, Uz) = #(Us, Us), or AU, (/J\l)
= % for all 1 << 4 < 3, and #(U;,U;) = 0 for any ¢ # j. Thus F is an
Einstein manifold. Since F' is 3-dimensional, it follows that F' should be
of constant sectional curvature. In other words, F is isometric to $3/T,
with I' € SO(4). Hence we have M = S x 2 (S3/T") with the metric g
given by g = d*? + 1(t)%go. This metric g is conformally flat, since go is
of constant curvature, c.f. [8]. Then, by Theorem 1, (M, g) is isometric
to a standard sphere S%. This is clearly a contradiction, since there is
no nonvanishir.g function ¢ with 5% = §1 x 2 (§%/I). O

LEMMA 7. Let (M,g) = (B,§) xy2 (F,§) with the 1-dimensional
complete base B. Then g can not be a solution of (3).

Proof. From (3), we have
(5) 0=(1+ f)2(X,Us) = (Dxdf,Us) = X (df, Us) — {df, DxUy)

for a lifted horizontal vector field X. Note that U; = —115(71, where l’]\i is a
lift of vector fizld on F. Therefore

1~ X~ 1. ~
(6) DxU;=Dx (EUi) = - qéz)Ui‘f‘EDXUi:Oa
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where we used the fact that DxU; = .)_((i’.b_)_ﬁz [11] in the last equality.
Now, substitution of (6) into (5) gives

(7) XUi(f) = X{df,Us) = 0.

Therefore U;(f) = %U\z( f) is a function of F only, and it is easy to see
that f can be written as

(8) f=’l‘bb+07

where b is a function on F' and ¢ = ¢(¢) is a function on B. Substituting
(8) into (1+ f)z(X, X) = (Dxdf, X) + £, we have

P s " n, S
(9) (1+7/1b+0)(—3?b‘—1)=w b+c +E(¢b+c),

where we used the fact that, from df = bdy + dc and D X@ =VD X&} ,
(Dxdf,X) = (Dxdf,X)+(Dxdf,X) = (Dxdf, X)
= b(Dxdy, X) + (Dxde, X) = ¢"b+ .
Thus, the equation (9) can be rewritten as

n S 3" s 7, S
(10) b(—4y 31/;) = (1+c)(—¢—+ 4)+c + e
Note that both —4%” — §7 and the right-hand side are functions of B
only, while b is a function of F. Thus, in order that the equation (10)
holds for any ¢, either b is constant or —4¢" — £4) has to be zero. If b
is constant, f is a function of B only, and so g can not be a solution of
(3) in virtue of Lemma 6. Now, we may assume that

" $ _
(11) W+ 59 =0.

Since B is complete, ¥ has to be defined on the whole of R. Moreover,
since B = S, 1 has to be periodic. Therefore we may conclude that
is zero somewhere on B; if ¢ # 0,

I A N A Y
0‘/B<¢)_Bw 7z /B<12+w2><0

which is a contradiction. Hence the given warped product metric g can
not be a solution of (3). O

LemMMA 8. Let (M,g) = (B,g) xy2 (F,§) with the 2-dimensional
complete base B. Suppose that f is a function of B only. Then g can
not be a solution of (3).
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A proof of Lemma 8 need another section and will be presented in
the Section 4.

LEMMA 9. Let (M,g) = (B, §) xy2 (F,g) with the 2-dimensional
complete base B. Then g can not be a solution of (3). In other words,
Case 2 does not occur.

Proof. In the beginning, the proof of Lemma 9 may go along the same
line as the proof of Lemma 7, concluding that

(12) f=vb+e,
where b is a function on F and c is a function on B. By Proposition 4
and (1+ f) 5%, 2(X4, X3) = 2 (Dx,df, X;) + 3L, we have

2

2. s

E d} - _) = Z(DdefaXl> + _6[
i=1

Now, substitution (12) into (13) gives

(14) (1+1/b+c)(s——A@b——)—bAQ/)—FAC-{— (’l,bb—i—C)

(13) 1+ 1)(-

("
where we used the fact that
2 2 2
> (Dxdf, Xi) = D _((Dx.df, X) + (Dx.df, Xi) = >_(Dx,df, Xs)

i=1 i=1

-
il
—

2
(Dx,dv, Xi) + Y _(Dx,de, Xi) = bA + Ac
1 i=1

M

= b

i

with Dy,df = VD Xidf . It is easy to see that (14) can be rewritten as

(15)  b($3 = 3R — 229y = Ae— (c+ 1)(5 - 2Ry — 5) 4 2o

3 Y 27 6
Note that botk 1§ — 3Ay — 23§1/J and the right-hand side are functions of
B only, while b is a function of F’ only. Thus, in order that the equation
(15) holds, either b is constant or 15 — 3Ay — 24 has to be zero. If b
is constant, f is a function of B only, and so g can not be a solution of
(3) in virtue o Lemma 8. Thus we may assume that

(16) 5= % + 39
and
(17) Ac—(c+ 1)(§——2-qu—5)+§c=o.
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Substitution of (16) into (17) gives
(18) wAc— (c+1)Ayp - §¢ —0.

Now, integrating both sides of (18) over B, we have

om0

where we used the fact that [ B YAc = /, B cAv. This equation together
with the condition that 1) > 0 leads to a contradiction. O

LEMMA 10. Let (M,g) = (B,§) xy2 (F,§) with the 3-dimensional
complete base B. Then g can not be a solution of (3). In other words,
Case 3 does not occur.

Proof. Suppose that the given warped product metric is a solution of
CPE. From the definition of the Laplacian A, we have

(19) (Dudf,U) = Af ~Af = —2f - &f
and from CPE we also have

20 1 AR 8 gy + 2

(20) (14 (-2 = 3) = (Dudf,0) + 355,
Hence, the following relation holds by combining (19) and (20)

Ay s X s
A+ n-SE -2 =4 -3

which is equivalent to

(21) (1+ A+ v = YAf.

Now, integrating both sides of (21) over B, we have

[ s+ g [w= [ var= [ sav

which implies that
[w=o
B

This equation together with the condition that ¥ > 0 leads to a contra-
diction. 0
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4. Proof of Lemma 8

This section is devoted to the proof of Lemma 8. Suppose that ¢ is
a solution of (3), namely CPE, and f is a function of B only. In the
following two contentions, we shall prove that this assumption leads to
a contradiction. We first consider the following two cases according to
the values of f. In the first case that f always takes values greater than
or equal to —1, the proof of the Lemma is completed since (M, g) is
isometric to 54 in virtue of Theorem 2. In the second case that f takes
a value less than —1, this Lemma is proved in a series of two contentions
under present conditions!. In this case, there exists a non-empty set
H = {z € B| f(z) = —1}. After investigating the analytic properties of
the tensor Dy X for a tangent vector field X to H in Contention 1, we
prove in Contention 2 that the present conditions give a contradiction.
Since this coatradiction is obtained from the assumption that ¢ is a
solution of CPE, we may conclude that g can not be a solution of CPE,
proving our Lemma.

CONTENTION 1. Under present conditions, we have Dx X = —{5df
on H, where H = {z € B| f(z) = —1}, X € TB is a tangent vector
field to H, and N € T'B is a normal vector field to H.

Proof. We may assume that H is non-empty; otherwise g is Einstein
by Theorem 2. Also, we note in [4] that a point of H, which is a critical
point of f, is a non-degenerate local minimum point of f, and that
such non-degenerate critical points are isolated. Therefore, H is a set
consisting of finite critical points of f, or hypersurfaces of M, or union
of both.

Putting W = |df|?, it was proved in [4] that W is constant in each
component of H and does not vanish on H. Therefore, in a small tubular
neighborhood of H, we may take orthonormal frame fields { X, N}, where
N = Wdlfﬁ on H. From (3), we have

S
(22) Ddf = 59
on H. Then, it follows that on H we have
15 = (Dxdf, X) = X(df, X) - (df, Dx X) = =(df, Dx X).

!n the proof of Contention 1 and 2, we assume that the metric g of warped product
(M, g) = (B,g) xyu2 (F,9) is a solution of (3). We also suppose that dim B = 2 and
f takes a value less than —1. Hereafter, this situation will be described by the words
“present conditions”.
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Hence, Dx X = —%;Vl—%N on H. U

CONTENTION 2. Under present conditions, we have a contradiction
on H.

Proof. In virtue of Proposition 4, (3) may be reduced to

5) sf

(23) (1+ﬂ@—EAw 5) Af+6

LR ldwF ) _ L {dwdf) | sf
(24) (1+f)<¢2 s _ o),
since

2 9 . s

2 ) A ol
(26) Zz(Ui;Ui) = 5—2 — 2% ' 1;)@ - g

and g(dy,df) = (dy, df). Hence, using (23) and (24) we have

(27) Af = ¢
(di,df) s
(28) Y T
on H. The relation 3o, 2(X;, X;) + Yo, 2(Us, Us) = 0 gives
- 2 A 8 — <dd],df> ﬂ
(29) (Hf)(_HEA'Hi)_z—@b + 5

Taking the Lie derivative of (29) with respect to df on H, we have

.2« s
W(—S+EA¢+§>

(Dggdip, df)  _(dy, Dggdf) <d¢ df)* s
R e ot W
(Dndip, N) s
2————1/)—~W -+ EW’
where
2
D) _ o e gy P h?

( 6¢
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in virtue of (22) and (28). Therefore

0,

(30) —5+ w(Dde LX)+ :f)-

where we used the fact that

(31) Ay = (Dxdy, X) + (Dndi, N).

On the other hand, in order to calculate z(X, X) we take the Lie deriv-
ative of (3) with respect to df on H. Then

S
W2(X,X) = (DyDxdf,X)+(Dxdf, DyX)+ W

= W2 (DyDxdf, X) + |Dxdf|? + —2W
2

1
(32) = W2 (DNDxdf, > + m -+ —W

on H, where we used the fact that W is constant on H, DyX =
W~2DyX = W™2DxN = Dxdf, and Dxdf = X on H. However,
the relation Dy Dxdf = DxDydf + R(X, N)df gives

(DnDxdf. X) = (DxDndf,X)+ (R(X, N)df, X)
= X(Dndf,X) — (Dydf, DxX) - WiK(X,N)
= 2 (Dwdf,N) - Wi#(N,N)
12Wz

g2

1
33 - — W3#(N, N),
(%) 144W 2 ()
where we used the fact that (Dydf, X) =0, DxX = —5 W1/2N on H,
(22), and 7#(N, N) = K(X, N). Now substituting (33) into (32), we have

g2

2W
Note that from Proposition 4 we have

(34) 2(X, X) =

(NN)+E

. _ s (Dxdy,X) s
(35) (X, X) = r(X, X) - ; = F(X,X) - 2——Xw— -7

Substituting (34) into (35) on H we have

. o{Dxdp,X) s &
36 _g XA 2 P
(36) i " 3 T2W
The equation (36) clearly contradicts the equation (30). This contradic-
tion comes from the assumption that g is a solution of CPE. Hence, g

can not be a solution of CPE, proving our Lemma 8. O
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5. A rigidity result

This section is devoted to the proof of the following rigidity result.

PROPOSITION 11. Let M be a compact oriented 4-dimensional mani-
fold containing an open dense subset U which is (for the induced metric)
a warped product on a 1-dimensional basis with Einstein fibre F. If g is
a solution metric of (3), then (M, g) is isometric to the standard sphere

S4.

We take U as large as possible. If the base B is complete, then M is
a warped product and Lemma 7 applies. If not, B is an open interval
(0,a) with U = (0,a) x F. It is easy to see that M is the quotient of
[0,a] x F. Note that the following relation holds in order for M to be a
complete manifold:

(37) $(0) = (a) = 0.
Note also that the following relation holds in order for M to be smooth

(c.f. [7)):

(38) ¥'(0) = —¢'(a) = \/;-

Thus (37) and (38) become the initial conditions for the warping function
1p. On the other hand, in virtue of Proposition 4, v satisfies

(39) 6" + 692 + p*s —§ =0

with constants s and 8. For a solution 1 of (39), we observe that ¢ (0) =
0, since the differentiation of (39) gives 31"t + 99"y + syp’ = 0. Tt is
easy to see that g = 4/ % sin /15t with @ = m,/F is a solution of the

ordinary differential equation (39) with the initial conditions (37) and
(38). The following lemma shows that the solution of (39) is unique.

| &>

LEMMA 12. g is the unique solution of (39) under the conditions
(37) and (38). Therefore, (M, g) = [0,a] X, 2 S3.

Proof. Let 1 be another solution of (39) with the initial conditions
(37) and (38), and let F' = %. It is easy to see that F is well-defined on

[0,a] with F(0) = 1, since 15(0) = ¥(0) = 0 and ¥{(0) = ¢'(0) = \/g.
Now, in order to prove our Lemma, we claim that F' = 1, implying that
1 = 1pp. First we observe that F'(0) = 0 since " = ¢ F+ 2y F' +¢oF”
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and vg(a) = ¥"(0) = 0. Now, if we substitute ¢ = ¢oF into (39), F
satisfies
(40) Fre__L (4¢0¢’ FF 4 g2F? + S3(F? - 1))

wSF 0 0 6 )
where we used the fact that iy satisfies (39). Define a function £ :
RxR xR — Rby

1 1
¢ = ——— (4ot 2F? 4 Z5(F? -1
£(t, y1,y2) ?,l%m( Yovoy1y2 + Yo FC + 63( )),

where ¢ is obtained simply by replacing F and F’ in (40) by y; and
y2 respectively. In order to prove the uniqueness of solutions of (40)
satisfying F(0) = 1 and F'(0) = 0, it suffices to show that £(¢,y1,v2) is
continuous with respect to ¢t and is Lipschitz with respect to y; and o
in the rectangle R = [0,a] X [r, R} X [-Rg,Ro] forall 0 < r <1 < Ry
and Re > 0. First, it is easy to see that & is continuous for ¢ by let-
ting £(0,41(0),92(0)) = 0. Secondly, ¢ is Lipschitz, since £ is smooth
with respect %o y1, y2 in R, and [£(¢,51(t),v2(t)) — £(2, 71(2), 52(2))] <
M(|ly1(t) — §1()| + |y2(t) — a(t)|) for some M > 0. Therefore, the or-
dinary differential equation (40) has the unique solution F' = 1, proving
our claim. U

It is well known (see [1], Corollary 9.107) that the warped product M =
B x,2 F is Einstein if and only if g, g, satisfy that (F),§) is Einstein,
and

w// ,¢/2 H s
41 34— =
) v O TR

and

¢/l s
42 -3— =-.
(42) =1
It is an easy exercise for 1 = v to satisfies (41), (42). Also note that F
is Einstein from the assumption. Therefore we may conclude that the
warped product U(or M) is Einstein. However, in virtue of Theorem 3,
M must be isometric to a standard sphere.
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