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ASYMPTOTICALLY LINEAR BEAM EQUATION AND

REDUCTION METHOD

Q-Heung Choi and Tacksun Jung∗

Abstract. We prove a theorem which shows the existence of at
least three π−periodic solutions of the wave equation with asymp-
totical linearity. We obtain this result by the finite dimensional
reduction method which reduces the critical point results of the in-
finite dimensional space to those of the finite dimensional subspace.
We also use the critical point theory and the variational method.

1. Introduction

Let g be a C1 function defined on R with g(0) = 0. Let

g′(0) = lim
|u|→0

g(u)

u
, g′(∞) = lim

|u|→∞

g(u)

u
.

In this paper we investigate the number of the π periodic weak solu-
tions of the following asymptotically linear wave equation with Dirichlet
boundary condition and periodic condition

utt − uxx = g(u),(1.1)

u(−π
2
, t) = u(

π

2
, t) = 0,

u(x, t) = u(−x, t) = u(x,−t) = u(−x, t+ π).

Received November 5, 2011. Revised December 7, 2011. Accepted December 10,
2011.

2000 Mathematics Subject Classification: 35B10, 35L05, 35L20.
Key words and phrases: asymptotically linear wave equation, Dirichlet bound-

ary condition, critical point theory, finite dimensional reduction method, (P.S.)
condition.

This work (Tacksun Jung) was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded by the Ministry
of Education, Science and Technology (KRF-2011-0026920).

∗Corresponding author.



482 Q-Heung Choi and Tacksun Jung

As the physical model for this problem we can find a string with travel-
ling wave, which is suspended by the cable under a load. Choi and Jung
investigate in [2], [3] the existence and multiplicity of the solutions of the
nonlinear wave equation with Dirichlet boundary condition. In [1], [4]
the authors investigate the existence and multiplicity of the solutions of
the nonlinear wave equation. We assume that g ∈ C1(R,R) and satisfies
the following conditions:
(g1) g(u) = o(u) as u→ 0, g(0) = 0 and G(0) = 0, where

G(ψ) =

∫ ψ

0

g(s)ds.

(g2) There exist constants α, β such that −7 < α < −3 < β < 1 and

α ≤ g′(u) ≤ β, ∀u ∈ R.

(g3) g′(0) and g′(∞) exist and satisfy

−7 < α < g′(0) < −3 < g′(∞) < β < 1.

(g4) g is a π periodic function with respect to t.

The eigenvalue problem

utt − uxx = λu in (−π
2
,
π

2
)×R,(1.2)

u(±π
2
, t) = 0,

u(x, t) = u(−x, t) = u(x,−t) = u(−x, t+ π)

has infinitely many eigenvalues

λmn = (2n+ 1)2 − 4m2, (m,n = 0, 1, 2, . . .)

and corresponding normalized eigenfunctions ϕmn(x, t), m, n > 0, given
by

ϕ0n =

√
2

π
cos(2n+ 1)x for n ≥ 0,

ϕmn =
2

π
cos 2mt cos(2n+ 1)x for m > 0, n ≥ 0.

We note that {λmn| m,n = 0, 1, 2, . . .} is unbounded from above and
from below and has no finite accumulation point. The only eigenvalues
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in the interval (−15, 9) are given by

λ32 = −11 < λ21 = −7 < λ10 = −3 < λ00 = 1 < λ11 = 5.

The main result is as follows:

Theorem 1.1. Assume that g satisfies the conditions (g1) − (g4).
Then (1.1) has at least three π−periodic solutions.

Theorem 1.1 will be proved in Section 3 via the finite dimensional
reduction method, the critical point theory and the variational method.
The finite dimensional reduction method combined with the critical
point theory and the variational methods reduce the critical point result
on the infinite dimensional space to that on the finite dimensional sub-
space. So we obtain the critical points result of the functional on the
infinite space E from the critical points result of the correponding func-
tional Ĩ(v) on the finite dimensional reduction subspace. The outline of
this paper is as follows: In section 2 we introduce the Hilbert normed
space E and show that the corresponding functional I(u) of (1.1) is in
C1(E,R), Fréchet differentiable and satisfies the Palais-Smale condi-
tion. In section 3, we prove Theorem 1.1.

2. Finite dimensional reduction method

Let Ω be the square [−π
2
, π
2
]× [−π

2
, π
2
] and E ′ the Hilbert space defined

by

E ′ = {v ∈ L2(Ω)| v is even in x and t}.
The set of functions {ϕmn} is an orthonormal basis in E ′. Let us denote
an element v in E ′, as

v =
∑

hmnϕmn

and we define a subspace E of E ′ as

E = {v ∈ E ′|
∑

|λmn|h2mn <∞}.

This is a completely normed space with a norm

∥v∥ = [
∑

|λmn|h2mn]
1
2 .

Since λmn → +∞ and c is fixed, we have
(i) utt − uxx ∈ E implies u ∈ E,
(ii) ∥u∥ ≥ C∥u∥L2(Ω), for some C > 0,
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(iii) ∥u∥L2(Ω) = 0 if and only if ∥u∥ = 0.
From the conditions (g1)− (g4), we have the following lemma:

Lemma 2.1. Assume that g is π−periodic in t and satisfies the con-
ditions (g1)-(g4). Then the solutions in L2(Ω) of

utt − uxx = g(u) in L2(Ω)

belong to E.

Proof. Let g(u) =
∑
hmnϕmn ∈ L2(Ω). Then

(Dtt −Dxx)
−1(g(u)) =

∑ 1

λmn
hmnϕmn.

Hence we have

∥(Dtt −Dxx)
−1g(u)∥2 =

∑
|λmn|

1

λ2mn
h2mn ≤ C

∑
h2mn

for some C > 0, which means that

∥(Dtt −Dxx)
−1g(u)∥ ≤ C1∥u∥L2(Ω).

With the aid of Lemma 2.1 it is enough that we investigate the exis-
tence of solutions of (1.1) in the subspace E of L2(Ω). We consider the
following functional associated with (1.1),

I(u) =
1

2

∫
Ω

[−|ut|2 + |ux|2]dx dt−
∫
Ω

G(u)dx dt,(2.1)

where

G(u) =

∫ u

0

g(s)ds.

Then I is well defined. By (g1)− (g4), I(u) ∈ C(E,R), Fréchet differ-
entiable in E, so the solutions of (1.1) coincide with the critical points
of I(u).

Lemma 2.2. Assume that g(u) is π−periodic in t and satisfies the
conditions (g1)-(g4). Then I(u) is continuous and Fréchet differentiable
in E and

(2.2) DI(u)(h) =

∫
Ω

[−ut · ht + ux · hx − g(u)h]dx dt

for h ∈ H. Moreover if we set

F (u) =

∫
Ω

G(u)dx dt,
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then F ′(u) is continuous with respect to weak convergence, F ′(u) is
compact, and

F ′(u)h =

∫
Ω

g(u)hdx dt for all h ∈ E.

This implies that I ∈ C1(E,R) and F (u) is weakly continuous.

Proof. Let u ∈ E. First we will prove that I(u) is continuous. We
consider

I(u+v)−I(u) =
∫
Ω

[u ·(vtt−vxx)+
1

2
v ·(vtt−vxx)−G(u+v)+G(u)]dxdt.

Let u =
∑
hmnϕmn, v =

∑
h̃mnϕmn. Then we have

|
∫
Ω

u · (vtt − vxx)dxdt| = |
∑∫

Ω

λmnhmnh̃mn| ≤ ∥u∥∥v∥,

|
∫
Ω

v · (vtt − vxx)dxdt| = |
∑

λmnh̃
2
mn| ≤ ∥v∥2.

On the other hand, by mean value theorem and (g2), we have

G(u+ v)−G(u) =

∫ u+v

0

g(s)ds−
∫ u

0

g(s)ds

=
1

2
g′(t)(u+ v)2 − 1

2
g′(t′)u2

≤ max{|α|, |β|}|v|(|u|+ |v|)
≤ Cmax{|α|, |β|}∥v∥(∥u∥+ ∥v∥).

With the above results, we see that I(u) is continuous at u. To prove
I(u) is Fréchet differentiable at u ∈ E, we consider

|I(u+ v)− I(u)−DI(u)v|

= |
∫
Ω

1

2
v(vtt − vxx)−G(u+ v) +G(u)− g(u)v|

≤ 1

2
∥v∥2 + Cγ∥v∥(∥u∥+ ∥v∥) +M∥v∥

≤ C ′∥v∥(∥v∥+ ∥u∥+ ∥v∥+ 1).

Let V be the 1-dimensional subspace of E spanned by ϕ10 whose
eigenvalue is λ10 = −3. Let W be the orthogonal complement of V
in E. Let P : E → V be the orthogonal projection of E onto V and
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I−P : E → W denote that of E ontoW . Then every element u ∈ L2(Ω)
is expressed by u = v+z, v ∈ Pu, z = (I−P )u. Then (1.1) is equivalent
to the two systems in the two unknowns v and z:

vtt − vxx = P (g(v + z)) in Ω,(2.3)

ztt − zxx = (I − P )(g(v + z)) in Ω,

v(−π
2
, t) = v(

π

2
, t) = 0,

z(−π
2
, t) = z(

π

2
, t) = 0,

v(x, t) = v(−x, t) = v(x,−t) = v(−x, t+ π),

z(x, t) = z(−x, t) = z(x,−t) = z(−x, t+ π).

Let W1 be a subspace of W spanned by eigenfunctions corresponding
to the eigenvalues λmn ≤ −7 and let W2 be a subspace of W spanned
by eigenfunctions corresponding to the eigenvalues λmn ≥ 1. Let v ∈ V
be fixed and consider the function h : W1 ×W2 → R defined by

h(w1, w2) = I(v + w1 + w2).

The function h has continuous partial Fréchet derivatives D1h and D2h
with respect to its first and second variables given by

(2.4) Dih(w1, w2)(yi) = DI(v + w1 + w2)(yi)

for yi ∈ Wi, i = 1, 2. By Lemma 2.2, I is a function of class C1.
By the following Lemma 2.3, we can get the critical points of the

functional I(u) on the infinite dimensional space E from that of the
functional on the finite dimensional subspace V .

Lemma 2.3. (REDUCTIONMETHOD) Assume that g is π−periodic
and satisfies the conditions (g1)-(g4).Then
(i) there exists a unique solution z ∈ W of the equation

ztt − zxx = (I − P )(g(v + z)) in Ω,(2.5)

z(−π
2
, t) = z(

π

2
, t) = 0,

z(x, t) = z(−x, t) = z(x,−t) = z(−x, t+ π).

If we put z = θ(v), then θ is continuous on V and satisfies a uniform
Lipschitz condition in v with respect to the L2 norm(also norm ∥ · ∥).
Moreover

DI(v + θ(v))(w) = 0 for all w ∈ W.
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(ii) There exists m1 < 0 such that if w1 and y1 are in W1 and w2 ∈ W2,
then

(D1h(w1, w2)−D1h(y1, w2))(w1 − y1) ≤ m1∥w1 − y1∥2.

(iii) There exists m2 > 0 such that if w2 and y2 are in W2 and w1 ∈ W1,
then

(D2h(w1, w2)−D2h(w1, y2))(w2 − y2) ≥ m2∥w2 − y2∥2.

(iv) If Ĩ : V → R is defined by Ĩ(v) = I(v+θ(v)), then Ĩ has a continuous
Fréchet derivative DĨ with respect to v, and

(2.6) DĨ(v)(h) = DI(v + θ(v))(h) for all v, h ∈ V.

(v) v0 ∈ V is a critical point of Ĩ if and only if v0 + θ(v0) is a critical
point of I.

Proof. (i) Let δ = α+β
2
. If g1(ξ) = g(ξ) − δξ, the equation (2.5) is

equivalent to

(2.7) z = (Dtt −Dxx − δ)−1(I − P )(g1(v + z))

The operator (Dtt − Dxx − δ)−1(I − P ) is self adjoint, compact and
linear map from (I −P )L2(Ω) into itself and its L2 norm is (min{|λ21 −
δ|, |λ00 − δ|}−1 = (min{| − 7 − δ|, |1 − δ|}−1. Since |g1(ξ2) − g1(ξ1)| ≤
max{|α−δ|, |β−δ|}|ξ2−ξ1| = |α+β|

2
|ξ2−ξ1|, it follows that the right-hand

side of (2.7) defines, for fixed v ∈ V , a Lipschitz mapping of (I−P )L2(Ω)
into itself with Lipschitz constant r < 1. Therefore, by the contraction
mapping principle, for given v ∈ V , there exists a unique z = (I −
P )L2(Ω) which satisfies (2.7). If θ(v) denote the unique z ∈ (I−P )L2(Ω)
which solves (2.5), then θ is continuous and satisfies a uniform Lipschitz
condition in v with respect to the L2 norm(also norm ∥ · ∥). In fact, if
z1 = θ(v1) and z2 = θ(v2), then

∥z1 − z2∥L2(Ω)

= ∥(Dtt −Dxx − δ)−1(I − P )(g1(v1 + z1)− g1(v2 + z2))∥L2(Ω)

≤ r∥(v1 + z1)− (v2 + z2)∥L2(Ω)

≤ r(∥v1 − v2∥L2(Ω) + ∥z1 − z2∥L2(Ω)) ≤ r∥v1 − v2∥+ r∥z1 − z2∥.

Hence

(2.8) ∥z1 − z2∥ ≤ C∥v1 − v2∥, C =
r

1− r
.
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Let u = v + z, v ∈ V and z = θ(v). If w ∈ (I − P )L2(Ω) ∩ E,

DI(v+θ(v))(w) =

∫
Ω

[−(v+z)t·wt+(v+z)x·wx−Pg(v+z)w−(I−P )g(v+w)w]dxdt.

From (2.5) we see that∫
Ω

[−zt · wt + zx · wx − (I − P )(g(v + z)w)]dxdt = 0.

Since ∫
Ω

zt · wt = 0 and

∫
Ω

zx · wx = 0,

we have

(2.9) DI(v + θ(v))(w) = 0.

(ii) If w1 and y1 are in W1 and w2 ∈ W2, then

(D1h(w1, w2)−D1h(y1, w2))(w1 − y1)

=

∫
Ω

[−|(w1 − y1)t|2 + |(w1 − y1)x|2

−(g(v + w1 + w2)− g(v + y1 + w2))(w1 − y1)]dtdx.

Since
∫
Ω
−|(w1 − y1)t|2 + |(w1 − y1)x|2dtdx = −∥w1 − y1∥2 and (g(ξ2)−

g(ξ1))(ξ2 − ξ1) > α(ξ2 − ξ1)
2, we see that if w1 and y1 are in W1 and

w2 ∈ W2, then ∥w1 − y1∥L2(Ω) ≤ 1
7
∥w1 − y1∥2 and

g(v + w1 + w2)− g(v + y1 + w2) ≤
−α
7

∥w1 − y1∥2

and

(D1h(w1, w2)−D1h(y1, w2))(w1 − y1) ≤ (−1− α

7
)∥w1 − y1∥2

where (−1− α
7
) < 0.

(iii) Similarly, using the fact that
∫
Ω
−|(w2− y2)t|2+ |(w2− y2)x|2dtdx =

∥w2 − y2∥2 and (g(ξ2) − g(ξ1))(ξ2 − ξ1) ≤ β(ξ2 − ξ1)
2 we see that if w2

and y2 are in W2 and w1 ∈ W1, then

(D2h(w1, w2)−D2h(w1, y2))(w2 − y2) ≥ (1− β)∥w2 − y2∥2

where (1− β) > 0.
(iv) Since the functional I has a continuous Fréchet derivative DI, Ĩ
has a continuous Fréchet derivative DĨ with respect to v.
(v) Suppose that there exists v0 ∈ V such that DĨ(v0) = 0. From
DĨ(v)(h) = DI(v + θ(v))(h) for all v, h ∈ V , DI(v0 + θ(v0))(h) =
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DĨ(v0)(h) = 0 for all h ∈ V . Since DI(v + θ(v))(w) = 0 for all w ∈ W
and E is the direct sum of V and W , it follows that DI(v0 + θ(v0)) = 0.
Thus v0 + θ(v0) is a solution of (1.1). Conversely if u is a solution of
(1.1) and v = Pu, then DĨ(v) = 0.

Remark. We note that θ(v) = 0.

3. Proof of theorem 1.1

Lemma 3.1. Assume that g is π−periodic and satisfies the conditions
(g1)-(g4). Then v = 0 is a strict local point of maximum of Ĩ(v).

Proof.

Ĩ(v) = I(v + θ(v))

=

∫
Ω

[−1

2
|vt+ θ(v)t|2 +

1

2
|vx + θ(v)x|2]dtdx−

∫
Ω

G(v + θ(v))dtdx

=

∫
Ω

[−1

2
|vt|2 +

1

2
|vx|2]dtdx+ C,

where

C =

∫
Ω

[−1

2
|θ(v)t|2 +

1

2
|θ(v)x|2]dxdt−

∫
Ω

G(θ(v))dxdt

−
∫
Ω

[G(v + θ(v))−G(θ(v))]dxdt

= I(θ(v))−
∫
Ω

[G(v + θ(v))−G(θ(v))]dxdt

= Ĩ(0)−
∫
Ω

[G(v + θ(v))−G(θ(v))]dxdt.



490 Q-Heung Choi and Tacksun Jung

Thus we have

lim
|v|→0

Ĩ(v)− Ĩ(0)

= lim
|v|→0

{
∫
Ω

[−1

2
|vt|2 +

1

2
|vx|2]dxdt−

∫
Ω

[G(v + θ(v))−G(θ(v))]dxdt}

= lim
|v|→0

{−
∫
Ω

∫ 1

0

g(θ(v) + sv)ds+

∫
Ω

[−1

2
|vt|2 +

1

2
|vx|2]dxdt}

= lim
|v|→0

{
∫
Ω

∫ 1

0

g′(θ(v) + sv)vvsds−
∫
Ω

[−1

2
|vt|2 +

1

2
|vx|2]dxdt}

=
1

2
(g′(0))− (−3)) lim

|v|→0

∫
Ω

v2 < 0.

Thus v = 0 is a strictly local point of maximum of Ĩ(v) whose critical
value is 0.

We shall show that −Ĩ(v) is bounded from below and −Ĩ(v) satisfies the
(P.S.) condition.

Lemma 3.2. Assume that g is π−periodic and satisfies the conditions
(g1)-(g4). Then −Ĩ(v) is bounded from below and Ĩ(v) satisfies the
Palsis-Smale condition.

Proof. Let us set u(v) = v + θ1(v) + θ2(v), v ∈ V , θ1(v) ∈ W1,
θ2(v) ∈ W2. Then we have

Ĩ(v) =

∫
Ω

[−1

2
|vt + θ1(v)t + θ2(v)t|2 +

1

2
|vx + θ1(v)x + θ2(v)x|2]dtdx

−
∫
Ω

G(v + θ1(v) + θ2(v))dtdx.
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Moreover we have

Ĩ(v) = I(v + θ1(v) + θ2(v)) = I(u(v))

=

∫
Ω

[−1

2
|u(v)t|2 +

1

2
|u(v)x|2 −

∫
Ω

G(u(v))dxdt

=

∫
Ω

[−1

2
|(v + θ1(v))t|2 +

1

2
|(v + θ1(v))x|2]dxdt−

∫
Ω

G(v + θ1(v))dxdt

+{
∫
Ω

[−1

2
|u(v)t|2 +

1

2
|u(v)x|2] +

1

2
|(v + θ1(v))t|2 −

1

2
|(v + θ1(v))x|2

−
∫
Ω

[G(u(v))−G(v + θ1(v))]dxdt}.

The terms in the bracket are equal to

−
∫
Ω

∫ 1

0

[g(sθ2(v) + v + θ1(v))θ2(v)ds]dxdt]

+
1

2

∫
Ω

(u(v)tt − u(v)xx)θ2(v)dxdt

=

∫
Ω

[

∫ 1

0

g′(sθ2(v) + v + θ1(v))θ2(v)θ2(v)sds]dxdt

−1

2

∫
Ω

(θ2(v)tt − θ2(v)xx)θ2(v)dxdt ≤ 0.

We also have that

lim
|v|→∞

∫
Ω

G(v + θ1(v))dxdt

= lim
|v|→∞

{
∫
Ω

[

∫ 1

0

g(sv + sθ1(v))(v + θ1(v))ds]dxdt}

= lim
|v|→∞

∫
Ω

[

∫ 1

0

g′(sv + sθ1(v))(v + θ1(v))(v + θ1(v))sds]dxdt

=
1

2
g′(∞) lim

|v|→∞

∫
Ω

(v + θ1(v))
2dxdt.
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Thus we have

lim
|v|→∞

Ĩ(v)

≤ lim
|v|→∞

{
∫
Ω

[−1

2
|(v + θ1(v))t|2 +

1

2
|(v + θ1(v))x|2]dxdt

−
∫
Ω

G(v + θ1(v))dxdt}

≤ 1

2
(−3− g′(∞)) lim

|v|→∞

∫
Ω

(v + θ1(v))
2dxdt

=
1

2
(−3− g′(∞)) lim

|v|→∞
∥v + θ1(v)∥2L2(Ω) −→ −∞.

Thus −Ĩ(v) is bounded from below and, so satisfies the (P.S.) condition.

[Proof of Theorem 1.1]
By Lemma 2.2, Ĩ(v) is continuous and Fréchet differentiable in V . By
Lemma 3.2, Ĩ(v) is bounded above, satisfies the (P.S.) condition and
Ĩ(v) → −∞ as ∥v∥ → ∞. By Lemma 3.1, v = 0 is a strictly local
point of maximum of Ĩ(v) with critical value Ĩ(0) = 0. We note that
maxv∈V Ĩ(v) > 0 is another critical value of Ĩ. By the shape of the graph
of the functional Ĩ on the 1-dimensional subspace V , there exist the
third critical point of Ĩ(v). Thus (1.1) has at least three solutions, one
of which is trivial solution u = v + θ(v) = 0 + 0 = 0.
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