• 제목/요약/키워드: covariance matrices

검색결과 110건 처리시간 0.02초

LOCAL INFLUENCE ANALYSIS OF THE PROPORTIONAL COVARIANCE MATRICES MODEL

  • Kim, Myung-Geun;Jung, Kang-Mo
    • Journal of the Korean Statistical Society
    • /
    • 제33권2호
    • /
    • pp.233-244
    • /
    • 2004
  • The influence of observations is investigated in fitting proportional covariance matrices model. Local influence measures are obtained when all parameters or subsets of the parameters are of interest. We will also derive the local influence measure for investigating the influence of observations in testing the proportionality of covariance matrices. A numerical example is given for illustration.

On Testing Equality of Matrix Intraclass Covariance Matrices of $K$Multivariate Normal Populations

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.55-64
    • /
    • 2000
  • We propose a criterion for testing homogeneity of matrix intraclass covariance matrices of K multivariate normal populations, It is based on a variable transformation intended to propose and develop a likelihood ratio criterion that makes use of properties of eigen structures of the matrix intraclass covariance matrices. The criterion then leads to a simple test that uses an asymptotic distribution obtained from Box's (1949) theorem for the general asymptotic expansion of random variables.

  • PDF

Testing Homogeneity of Diagonal Covariance Matrices of K Multivariate Normal Populations

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.929-938
    • /
    • 1999
  • We propose a criterion for testing homogeneity of diagonal covariance matrices of K multivariate normal populations. It is based on a factorization of usual likelihood ratio intended to propose and develop a criterion that makes use of properties of structures of the diagonal convariance matrices. The criterion then leads to a simple test as well as to an accurate asymptotic distribution of the test statistic via general result by Box (1949).

  • PDF

도립진자 모델에서 칼만 필터의 잡음인자 해석 (The Analysis of The Kalman Filter Noise Factor on The Inverted Pendulum)

  • 김훈학
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권5호
    • /
    • pp.13-21
    • /
    • 2010
  • 도립진자 시스템에서 칼만 필터링 최적의 결과를 얻기 위해서는 잡음 공분산 행열 Q, 측정잡음 공분산 행열 R과 초기 에러 공분산 행열 $P_0$와 같은 인자가 필요하다. 이러한 인자는 실제 상황에서 근사화된 값을 사용하거나 정확한 값을 알 수 없기 때문에 칼만 필터의 최적화에 영향을 미치지 않거나 이러한 공분산 행열의 스칼라 이득변화에 덜 민감한 경우를 연구의 대상으로 하고 있다. 또한 상태 측정시 에러를 예측하는 방법으로 구해진 에러 공분산 행열은 상태측정 값 보다는 공분산 행열의 이득과 연관성을 가지게 된다. 따라서 3가지 공분산 행열과 칼만 이득 그리고 에러 공분산 행열 간의 상관관계가 잡음인자인 스칼라 이득과의 연관성을 해석하고자 하였다. 본 연구는 3절에서 도립진자 시스템 모델을 간략하게 정리를 하였고 4절에서는 이러한 모델을 기반으로 하여 컴퓨터 시뮬레이션을 위한 도립진자 시스템에 대한 수학적 동적모델을 구성하고 5절에서는 이러한 인자와 스칼라 이득 값을 이용한 다양한 시뮬레이션 결과를 통하여 잡음인자의 연관성을 해석하였다.

A Test for Equality Form of Covariance Matrices of Multivariate Normal Populations

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제20권2호
    • /
    • pp.191-201
    • /
    • 1991
  • Given a set of data pxN$_{i}$, matrices X$_{i}$ observed from p-variate normal populations $\prod$$_{i}$~N($\mu$$_{I}$, $\Sigma$$_{i}$) for i=1, …, K, the test for equality form of the covariance matrices is to choose a hypothetical model which best explains the homogeneity/heterogeneity structure across the covariance matrices among the hypothesized class of models. This paper describes a test procedure for selecting the best model. The procedure is based on a synthesis of Bayesian and a cross-validation or sample reuse methodology that makes use of a one-at-a-time schema of observational omissions. Advantages of the test are argued on two grounds, and illustrative examples and simulation results are given.are given.

  • PDF

Global Feature Extraction and Recognition from Matrices of Gabor Feature Faces

  • Odoyo, Wilfred O.;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • 제9권2호
    • /
    • pp.207-211
    • /
    • 2011
  • This paper presents a method for facial feature representation and recognition from the Covariance Matrices of the Gabor-filtered images. Gabor filters are a very powerful tool for processing images that respond to different local orientations and wave numbers around points of interest, especially on the local features on the face. This is a very unique attribute needed to extract special features around the facial components like eyebrows, eyes, mouth and nose. The Covariance matrices computed on Gabor filtered faces are adopted as the feature representation for face recognition. Geodesic distance measure is used as a matching measure and is preferred for its global consistency over other methods. Geodesic measure takes into consideration the position of the data points in addition to the geometric structure of given face images. The proposed method is invariant and robust under rotation, pose, or boundary distortion. Tests run on random images and also on publicly available JAFFE and FRAV3D face recognition databases provide impressively high percentage of recognition.

Geodesic Clustering for Covariance Matrices

  • Lee, Haesung;Ahn, Hyun-Jung;Kim, Kwang-Rae;Kim, Peter T.;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • 제22권4호
    • /
    • pp.321-331
    • /
    • 2015
  • The K-means clustering algorithm is a popular and widely used method for clustering. For covariance matrices, we consider a geodesic clustering algorithm based on the K-means clustering framework in consideration of symmetric positive definite matrices as a Riemannian (non-Euclidean) manifold. This paper considers a geodesic clustering algorithm for data consisting of symmetric positive definite (SPD) matrices, utilizing the Riemannian geometric structure for SPD matrices and the idea of a K-means clustering algorithm. A K-means clustering algorithm is divided into two main steps for which we need a dissimilarity measure between two matrix data points and a way of computing centroids for observations in clusters. In order to use the Riemannian structure, we adopt the geodesic distance and the intrinsic mean for symmetric positive definite matrices. We demonstrate our proposed method through simulations as well as application to real financial data.

색상과 에지 공분산 특징을 이용한 변화영역 검출 (Change Area Detection using Color and Edge Gradient Covariance Features)

  • 김동근;황치정
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.717-724
    • /
    • 2016
  • 본 논문은 카메라로부터 획득한 컬러 비디오 영상에서 컬러 색상과 에지 그래디언트의 공분산 행렬에 기반한 영상의 변화영역을 검출하는 방법을 제안한다. 컬러 비디오 영상은 RGB 영상 대신에 밝기정보와 색상정보가 분리된 YCbCr 컬러비디오 포맷을 사용한다. CbCr-채널로부터 컬러의 색상분포를 알 수 있는 컬러 공분산 행렬을 계산하며, Y-채널로부터는 영상의 에지 그래디언트 분포를 알 수 있는 공분산 행렬을 계산한다. 컬러 공분산 행렬과 에지 그래디언트 공분산 행렬은 배경영상으로부터 적분영상을 사용하여 사각영역의 합계와 제곱 합계, 곱셈 합계를 효과적으로 계산하여 각 화소에서 빠르게 계산된다. 또한 시간에 따른 변화를 반영하기 위하여 배경영상과 입력영상의 가중평균에 의해 배경영상을 갱신한다. 현재 프레임에서의 배경영상으로부터의 변화영역은 컬러 공분산 행렬과 에지 그래디언트 공분산 행렬을 사용한 통계적 거리측정인 마하라노비스 거리를 이용하여 검출한다. 고속도로의 컬러 비디오 영상의 실험결과에서 컬러색상과 그래디언트의 변화영역을 효과적으로 검출할 수 있었다.

A Bayes Criterion for Testing Homogeneity of Two Multivariate Normal Covariances

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제27권1호
    • /
    • pp.11-23
    • /
    • 1998
  • A Bayes criterion for testing the equality of covariance matrices of two multivariate normal distributions is proposed and studied. Development of the criterion invloves calculation of Bayes factor using the imaginary sample method introduced by Spiegelhalter and Smith (1982). The criterion is designed to develop a Bayesian test criterion, so that it provides an alternative test criterion to those based upon asymptotic sampling theory (such as Box's M test criterion). For the constructed criterion, numerical studies demonstrate routine application and give comparisons with the traditional test criteria.

  • PDF

A Sequence of Improvement over the Lindley Type Estimator with the Cases of Unknown Covariance Matrices

  • Kim, Byung-Hwee;Baek, Hoh-Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.463-472
    • /
    • 2005
  • In this paper, the problem of estimating a p-variate (p $\ge$4) normal mean vector is considered in decision-theoretic set up. Using a simple property of the noncentral chi-square distribution, a sequence of estimators dominating the Lindley type estimator with the cases of unknown covariance matrices has been produced and each improved estimator is better than previous one.