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A Sequence of Improvement over the Lindley Type Estimator
with the Cases of Unknown Covariance Matricesl)

Byung Hwee Kim?2 and Hoh Yoo Baek3
Abstract.

In this paper, the problem of estimating a p-variate ( p=4) normal mean vector is
considered in decision-theoretic set up. Using a simple property of the noncentral
chi-square distribution, a sequence of estimators dominating the Lindley type
estimator with the cases of unknown covariance matrices has been produced and each
improved estimator is better than previous one.
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1. Introduction

Let X=(X,;,X, and S be independent observation with X~ N,(6, a1 ,) and

S~ c%x%, 6= R’ where o¢° is unknown. For any estimator 8(X) of 6, the loss in
estimating 8 by &(X) is
_ g2
1(s, 6 =-10=AL (LD)

The best location invariant estimator of & is
=X
which is admissible for p=1 or 2. James and Stein (1961) showed that &° is inadmissible

for p=3 and it is dominated by classes of

s_ (y__(p=2)S _
af—(l (k+2)||X|lz)X’ =3 .

Since this pioneering work, many shrinkage estimators which dominate 8% have been
proposed. Guo and Pal(1992) considered a sequence of improved estimators providing
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successive improvement over & . Kubokawa(1991) and Guo and Pal(1992) constructed a
sequence of estimators (dominating 6”5 ) where each estimator is better than the previous
one and the sequence converges to an admissible estimator. Subsequently a number of authors
provided classes of stein-type estimators dominating X (Efron and Morris(1976), Ghosh,
Hwang, and Tsui(1983) where other references are cited). One common feature of these
estimators dominating X is that they are all spherically symmetric shrinking X toward some
particular point, not necessarily the origin. The Lindley(1962) type estimator is

1 _ (p—=3)S _ ¥
8= X1+(1 G Jx-%n, 24

where X = (x,++X,)/pand 1=(1,--,1) . The Lindley type estimator possesses

better risk properties than the ordinary James-Stein estimator over a large region of the
parameter space, suggesting that from a sampling theoretic viewpoint the shrinkage should be

taken toward X1 as opposed to the origin.
In this paper, a sequence of improved estimators providing successive improvements over

8! is constructed. Each of these improved estimators can be dominated by using a technique
of Kubokawa(1991). In Section 2, such improved estimators are derived. In Section 2, these

results are generalized when X~ N,(4, 2)), where the covariance matrix 2, is

completely unknown.

2. Improved Estimators Dominating &*

Consider a sequence of estimators of the form
"= X1+ K,(X— X1), »=1,2,3, .1
where K, = K,(X) is suitable function of X . We choose

K, = (1— (k+2()7|;(3—)87{1||2 ) to make the first element o' of the sequence {&"} .

Our goal is to construct 8" (#=2) such that for any integer #>1 and p=>4 ,
R(6"*1,0)< R(6",0), Y 0= R?,

To dominate the estimator 8" for any #>1 , define 6**! as
8= 6"+ (X — X1), i e,

K,.1=K,+ 7, , where 7,=7%(X) is a suitable real valued function.
Let 7,=7,(X— X1) . Define the ask difference (RD) between R(8"*!,0) and
R(8", 6) as |

R(n+1,n) = R(8"*!, ) — R(8", )
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02 EL|16"+7,— 6l —|l8"— 61I%] (2.2)

- L Bl % Pt 2 3,7 (81— 0]

where 87, 6, and 7, denote the i* elements of 6", § and 7, , respectively.

The second term of (2.2) can be simplified as
El grm.(a;'— 6)1= 3 EL(K,~ D7 (X~ X) +7,(X,~ 6)]

-3 E[ (K= D7 X=X+ 52 r,,i] 23)

The expression (2.3) is obtained by using Stein’s normal identity assuming that
748 (1=1,2,,p) satisfy all the regularity conditions of the identity. Combining (2.2) and
(2.3), we get ‘

RD(n+1,m) = E ${ Pt 2B, =1 7 X~ X 3%, |

We now look for suitable 7,= #3(X— X1) such that

RD(n+1, n)<0, V n=1.
Before we derive the general result, let us look at some special cases.

2.1 The case of n=1

2
2

1+ — iy —(2+a :
To dominate &' (Lindley), take 7= ¢;S NX~-"X 1l %" where ;>0 an ¢, is

a suitable constant. Then,

Zazcl{D 3+ al)}S

202 3X Ix—"X 1) 2% ’
gsire 2e,(p=5)5" "
ci(p—
= y d 2(K,— Ml . — a, *
21 1@ ”X X1”2+2a an ( 1 1) 2171 (k+2)“X_ X1”2+ 1
Therefore, from (2.4) one can get '
1+L
- # IORY S
2+-2
—o. =3 1 S 2
2C1 k+2 T1+—;'L ( 02) (2.5)

where 1=

—_x112 —_ 112
—“X—?X—l”—’vnon central x5_,(A) with A=—UL%H— and
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9= (6,+--+6,)/p, —G'S;— ~ 4%, and they are independent. It is well known that T can be

treated as a mixture of central x%_,,,, and U~Poz'sson(—'1—). Let By= U+—L1,
p-2 2 2

then

. k
I'By—Q1+a)) I"'(—2‘+2+ a;)

RD(2,1) = Ey|& -2
. vl €1 Ir'(By) F(_ée)

I(By—Q+-2L)) rE+1+-4
+2¢,(p— (3+ @) —— 2 2 2

(2.6)

g,y _k
a k a
g 2=3 I’(BU—(1+—§L)) F(7+1+—§L)
L p+2 I'(8y)

ref)

To make RD(2,1)<0 , it is enough to have the expression inside [] in (2.6) <0 for all
U U=0,1,2, . Hence, the condition on ¢, is

k a

k+1

0< < 7
r(By— 1 +ap)) I"(7+2+al)

for U=0,1,2,-. Let

P(8y—(1+a,/2) I(& +1+-50)

&(p, @;) = min ; Z 2.7
Ir'(By—(1+ay) (5 +2+a)
Then a sufficient condition on ¢, is
0<a< a2zl e, (5,a)) 28)

provided p—1>2(1+ a;). In fact, the optimal value of ¢; which minimizes the quadratic
expression inside [] in (2.6) for all U is »
&= aEE27l e (p,ay). (2.9)

It can be proved that the minimum in (2.7) is attained at U= 0, i.e., By= ‘%1 .
(See Guo and Pal(1992).) The condition that p—1> 2(1+ @;) is necessary to ensure that all

the expectations exist. The following result is immediate from the above derivation.

a
7o

Proposition 2.1. The estimator &%= 61+(c({S1 MX—X112" N X—X1) with
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@,> 0 dominate &' (Lindley) uniformly under the quadratic loss(1.1) provided
p—1>2(1+a))

2.2 The case of n=2

_ . = 1y (p—3)S :
_ _ —1- L
To dominate ¢“= X1+ K,(X— X1) with K,=1 b+ DIX = X1
1+-3 1+
“Xc_i%(l” 2+a, » choose 73 = IIXC—Z%lll 7¥a, » Wwhere ap> @20 and ¢; is suitable

cohstant. Similar to the case n=1, RD(3,2) can be derived from (2.4) as

RD(3,2) = Ersld—lra ()t +26,(0- B+ a)—Lo (-5

2
1+2

ay ata;
_¢_a_z_(_%)2+ 2 +2C102_____1_____(_S_))2+ 2

—2c pagrips
2 (k+2)Tl+ 2 l+_|_z';— 02

Following the earlier approach, a sufficient condition for RD(3,2) <0 is

0< ¢y« azk—:% €, (9, @;,a,) provided that p—1<2(1+a,) , where

2(k+1)
a(k+p—1)

r(ﬁu—(1+—‘;1))r(—§+1+—;1) {1_

&,(p, a;, a,) = min
R v F(By— 1+ a) (£ +2+ay)

(£ +2+-83%)rg, 1 +-2 %))

e b a a
(=5 +1+ 59 I(By— 1+ 35
Again, the optimal value of ¢, is ¢} = azg—&% eyp, 2, ay).

2.3 General case

Consider the estimator 6" in (2.1) with

L4
K (p=3)S ol oS ?

=1— + — ,
" ) lx—X1) 2"

(k+2)IX— X1
where @,_1>@,_5>>@>0 and 0<ca BT e (p 0y, a), i=1.2,

(2.10)



468 Byung Hwee Kim and Hoh Yoo Baek

iy

1+
c,S

-,n—1. Take 7, = —. 2+, » Where a,>a,., and ¢, is a suitable constant.

IIx— X1l

Similar to the special cases

F(BU—(I"‘(Z”)) I’(—§+2+a,,)

RD(n+1,n) = Ey|c% -2

(8
u ref)
F(By—(1+-5%) I(E+1+-5%)

+20,,(P_(3+d,,)) F(ﬁ ) k
U 1"(7)

@y & ﬁ

4o =3 P(BU—(1+—2~)) I( g 2+ )

n k+2 g, ek )
a;+a, a;ta,

a1t TBy—(+—5—)) I’(—+2+“’—‘—)

+4Cn C;

The expectation in (2.11) exist provided p—1>2(1+a,).

Define €,(p, a; -, a,) as,

r(gy— Q1+ ”)P(—+1+ ”)
F(BU—(l+a,,))I’(—+2+a,,)

e(p, ey, ,a,) = min y

L an F(—~+z+—“1+—")r(ﬂu—(1+(a+a)/2)

a,,(k+p—1) 7= I.,(_
2

+1+ 2” )_F(BU—(1+ 2” )

(211

(2.12)

The optimal value ¢, is &= an% ep,a;,,a,). Then a sufficient condition

for 6"*! dominating 6" is

O< C”< ank_—;% 8,,(1), aly '“ran)r

(213)  and the optimal value c, is

k+p—1
A= an—m%z) En (5,01, Ay).

The minimum in (2.12) in attained at U= ( (See Guo and Pal(1992)). We now state the

main theorem of this section.
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Theorem 2.1. An estimator 6" of the form (2.10) is uniformly dominated by

an

c,,SH 5
Ix—X1)|%*

6”+1 —

(X— X1) provided p—1>2(1+a,) and c, satisfies  the

condition (2.13).

. Remark 2.1. Note that the function »,, 7= 1, -, p satisfies the regularity conditions of

Stein’s normal identity which enables us to derive (2.11).
3. The Case of Completely Unknown Covariance Matrix 2,

Let X and S be independent where X~N,(6, 2}) and S,,~ Wishart (2|4).

Here we estimate € under the loss function

L(8,0)=(6—6) Z"(s—0). (3.1)
The Lindley type estimator dominating the usual estimator 8°= X is
1% _ p—3 _ ) _ v
=X+ (1- G Sys o )X XD,

Again, the difference in risks of 6” and 6"**!= 6"+, is

RD(n+1,n)=Elr,’2 v, +27,/3 16" 6]

=Hr, 2 r,+2r,/ 2 " H(6"—X)+2r, 2 "1 X—0)]. (3.2)
Let 6"= X1+ K, (X— X1), where
p—3 151 <;
K,={1- b — — —
" (1 (k—p+4)(X— X1) S HX- X1) + ;1 (Xx-"X1D 'S (x-x1}'""

and
cn
{(X— X1 'S (X- X1
@12, >a 0,

_ 1 _ L _1 L
Also, define Y= %X, 6,=3 ?@and S,=2 2SX¥ 2. Then,

r,=ri(X— X1)= [ Tre (X— X1, (33

Cn
1(X_Xl)}l+a,

E[r, 2 HX-0 (X—- X113 X~ e)}_

]=E[ (X—XD'S"
| c,
{(Y-71)S;(y-YD}H**

—_ Cn(Yi—?) _ ]
- iE[ (T—TD's; (y—pppee im0

(Y-Y1)' (Y- 0,)] (3.4)
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where Y = “}7 }i‘l Y, 6= —}) ﬁlﬁi and Y{~N(8,;,1)) is the i" element of Y .

Applying Stein’s normal identity in (3.4), we get
El7r,2"Y(X- 0]

- a cul Y,'—_?) )]
E[i aY,-( {Y-Y1)S;(Yy-="Y1)}!**

(1--LHyy-r1 s; (y- 7D}
Sl

{(Y-Y1)'S; (Y="Y1))2+2
—(Y= DU +a ) {(Y-T7D'ST (y-TD}*}

=FK

8 — v1V' o1 v
8Yi(Y Y1)'S; (Y- YD)

{(Y—Y1)S; (Y- YD)+

:E[c (G- D{(Y-YU'SKY—YDY'"™ 20+ (Y- YI'S;(Y-YD)! ™
(Y=Y ST (Y=Y " {(Y="Y1)S; (YY)t
=E[c 3—1—2(1+a,,*)

" (Y- Y1)'S; (Y=Yt

From (3.2) and (35),
RD(n+1,n)
(p—1-2(1+a,)
" {Y-TYS; (Y-

=E[ 2 {_ (p=3)/(k—p+4)
{(X-XDS Yx-XDy*>l  {(X—X1DS (X-X1)}

=E [r,,'Z“lr,,+Zr,,'Z"l(6”—X)+ 2¢

n—1 C]-
" JZI {(X-X1)S Y (X-XD)}'™
C‘i ~N PR
* (X-X1)S~{X—-X1)}20+a (X—-X1)Z
(p—D—2(1+a,) ]
" (X—X1)'S"HX- XD}

= [_ 2e,(6=3)/(k=p+4)

(X-X1)’S (Xx-X1)}* >

J(X— X1’ {(X-X1)

(X—X1)

+2c

(X-X1)3"(X-X1)

n—1 ci
/Zl (X-X1)YS (X—X1)“tatm
p 2 (X=X1'FUX—-X1)

" {(X—X1)S UX—X1)}2T%m

+2c,,( )(X—Ta)'z- X~X1)

(p—1-2(0+a,)
P X-X1)'STX-XD)) e

+2b_

Note that given X , the conditional distribution of ( X—T(l)' S (x— ?1)

|

(X—X1)'Z"MX-X1) _

(35)
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X’(I——}) 11')2“(1——}; 11)X

vor— L qiyve-107— L 1q-
X pll)S (I pll)X

is x%-_,+s which is free from X (Graybill(1976) and

(X— X1) > 4(X=X1)
(X—X1)S™'(X- X1)

independent of (X— X1)'Z~YX— X1). Therefore,

Rao(1983)). So unconditionally is x%_,+; and this is

1\’ v ~ 2+ea, _ _ ‘
I 1t = )

} 2+a;+a,

(X —X1)' S YX—X1)} (etated

Sl (X X1DI" N X—X1)
+2c, ;Zl cf{ (X-X1)S {X-X1)

| X=XV ZUX=XD V™ o vl vy — (14200

(X=X1)’Z"YX~ XD } e

Let
T R
R (e (36)
SR R e

and

_ 2+a+a, L((k—p+6+20a;+2¢,)/2)
Bj=2cp2 (=5 +2)/2)

Then
RD(n+1,n) = E[EA{(X—-X1) S (X~X1)) ~+%)
_cn(Al"'Aa){(X—T(I)'Z‘I(X—T(D} ~(1+ay
+ c, EIBI{(X—-YI)’Z—l(X’_‘-Xl)} —(l+a,-+a,.)].
Since (X~ X1)'2~NX— X1)~ noncentral ¥%,_,(3) with A= (6—101)’3" 16— 01) we
choose ¢, by using earlier technique as .

o foa A=Ay TBy=(+2) w5l 0o BL(By=(1,+a)
0<c,< mmU{Z ( IAZ ) p(,gUU—(1+2a”)) 2 A I (By—(1+2a,) ]

where A,, A;, A3 and B; s are given in (3.6). The following result summarizes the

(3.7

above derivation.
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~ Theorem 3.2. Assume p—1>2(1+2e,). The ~ estimator o"tl=06"+», (33

dominates 6" uniformly under the loss (3.1). As a result, this gives a sequence {6"} of

improved estimators dominating &?.

Remark 3.1. Similar to the previous section, note that the function 7., 1=1,-,2

satisfies the regularity conditions of Stein’s normal identity which enables us to derive (3.2).

Remark 3.2. The optimal limiting value of ¢, is hard to find analytically due to the
complicated structure of c¢,(see (3.6) and (3.7)). Hence the problem of finding the close form

of the limiting estimator of the sequence {6"} still remain open.
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