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ABSTRACT

A Bayes criterion for testing the equality of covariance matrices of
two multivariate normal distributions is proposed and studied. De-
velopment of the criterion involves calculation of Bayes factor using
the imaginary sample method introduced by Spiegelhalter and Smith
(1982). The criterion is designed to develop a Bayesian test criterion,
so that it provides an alternative test criterion to those based upon
asymptotic sampling theory (such as Box’s M test criterion). For the
constructed criterion, numerical studies demonstrate routine applica-
tion and give comparisons with the traditional test criteria.
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1. INTRODUCTION

The comparison of two rival models on the basis of Bayes factor was
pioneered by Jeffreys (1935) and has been used by many authors (see Kass
and Raftery (1995) for a list of references). Suppose we have data D(say,
training sample), assumed to have arisen under one of two alternative models
M, and M, having probability densities p(D|6;, M;), under M;,i = 1,2, where
parameter vectors are unknown and are of dimension k;. Then, in general,
the data produce the Bayes factor for M, against M, defined by

_ p(D| M) _ J p(D|6y, My)m (6| M;)db, (1)
~ p(DIMz) [ p(D|f2, My)m (82| M2 )d6s

By

where the densities p(D|M;) are obtained by integrating over the parameter
space, so that

p(DIM:) = [ p(DI6s, Miy(6:]0M:)dbs, 2)

where p(D|M;) is called marginal likelihood or predictive density of D under
M;. The Bayes factor denotes the ratio of the posterior odds of M; to its prior
odds, regardless of the value of the prior odds. Thus B;s can be viewed as
the weighted likelihood ratio of M; to M, and hence can be solely in terms
of comparative support of the data for the two models(cf. Kass and Raftery,
1995).

Computing By in equation (1) requires specification of the priors, 7 (6;|M;)
i = 1,2. In model comparison, most Bayesians today prefer to use noninfor-
mative priors that are typically improper. Unfortunately, for the most model
selection problems, one can not use standard improper noninformative priors;
such priors are defined only up to a constant multiple, and hence the Bayes
factor By, is itself a multiple of this arbitrary constant. Thus, it is typically
not possible to utilize standard noninformative (or default) prior distributions
for the model comparison. A common solution to this problem is to construct
a default Bayes factor which uses part of the data as a sub-training sample
to eliminate the constant. Formal developments of the idea can be found
in work of Gelfand, Dey, and Chang (1992) and Berger and Pericchi (1996).
However, as pointed by Berger and Pericchi (1996), the training sample ap-
proach is clearly impractical if the complete data set itself is rather small, or
if the data are driven from a highly structured situation. Another solution to
the arbitrary constant problem, which does not involve the above problems
attached to the training sample approach, is the imaginary training sample
method of Spiegelhalter and Smith (1982).
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In Section 2, we shall derive a Bayesian criterion (Bayes factor) for testing
the equality of two multivariate normal covariance matrices by means of the
imaginary training sample method. Section 3 examines the performance of
the suggested criterion and notes some merits over the usual test (Box’s M
test). Finally, Section 4 includes some concluding remarks.

2. TEST CRITERION

Suppose we have two multivariate normal populations II; and II, each
specified by a model M;, ¢ = 1,2, where M; defines the distribution of each
population distribution Iy ~ N,(uk, £x), k = 1,2, where parameters are un-
known. Let our interest of model comparison be homogeneity (or heterogene-
ity) of the covariance matrices between two multivariate normal populations.
Then the model specification becomes

M : X, =%,=% versus M, : ¥, # %,. (3)

Let X;(k), X2(k),...,Xn,(k) denote independent p variate sample of size
N, from II; with distribution Nk(uk,Ek),_k = 1,2, and let denote the two
independent samples as D. If we define X (k) = E;-V:"l Xi(k)/Ng, and V}, =

Zf’z’“l(Xj(k) — X (k))(X;(k)—X(k))'. Then the data D is to have arisen under
M, according to probability density given by

2
P(D|[.L1,,LL2,21,22,M2) = H(27r)‘N"p/2|Ek|‘N’“/2exp{—1/2tr[2;19k]},
k=1

(4)
where Q) = Vi+ Ni(ur — X (k) (ux— X (k))'. Setting T; = £, = ¥ in equation
(4), we get the joint probability density conditionally on M.

Since our interest focuses primarily on a statement concerning to relative
probability that D comes from one or another of the model, and not about
of making probability statement about where a parameter lies, we shall use
a particular convenient prior density to reflect a noninformative information
about the unknown parameters. In this paper, we shall be concerned with
the case where both priors have Jeffreys’ priors that can be written by

w(p, p2, T|My) = ¢i|E|7@FD2 (5)
and

2
7 (1, 2y T1, 2| Ma) = o [ |26 @+,
k=1

13
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where ¢;, ¢ = 1,2, are arbitrary constants.

Lemma 1. Under the improper priors (5), the marginal likelihoods (or pre-
dictive densities) conditional on M; and M,, respectively, are

2 2
p(DIM) = o (2m) W DPEAI ST V|7 VA2 T NP2, (6)
k=1 k=1
2
p(D|M2) = ¢y H ((Zw)—(Nk—l)P/sz—P/ZAk1Vk’—(Nk—l)/2) ’ (7)
k=1

where A = 2?(V=2/2TP_ T {(N - 2)/2}, N =%%_| Ny and Ay = 2p(Nk—1)/2
P_1Tp{(Ny — 1)/2}, where Tp(8) = xPP-D/ATE_| T (9 - ];_1) denotes the
p-dimensional gamma function.

Proof. From the definition of the marginal density (2) and the likelihood (4),

2
p(D|M,) = /P(D|M1,ﬂ2,2,M1)W(#1,M2,2|M1) H dprdy (8)

k=1

1 2
. / (2m)~NPRIE[m 2 exp{ - r SIS Vs

k=1
2 2
+ Y Nl — X(B)) (i — X (k))'1} T] dpsd.
k=1 k=1
We obtain the marginal likelihood p(D|M;) in the following way. Integrate
(8) with respect to p’s using multivariate normal distribution. This gives

2 1 2
cl(zﬂ)—(N_z)p/z H(Nk)—P/2|E|—(N+p—1)/2 exp {—itr[}j"l Z Vk]} ’ (9)
k=1 k=1

and hence the desired marginal likelihood (6) can be found by integrating
with respect to X, using the inverted Wishart normalizing constant. Similar

integrations with respect to ux and Xi, k = 1,2 for the expression below
yield (7).

2 2
p(D|M;) = /P(D|M1,M2, X1, Ba, M2)m(p, pa, 1, La| Ms) H duy H d¥y
k=1 k=1

2
1
= Cz/ H(271')_”’“”/2|Ek|‘(N’°+p+1)/2 eXp{—é-trE;l[Vk
k=1

2 2
+ Nig(ue — X (k) (e — X (K))']} I:[ dpix I_I dX. (10)

1
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These marginal likelihoods, (6) and (7), are clearly indeterminate, due to
the presence of the undefined constants, ¢; and c,. Therefore, Bayes factor
for comparing M; with M, is itself a multiple of these arbitrary constants
such that

P(D|My) _ o1 Tp{(V - 2)/2}| 5}, Vil V7272
P(D|My) o TI2_; Tp{(Nk — 1)/2}|Vie|-(Me-1)/2

A solution for this problem is to construct a default Bayes factor by means
of imaginary training sample. This method, so called the imaginary train-
ing sample method, for assigning some value to c;/c; has been proposed by
Spiegelhalter and Smith (1982). The basic idea, a variation on a theme of
Good (1947), is to image that a imaginary training sample data set is available
which is defined as follows.

By = (11)

Definition 1. (Spiegelhalter and Smith 1982). A data set is called the imag-
inary training data set if it is available, which

(i) involves the smallest possible sample size permitting a comparison of
M, and Mo;

(ii) provides maximum possible support for M, so that it may yield the
Bayes factor Bys =~ 1.

Using the definition, we can obtain the imaginary training sample to elim-
inate the indeterminacy of the Bayes factor in (11). Lemma 1 and the condi-
tion (i) of Definition 1 require that a minimal size of the imaginary training
sample is p+ 1 for each population ITy ~ N,(ux, Zx) defined by M, k = 1,2,
because we need at least p+ 1 observations in order to be able to estimate Xy
and pi. Since M is nested in M,, we see that the imaginary training sample
of size p+ 1 for each population is minimal sample size for the comparison of
M; and M,. With the imaginary training sample of total sample size 2(p+1),
the Bayes factor (11) will be evaluated as

P(D|M,) _a Tp{p}H Tici Vil P
P(D|Mz) — c2 (Tp{p/2})? IT=s Vil =#/>

Suppose we denote A by

(12)

2

| Ei:l Vk|~p 2p ]

Hi:l IVkl—p/Z
Then it is easy to check that A is 1/2 times M test statistic for testing the
null hypothesis that M, is true (cf. Rencher 1995). Perlman (1980) has

15
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shown that the test based on A is unbiased. This test statistic is suggested
by Box (1949); an alternative of the likelihood ratio criterion for testing the
null hypothesis that M; is true. Thus the Bayes factor (12) can be expressed
in terms of A, so that

PDIMy) _ao Tolp} o 12y (13)

P(D|M;) — ¢ (T,{p/2})?

Since the statistic A takes a value 0 < A < 1 (cf. Anderson 1984, p.419),
the condition (ii) of Definition 1 leads to the value of A to be one achieving
maximum support to M;. Furthermore, if we set the Bayes factor (12) (arising
from this imaginary experiment) equal to one, we can immediately deduce,
from Definition 1, that
2 — (Fp{p/2})22p2' (14)
C2 I'p{p}

Lemma 2. The imaginary training sample method yields a default Bayes
factor, Bi,, for comparing M; with M, given by

(o T{(p =+ 1)/2)) T D{N = 5 = 1)/2}] Sy Vil 022

fm T{2p -5+ 1)/2} Thiey (T T{(Ne - J')/2})|Vk|‘“""‘1)(/2 )
15

Proof. Substitute ¢;/c; of (11) with the right hand side of the equality (14),
and express the multivariate gamma functions in terms of corresponding
gamma functions using 'p(6) = [I5_;T{f# — (j — 1)/2}, then we have the
result.

3{2 = 2P

This yields the following Bayes criterion for testing M;.

Proposition 1. If the posterior probability of M;, P(M;|D), is larger than
1/2, then we choose M; as a model best supported by the data, D. Otherwise,
we choose M,, where

I

POLID) = BT

(16)

Here m; denotes the prior probability of M;, : = 1,2.

Proof. Under the prior probabilities, Bayes theorem gives P(M;|D) =
P(D|M)m1/(TF, P(D|M;)7;). Since Bi, = P(D|M,)/P(D|M,), expressing
P(M;|D) in terms of Bi,, we have the result.
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When P(M;|D) = 1/2, we may randomly choose one of the two model.
Note that when m; = m, = 1/2, P(M;|D) > 1/2 is equivalent to Bf, > 1. It
is easy to check that, in the scalar case (p = 1), the Bayes factor B}, reduces
to a function of the two sample F'-test statistic

2nT{n/2} nt2p5e/2 po /2

B, =
12 T{n;/2}T{n2/2} (N1 F + na)"/2"’

(17)
where F = s2/s2, 52 and s are the usual unbiased estimators of o} and o3
(the two normal population variances) and ny = Ny—1,k =1,2, n = ny+n,.

3. NUMERICAL STUDY

The interest of this section is the relationship between the p value (or
observed significance level) and the suggested Bayesian measures of evidence
that M; is true, Bf, and P(M;|D), under the assumption that the prior
probability of M; is 7y = 1/2.

Together with the posterior probability P(M;|D) in Proposition 1, the
Bayes factor is a summary of the evidence provided by the data in favor of
one scientific theory, represented by a statistical model, as opposed to an-
other. Jeffreys (1961, Appendix B) suggested interpreting B{, by the follow-
ing ”order of magnitude” (see Kass and Raftery (1995), for the other "order
of magnitude”).

B, >1 evidence supports Mi;

1> Bi, > 1071/2 very slight evidence against Mj;

10~1/2 > Bf, > 107! moderate evidence against M;;

10~! > Bf, > 1072  strong to very strong evidence against M;
1072 > B, decisive evidence against Mj.

3.1. Comparison with Classical Tests

In this subsection, we shall summarize the p-values of standard tests and
corresponding values of P(M;|D) and the default Bayes factor obtained from
(15), (16) and (17). The standard tests considered here are the usual F-test
and Box’s M-test for the following Case 1 and Case 2, respectively.
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Case 1: Univariate Normal Case; test for equality of covariances.

Table 1 gives Bf, and P(M,;|D) for various p-values of the standard F-statistic
and v = n; = ny (B{, and P(M;|D) being chosen from (17) to correspond
to the indicated p-value). As having been well known, the conflict between
p-values and P(M;|D) ( and BY{,) is noted and is marked with asterisk. If
v = 60 and F' = 1.67, one can classically reject the modelM; at significance
level p = .05, although P(M;|D) = .5787 which would actually indicate that
the evidence favors M;. For practical examples and discussions of this conflict
see Jeffreys (1961) or Berger and Sellke (1987).

Table 1. P(M;|D) and B}, equivalents of F in (17),
where p-value = P(F,, > F).

v

p-value values 5 10 20 30 60 120
.10 P(M,|D) .3763 .4826  .5821  .6329 .7155 .7810
Bf, 6033 .9327 13932 1.7243 2.5155 3.5663

F 505 298 2.12 1.87 1.53 1.35

05 P(Mi]D) .2449 .3394 4379 4938  .5787*  .6700*
B, 3244 5138 7790 9756 1.3738* 2.0312*

F 715 3.72 2.46 2.07 1.67 1.43

01 P(M,|D) .0671 .1065 .1555  .1885 .2562 .3201
Bf, 0719 .1192  .1842  .2322 .3445 4710

F 149 585 3.32 2.63 1.96 1.61

Case 2: Multivariate Normal Case; test for equality of
covariance matrices.

Table 2 give p-values of the standard Box’s M-test statistic corresponding
to critical values of the Bayes factor (15) for various values of N; = N,. It
has shown by Box (1949) that a close approximation to the distribution of A
under M, is given by

P(-ah < t) = P(X*(f) < ) +6{P(*(f +4) <)~ POA(S) < t)}+0((N—2)(_3)5
18
where

a—1—zzj 1 1 \2p°+3p—1



A Bayes Criterion for Testing Covariances

b = I—’%%zl—){(p—-l)(p+2) (g (N11—1)2 - (ijy) ‘6(1—(1)2}’

f=(p+1)p/2, and t = —ax (A statistic value).

The correspondence between Bf,, P(M;|D) and p-value of Box M-test
statistic may be roughly summarized as follows. For moderate values of total
sample size, critical values 107%/2, 10!, and 102 of the Bayes factor corre-
spond to less than p-value=.04 of the M-test statistic. In all cases, for large
experiments evidence at a very high significance level is required for the Bayes
factor to favor strongly the more complex hypothesis. The phenomenon is
related to the ”Lindley paradox”, discussed in detail in Lee (1988). It is easy
to check that Table 1 also reveals this phenomenon. In general, the Bayes
factors provide an automatic assessment of significance, taking into account
the size and structure of the experiment. For very small experiments, the use
of the imaginary training sample approach has not been fully justified (cf.
Spiegelhalter and Smith 1982), and hence we drop the case in this numerical
study.

Table 2. p-values of Box M-Test for Ny = N, = N*.
©

I T
By By

p N* 1 10°Y2 01 001 p N* 1 1072 0.1 0.01
3 10 .128 052 021 .003 4 10 .395 268 .174 .066

15 .063 .024 .009 .001 15 .087 .048 .026 .007
20 .039 .024 .005 .000 20 .025 .013 .006 .001
30 .019 .007 .002 .000 30 .004 .001 .000 .000
3 10 .201 .108 056 .014 5 10 .609 490 .284 .159
15 .062 .029 .013 .002 15 .159 .103 .065 .023
20 .026 .011 .005 .000 20 .034 .019 .001 .003
30 .008 .003 .001 .000 30 .002 .001 .001 .000

3.2. Simulation Study

The goal of this subsection is to study the performance of the suggested
test criterion in Proposition 1 by means of simulation study. Based upon
the simulated data, the posterior probability P(M;|D) is compared with the
corresponding p-value of Box’s M test under the default prior values m =
Ty =— 1 / 2.

Our SAS/IML program generated sample of size Ny, say Dy, from each
population Iy, k = 1,2, calculated P(M;|D) and p-value of Box’s M test,
where D = (D, D;). Each experiment consisted with 100 replications under

19
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the following distributional assumptions. The population conditional distri-
butions, in this study, were defined as follows. Since a linear transformation
leaves the criterion and Box’s M test statistic invariant, there is no loss of
generality in considering the case IT; ~ N,(0,I) and II; ~ No(4,I + aA).

Table 3. Simulation Result with N; = N, = 30 and m=1.

p=2 p=4
d=2 d=4 d=2 - d=4
a  Pr(Mi|D) pvalue Pr(M|D) pvalue Pr(Mi|D) p-value Pr(M;|D) p-value
.00 .920 .568 920 .568 999 511 .999 511
(.146) (.286) (.146) (.286) (.004) (.236) (.004) (:236)
.01 922 .586 .926 .538 .999 .509 .999 473
(.144) (.286) (.137) (:291) (.003) (.262) (.001) (:264)
.05 .926 .553 .759 .168 .999 .489 .968 137
(.138) (.289) (:291) (.199) (.001) (.026) (.135) (:203)
1 923 .508 .261 .009 999 442 .538 .005
(.141) (.293) (-328) (.024) (.001) (.266) (:432) (.019)
2 .887 370 .000 .000 997 311 .004 .000
(.181) (.284) (.003) (.000) (.018) (:269) (.029) (.000)
.3 .811 .222 .000 .000 982 187 .000 .000
(.257) (-234) (.000) (.000) (.099) (:234) (.000) (.000)
4 .697 121 .000 .000 .947 .097 .000 .000
(.318) (.162) (.000) (.000) (.180) (.168) (.000) (.000)
.5 .551 .056 .000 .000 874 .043 .000 .000
(.355) (.097) (.000) (.000) (.273) (.102) (.000) (.000)
6 .397 .023 .000 .000 715 .016 .000 .000
(.356) (.051) (.000) (.000) (.373) (.050) (.000) (.000)
7 .261 .009 .000 .000 .538 .005 .000 .000
(.318) (.024) (.000) (.000) (.432) (.019) (.000) (.000)
.8 .158 .003 .000 .000 371 001 .000 .000
(.261) (.010) (.000) (.000) (.430) (.005) (.000) (.000)
R .088 .001 .000 .000 .257 .000 .000 .000
(.194) (.003) (.000) (.000) (-387) (.001) (.000) (.000)
.95 .063 .000 .000 .000 .201 .000 .000 .000
(.160) (.002) (.000) (.000) (.345) (.000) (.000) (.000)
.99 .048 .000 .000 .000 .159 .000 .000 .000
(.134) (.001) (.000) (.000) (.315) (.000) (.000) (.000)
1.0 044 .000 .000 .000 .150 .000 .000 .000
(.127) {.001) (.000) (.000) (.308) (.000) (.000) (.000)

Here, a (0 < a < 1) is a mixing proportion designed to define the de-
gree of homo/heterogeneity of the two covariance matrices associated with
the distributions of II; and II,. Thus, for given A, @ = 0 and o = 1 denote
the homogeneity and the most heterogeneity between the two covariance ma-
trices, respectively. This canonical form is obtained from the transformation
suggested by Dunn and Holloway(1967);

Y = ASTY(Z - ), (19)

where A is an orthogonal matrix such that A'2;1/222>:;1/2A =I+4+aA, a
diagonal matrix. Therefore, for given «, parameters involved in this study
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are confined to § and A combinations:
A = diag(d,...... ,d), &= (m(1+d"?),o0,...,0).

In selecting values of §, we introduced a parameter m as a measure of the
degree of separation of two populations to ensure a particular distance be-
tween the populations for any choices of d and é. m is defined as the Euclidean
distance from the mean of II; to the best linear discriminant hyperplane of
the two populations(for details see Marks and Dunn(1974)). Thus parame-
ters that are varied in this study include distance between the populations
(m), covariance matrices (A), number of dimensions (p), and mixing propor-
tion (a). Table 3, summarizing the 100 replications of the simulation with
N; = N, = 30 and m=1, present the average of the posterior probabilities,
Pr(M; |D)’s and p-values. Their standard deviations are given in the paren-
theses. The simulation results with other values of Ny, NV, and m revealed
the same implications as Table 3, and hence we eliminated them from the
presentation.

It is noted from the table that the posterior probability of M; obtained
from (16), is consistent with the probability value of Box’s M test. Moreover,
the table conveys the same informations as those in Table 2.

4. CONCLUDING REMARKS

We have suggested a development of the imaginary training sample method
introduced by Spiegelhalter and Smith (1982). The development is pertain-
ing to the comparison of homo/heteroscedasticity of the multivariate normal
covariances. The appeal of the method is that it provides a simple method
for evaluating a value for the arbitrary constant attached to the Bayes factor
( using improper prior distributions) to coming at a Bayes test criterion. It
is seen that the Bayes factor so obtained is expressed as a function of clas-
sical test criterion. Using numerical studies, we compare the suggested test
criterion with p-value of a classical test criterion. The study notes that the
criterion generally gives more conservative critical value than the classical
test does. Thus, this study can be taken as an another illustration of the
result by Berger and Sellke (1987).

Suggested Bayes factor for the comparison of homo/heteroscedasticity
of several multivariate normal covariances can be applied for incorporat-
ing model uncertainty for many multivariate techniques such as discriminant
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analysis and MANOVA. A study pertaining to these applications are not
unimportant. It is left as a future study of interest.
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