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ABSTRACT

Given a set of data px/N; matrices X; observed from p-variate normal populations IL~N(y,
%) for i=1, ..., K, the test for equality form of the covariance matrices is to choose a
hypothetical model which best explains the homogeneity/heterogeneity structure across the
covariance matrices among the hypothesized class of models. This paper describes a test
procedure for selecting the best model. The procedure is based on a synthesis of Bayesian
and a cross-validation or sample reuse methodology that makes use of a one-at-a-time schema
of observational omissions. Advantages of the test are argued on two grounds, and illustrative
examples and simulation results are given.

1. introduction

Let {x}, 7=1, ..., Ni: i=1, ..., K, be p-variate observations from i-th multivariate normal
population N (;, .), where parameters are unknown. Then the test of the hypothesis H : X,="--
=Zk is called as testing for equality for covariance matrices. The test strategy is not uniquely
defined, leading to a confusion of riches. Since Bartlett(1937) suggested a likelihood ratio test
statistic modified for unbiased estimates, Roy(1957), Nagao(1973), Perlman(1980), and Gupta
and Tang(1984) among others, proposed several testing procedures.

As in the most inferences, the rejection or acceptance of the hypothesis H is only the first
step in the inference of the covariance matrices. When it is rejected, it is usually of interest
to know the reason the null hypothesis was rejected and to establish true homogeneity/heteroge-
neity relationships among the subgroups of the covariance matrices(multiple homogeneities).
However, a test which resolves this second step has not been seen yet. Our object of this study
is to construct a test which simultaneously achieves first and second steps of the inference.

This paper introduces and studies yet another test procedure, and place it as an alternative
approach. The methodology involved in the test is similar to that of Geisser and Eddy(1979),
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Stone(1974) and Allen(1974) and is based on the reuse of the sample to estimate the likelihood
function of interest. It uses a generalized version of predictive sample reuse(PSR) quasi-Bayes
criterion. Application of the criterion to our problem can be well justfied by the works of Murray
(1977), Ng(1980), and Larimore(1983). Advantages of the suggested test are argued on two
grounds. First, it is a method that simultaneously takes account of a set of all possible alternative
hypotheses. Secondly, it is a criterion which involves direct comparison of quasi-Bayes likelihoods
under each hypothesis. It is shown that this criterion is asymptotically equivalent to Akaike’s
criterion.

In the next section we formulate a multivariate version of the predicitive sample reuse quasi-
Bayes criterion first suggested by Geisser and Eddy(1979). In Section 3 the generalized version
is applied to construct the test procedure for the equality form of the covariance matrices under
the multivariate normal distribution assumption. Some test strategies and asymptotic properties
of the test are also discussed. Section 4 gives illustrative examples and simulation results to
depict the advantages of the suggested test. Finally, in Section 5, concluding remarks including
some further research topics of interest, related with this test are given.

2. A Quasi-Bayes Likelihood Criterion

If the process generating observations is random and the models M;, §=1, *-*, 7, are specified
up to a known distribution function Fs( - | M), then the likelihoods under the alternative models
can be ranked and the most likely model for the process, given the data, can be chosen. But
usual statistical model identification problems are not this simple. At least they involve the model
M; only specifies the sampling distribution up to a set of unknown parameters 0;. Geisser and
Eddy(1979) offered a synthesis of Bayesian and sample reuse approach to those problems. The
criterion is to choose a model which maximizes the joint conditional predictive densities of the
observations, and is named as the predictive sample reuse(PSR) quasi-Bayes likelihood criterion.
This criterion can be extended to the problem of a multivariate model identification, and is
constructed as follows.

Let YD =[y» ... 3-1» ¥+1» ..., yn] represents a px(N—1) data matrix Y with the j-th obser-
vation vector y; omitted, and assume that Y are generated from one of models M; with distribution
F(- 16 M), 8=1, ..., r with 8; unknown. Suppose that f(y | ¥, z, M;) is the Bayesian
predictive density for a future observation y when M; is true:

fo 1Yy 2 M) e [£5 100 2 M) [1fGi1 0 20 M) P@IAB (D)
=1

8=1y ey ¥,

where 2, z1, ..., zv denote associate covariates of the corresponding observations and P(8s)
is an invariant vague prior of the model M;. When the given density (1) is modified so that £(y; |
Y, z, M) is taken as the Bayesian predictive density for y;, we can construct the product
of the predictive densities of y;, =1, ..., N:

Lazlﬂ[ﬁ(Yj I Y(]), Zjs Ma)’ a=1, ..., 7. (2)
=1
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It is obtained by a sampie reuse methodology that makes use of a one-at-time schema of observatio-
nal omissions(the cross-validation method). Geisser and Eddy(1979) showed that (2) can be
used as an estimate of the likelihood for independent y, j=1, ..., N.

N
g(Y ] Z, Ms):Hg,(y, I Zjs M8)9 6=1, ..., 7, (3)
=1

where Z=[z;, ..., zx].
We call (2) as the PSR quasi-Bayes likelihood of Ms, and the PSR quasi-Bayes criterion is
to choose a model M,. which associates with the value 8%, satisfying

L8*=Max (Lh LZ’ veey -Lr) (4)

as the most appropriate of the models being considered.

When we have M; s that describe multivariate normal populations, the PSR quasi-Bayes crite-
rion can be readily applicable to the problem of seleting the best model among them. For estimating
a multivariate normal denstities, the use of the Bayesian predictive density with vague prior
as a surrogate for the sampling density was suggested by Aitchison(1975), and Murray(1977)
and Ng(1980) demonstrated its superiority for the estimation of the multivariate normal distribu-
tion, based on the Kullback-Liebler information measure. They noted that for the case of devising
an estimation method for the multivariate normal density, the choice of minimizing the negentropy
in the class of invariance distributions coincides with the Bayesian predictive density using the
vague prior. Hence, under the multivariate normal distribution assumption, the PSR criterion
can be viewed as 2 mode! identification criterion based on a quasi-likelihood principle in a sense
that it makes explicit use of the likelihood princlple to the PSR quasi-Bayes likelihoods of M;
for the identification.

3. A Multiple Homogeneity Test

When we have K multivariate normal populations and we are interested in determining the
homogeneity/heterogeneity structure among the K population covariance matrices, usual likeli-
hood ratio test cannot resolves this problem. Here we suggest a test procedure to solve this
problem(multiple homogeneity test) and its properties are studied.

3.1 Test Criterion

Let Xi=[x4, ..., za] be pXN; data matrix from i-th population, :=1, ..., K, with den-
sity

1 p
N w ZT)=Qm) 2| x| 2 axp{—j(x-w) = G- wi (5)

Suppose, however, that there are r possible underlying populations models :

M, 5= =2 (6)
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M, I i3, Xi=3=- =X
M, Z£%, for all i+,

the problem of selecting a model which best explains a given set of data is the same as the
selecting the homogeneity/ heterogeneity structure which exists across the K population covariance
matrices. The number of ways to partition K population covariance matrices into m homogeneous
groups are a Stirling number of the second kind,

Se(m)= £ (=D Aj 1 m=) 1} @

Thus the total numbers of possible models with K populations can be formidable :

7 =X Selm), (®

m=1

for example, for K=3, there are r=>5; for K=5, there are r=52. Nonetheless, the PSR criterion
for any intermediate model can be computed.

Suppose that the K populations are, in sequence, grouped into m homogeneous covariance
matrix groups. Then the corresponding model, say M., can be expressed as

M. Z= =2y, Zaa= " TTpitszs eer Zux = =X, (9)
where k*= X ki K= Z), ki

If we let X; and S; be unbiased sample mean and covariance matrices of i-th population, under
the usual vague prior

P(u, =) o« | X 07072, (10
the following predictive density for M. is found(Cf. Geisser, 1964) :

f 1 X, 2o MO = SN =k X (N+1DSK)/ND, (1D

i=a,.., b®, t=1,.., ,m,

where X=[X, | - | X¢J, is p x N augmented total sample matrix, and z denotes an indicator
covariate specifying one of K possible sampling distributions, and where
b(y) K

t—1 '
a®=Z ktl, b(t)=_§1k,-, N®=ZX No N=Z N
= = i=

i=alt
and S(k)==0, (N—1S/(N® —k).

Here St,(a, b, C) denotes a p-dimensional variate t density function defined on Y=RK’ by
the density at y (Cf. Press, 1982)
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T{le+ /2
{a—p+1)/2}

~(e+D/2

2 | aC V2 {1+ (= b) (@) "'y =)} (12

If we write X (§j) for the data matrix X with j-th observation vector x; from i-th population omitted,
according to (2), the PSR quasi-Bayes likelihood of M. can be expressed as a product of the
multivariate t densities -

f{f__[ Fl | XGj)y 2w M) 13)

»(1) N;

f[ I 1T sev0—k=1, XG). NS*B/W-D).  (18)

a(d) j=

where

1 @
x(H= N—1 =%

110

S* (k)= W e i {Wv.— 1)S+Z (=X =X)L,

and Z,(j) represents the sum over all values s except for j.

L+ can be used to construct the PSR quasi-Bayes likelihood of any possible model considered
in (6). This can be done by changing the subscripts of the statistics(sample covariance matrix,
sample mean, etc.) involved in a model of interest in conformance with those of M.. For example,
the model M, in (6) may be the same as M., if we interchange the subscripts of those from
population 1 and popultaion 2, and set k=1 and k.=K—1 in the expression of M.. Under
these changes, (13) gives the PSR quasi-Bayes likelihood of the subscript changed version of
the model M.. Upon restoring the subscripts in the quasi-Bayes likelihood in conformance with
original M., we get

Hs:, -2, X.(7), NS/ (N,—2)}x (15)

1 I StN®—k—1. TG, NS* G/ Ni—D},

i=1,i2 j=1

where N(=Z_, ., N., &=K—1, and
S = Fp=p=i |, W DSAE XD w-XO L

u#2

Similarly, L; and L. of the models M, and M, in (6) can be obtained from (13) by letting
k=K, k:=-=k,=0 and k1=--=k,=1, respectively.

Once we calculate the PSR quasi-Bayes likelihoods of all possible models in (6) from (13).
the PSR quasi-Bayes likehood criterion chooses the best model which have the largest of L,
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..., L.. Such that our test criterion is to choose a model which have
Maxi{L,, ..., L} (16)

as the best underlying model of all the poosible multiple homogeneity models. When the total
number of possible models is too large for enumeration, an interesting subest should be chosen,
and an appropriate model should be selected from the limited subest. This method can be done
successively, using a stepwise enumeration methodology, to choose a sub-optimal model.

3.2 Asymptotic properties

Stone(1977) derived a result which is of interest here. He showed that, under a key assump-
tion, the sample reuse criterion based on the cross-validation is asymptotically equivalent to
the Akaike(1973) information criterion assuming maximum likelihood is used within each model.
Using the similar procedure as in Stone’s derivation, we can derive an asymptotic property
of PSR quasi-Bayes likelihood criterion. Specifically, the PSR quasi-Bayes likelihood under the
general model M. is a product of multivariate t densities :

m o) N; _ N:
L=TT I1 I seMN®W~-k—1, XD, =7 S" ), an

=1 i=a(® j=1

as in (13). With the same notations in (9), if M. is true, the log-density assessment(log of
the PSR quasi-Bayes likelihood) log L. converges to
A=xlog &G, Sik). (18)

t.1,

which is the sum of log of the multivariate normal densities 1,( * ), where Si(k)=5"(E){(N ()
—k—1)/(N-—1)} (Cf. Press, 1982, p.142). Without loss of generality, we omit subscript t
from the notation, and we write I( * ) for log n,( - ) and ¢(—if) to be a vector which denotes
the reconstructed vector form of $X:(7), Si(k)} involved in A. Then A can be expressed as

A= ;jl(x,-,- | &(—i), M.). 19

Let us write the true log-likelihood of M as

(D, M)= )I:.jl(x,-,» F oD, M), (20)

where ®={U%, ¢D}={¢1, ..., dus} @ an open region of R*, with ¢(2) denotes the vector
form of i-th multivariate normal population parameter, {1 =}. Here d« denotes total number
of parameters in the K multivariate normal populations.

With 2(®, M.), let define & and ®-; as the unique solutions(MLEs) of

E’((I), Mt) =0
and
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(®, M)~ 0G), M)=0

~ k A
respectively, so that ®-; = L=J1¢(—ij) denotes MLE of the M. under the data information X (i)

defined in (13).
If we write

. (81 olNT /01 )

%6 o) U 56 a6, @

by Taylor’s theorem, we have

A=L(d, M)+ z OC=i) =T I x5 | &G +ao(—i) — oD} (22

and
0(p MI=Z x5 | &) +bi(d(—i) —dGNHo(—i) — (D) @23
with | a; | <1, |8;1 <1.
Also we get
(B, M)=ICxy | 6(—if), Ms). (24)
Above relations, (22), (23), and (24), give
A=0d, M)+ e (=), M7 (25)

[;j " | 6@ +05(0(— i) =@M 1y | 0G) +as(@(—1) — o)}

Since we can expect the following approximations :
1) 6@ - ¢ as N = o
(2) $(—i) > ¢(&) as N; > o for all i and j;

(3)

M =

i=1

r4

i

1 N
N 2= " %5 | ¢(z)+b;,(¢( i) — ¢(z))}]—’E{l"(xu s xx | @, M*)}sz, say
_1_

1 Ni

”{xi,» I (T)(l) +dq($(_l]) —&;(z))}l’(x,, | a)('_l]>, M*)T

IIMx

@

uM

E{l,(Xh sees XK I @, M*)l’(xb erey XKI ®’ M*)T} = L, say,

where I(xs, ..., x« | ®, M.) denotes the joint log-density of K popuations under Ms, we have,
using the well-known identity L,(=L, ', estabilished that log of L. in (17) is asymptotically
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2(d, M.)+trace(L;'L)=2L(d, M.) + d.. (26)

This is identical to Akaike’s(1973) criterion when the missing t’s are restored.
If we condsider two models M;, My, of type (6) are nested so that

Ms © My @27
and suppose that both are true, then it is well known that, under regularity conditions,
2{2 (68" MS') - e(&)s, M&)} (28)

is asymptoticall Chi-square with d=ds—ds degrees of freedom, where di and ds denote respective
dimensions of parameter space of My and M;. This gives, by (26), that the difference between
two PSR log-quasi-Bayes likelihoods logLs—logLs is asymptotically 5 oC,—d.

Hence considering the mull hypothesis that M; is true versus the alternative that Ms is true,
the quasi-Bayes likelihood criterion has an asymptotic significance level

a = Pr(og > 2d). (29)

4. Numerical Examples

In this section we give limited data examples and simulation results to show the advantages
of the suggested test procedure over the likelihood ratio test. As shown before, since the PSR
quasi-Bayes likelihood criterion is asymptotically equivalent to Akaike criterion, our prime interest
in the following examples are the behavior of the suggested test under small and moderated
sample sizes.

4.1 Data Example

To illustrate the use of the PSR criterion, two examples are presented. For each example,
under the multivariate normality assumption, the criterion is compared with the Box’ s$(1949)
approximation result for the usual likelihood ratio test. The data which follow are “Remote Sensing
Data” from SAS/STAT guide. They are grouped into three crops - Corn, Soybean, and Cotton.
Four measures of them are denoted yi, ..., y, which make up the descriptive variables :

Table 1. Remote Sensing Data

Variables Sample 1(Corn) Sample 2(Soybean) Sample 3(Cotton)
»n 16 15 16 18 15 15 12 20 24 21 27 12 22 31 29 34 26 53 34
Yo 27 2327201532 15 23 24 25 45 13 32 32 24 32 25 48 35
¥3 313027253132 16 23 25 23 24 15 31 33 26 28 23 75 25
2 33 30 26 23 32 15 73 25 32 24 12 42 43 34 28 45 24 26 78

Example 1. For sample 1 and sample 2, the log values of the PSR quasi-Bayes likelihoods,
log L, were computed under the two alternative models :
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M, X,=2%, M ZHEZz.

They are computed as logL:;= —187.20128 and logL,= —224.8175. The PSR criterion clearly
opts for model M,, where X,=%,. In this two populations test case, the likelihood ratio test
does permit comparison of the two models. The comparison of M. and M, yields the likelihood
ratio test statistic value of 15.258468 for Chi-square statistic with 10 degrees of freedom. Since
p-value for the test is 0.1229, the test does not reject Mi. Thus we can see that suggested
test and the likelihood ratio test lead to the same choice: M.

Example 2. For testing the equality form of the three group covariance matrices a total of
five possible models can be assumed. The possible models are as follows :

M, 2= 2= X
M 2, =2#%,;
M, X, =2:+#2,
Ms:21¢22=23
M, 2+ X, # 3.

Log values of the corresponding PSR quasi-Bayes likelihood under the five models, M to
M, are logL,= —289. 243, logL= —284.389, logLs= —313.749, logLs= —303. 044, logL,;= —321.
088. Thus the PSR criterion choose the model M; as the most appropriate of the five models
being consdiered.

However, the likelihood ratio test does not permit direct comparison of the five models. Instead
following conditional test may be possible. As given in example 1, the comparison of M: and
M., does not reject the null hypothesis M,. Conditional on this result, the likelihood ratio test
for M; yields a value of 39.334515 for the Chi-square statistic with 20 degees of freedom. Now
the null hypothesis is easily rejected(p-value=0.0061). This means that the PSR test procedure
and the conditional hypothesis test lead to the same choice, M,. Hence, example 2 shows that,
unlike the likelihood ratio test, the PSR test procedure makes the selection directly.

4.2 A simulation Study

The aim of this study is to show the suggested PSR test criterion gives good test result.
For the study we consider 7 simulation situations with three populations IL~N,(w =), i=1,2,3,
with X,#X,=3%;=3. Using a non-singular linear transformation H such that HZH=I, and
H>H =D,, diagonal matrix, 30 samples for each of simulation characterized by the set

{ph Hes  M3» H9 D, P: N1:N2=N3=j}

were generated. Table 2 provides details of the simulation situations.
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Table 2. Simulation Situations

p J H D W Ha Ms
3 5,10,20 @3 D; me Uaa) M@
5 10, 20 Qs Ds Hics) Hacs) Ma(s)
7 10, 20 Q D M ) Vs

Note : D=diag(2, 3, 4, 5, 6, 7, 8,), Q is the same matrix used in Press(1982, p.275).
D; and @, =3, 5, denote principal submatirces with first i diagonal elements of D and H respecti-
vely. mo, Maw, and psw are iX1 subvectors composed of first i components of u,=(0, —3,
0, =3, 0, =3, 00", w=(-3,5 —3,5 —3,5 -3, and u:=(, 1, 1, 1, 1, 1, D),
respectively.

Under this simulation scheme, we assume that our interesing subset of models are M.(true
model) and M, ;

M, 2, #2,= 2,
M, 2 #Z, % Ss.

Hence, it will be sufficient to compare M. and M, to show the perfomance of the PSR
quasi-Bayes criterion. The PSR quasi-Bayes likelihoods for the models are calculated for each
sampling experiment. The resulting everaged values of log-quasi-Bayes likelihoods are given
below.

Table 3. Averaged Values of Log-Quasi-Bayes Likelihoods(AQL)

P 3 5 7

J 5 10 20 10 20 10 20
AQL M, —121.145 —227.351 —423.480 —369.070 —659.595 —503.970 —897.490
AQL M, —154.151 —232.642 —427.566 —392.100 —688.643 —585.010 —931.170

As expected, in this table, uniformly larger values of the PSR quasi-Bayes likelihoods for M,
indicate that the criterion works well for detecting a best model among considered.

5. Concluding Remarks

In this paper a Bayesian predictive sample reuse approach to the problem of testing the multiple
homogeneities of the multivariate normal covariance matrices has been suggested. We show
that the suggested testing method is different from the usual likelihood ratio test in that it enables
us to test all possible homogeneity/heterogeneity forms of the multivariate normal covariance
matrices. Limited examples of Section 4 depict this fact and advocate the suggested test.

The PSR quasi-Bayes likelihood criterion is shown to be asymptotically equivalent to Akaike’s
criterion, and hence asymptotic significance level of the suggested test between two nested models
comes out to be a = Pr((,> 2d), where d denotes the difference in numbers of unknown
parameters between the two models. However, the issues of more developments pertaining
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to the small sample behavior of the significance level are not done here and left for continuing
study.

As pointed out before, when the number of populations to be considered takes large value,
the number of all possible homogeneity/heterogeneity multivariate normal covariance matrices
models becomes enormous. In this case, it is inevitable to devise a systematic method which
makes the application of the suggested test simple. For this aspect, a stepwise procedure for
the suggested test is being in study.

Applications of the suggested test to the multivariate models are appreciable. A model to which
the test may be immediately applicable is the discriminant analysis model.
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