• 제목/요약/키워드: convolution Product

검색결과 102건 처리시간 0.025초

CONDITIONAL INTEGRAL TRANSFORMS OF FUNCTIONALS ON A FUNCTION SPACE OF TWO VARIABLES

  • Bong Jin, Kim
    • Korean Journal of Mathematics
    • /
    • 제30권4호
    • /
    • pp.593-601
    • /
    • 2022
  • Let C(Q) denote Yeh-Wiener space, the space of all real-valued continuous functions x(s, t) on Q ≡ [0, S] × [0, T] with x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. For each partition τ = τm,n = {(si, tj)|i = 1, . . . , m, j = 1, . . . , n} of Q with 0 = s0 < s1 < . . . < sm = S and 0 = t0 < t1 < . . . < tn = T, define a random vector Xτ : C(Q) → ℝmn by Xτ (x) = (x(s1, t1), . . . , x(sm, tn)). In this paper we study the conditional integral transform and the conditional convolution product for a class of cylinder type functionals defined on K(Q) with a given conditioning function Xτ above, where K(Q)is the space of all complex valued continuous functions of two variables on Q which satify x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. In particular we derive a useful equation which allows to calculate the conditional integral transform of the conditional convolution product without ever actually calculating convolution product or conditional convolution product.

GENERALIZED SEQUENTIAL CONVOLUTION PRODUCT FOR THE GENERALIZED SEQUENTIAL FOURIER-FEYNMAN TRANSFORM

  • Kim, Byoung Soo;Yoo, Il
    • Korean Journal of Mathematics
    • /
    • 제29권2호
    • /
    • pp.321-332
    • /
    • 2021
  • This paper is a further development of the recent results by the authors on the generalized sequential Fourier-Feynman transform for functionals in a Banach algebra Ŝ and some related functionals. We investigate various relationships between the generalized sequential Fourier-Feynman transform and the generalized sequential convolution product of functionals. Parseval's relation for the generalized sequential Fourier-Feynman transform is also given.

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION

  • Jae Gil Choi;Sang Kil Shim
    • 대한수학회보
    • /
    • 제60권5호
    • /
    • pp.1221-1235
    • /
    • 2023
  • In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH VECTOR-VALUED CONDITIONING FUNCTION

  • Ae Young Ko;Jae Gil Choi
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권2호
    • /
    • pp.155-167
    • /
    • 2023
  • In this paper, we use a vector-valued conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functionals which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.

CONDITIONAL TRANSFORM WITH RESPECT TO THE GAUSSIAN PROCESS INVOLVING THE CONDITIONAL CONVOLUTION PRODUCT AND THE FIRST VARIATION

  • Chung, Hyun Soo;Lee, Il Yong;Chang, Seung Jun
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1561-1577
    • /
    • 2014
  • In this paper, we define a conditional transform with respect to the Gaussian process, the conditional convolution product and the first variation of functionals via the Gaussian process. We then examine various relationships of the conditional transform with respect to the Gaussian process, the conditional convolution product and the first variation for functionals F in $S_{\alpha}$ [5, 8].

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT OVER WIENER PATHS IN ABSTRACT WIENER SPACE: AN Lp THEORY

  • Cho, Dong-Hyun
    • 대한수학회지
    • /
    • 제41권2호
    • /
    • pp.265-294
    • /
    • 2004
  • In this paper, using a simple formula, we evaluate the conditional Fourier-Feynman transforms and the conditional convolution products of cylinder type functions, and show that the conditional Fourier-Feynman transform of the conditional convolution product is expressed as a product of the conditional Fourier-Feynman transforms. Also, we evaluate the conditional Fourier-Feynman transforms of the functions of the forms exp {$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}$\Phi$($\chi$(T)), exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}$\Phi$($\chi$(T)) which are of interest in Feynman integration theories and quantum mechanics.

MULTIPLE Lp FOURIER-FEYNMAN TRANSFORM ON THE FRESNEL CLASS

  • Ahn, J.M.
    • Korean Journal of Mathematics
    • /
    • 제9권2호
    • /
    • pp.133-147
    • /
    • 2001
  • In this paper, we introduce the concepts of multiple $L_p$ analytic Fourier-Feynman transform ($1{\leq}p$ < ${\infty})$ and a convolution product of functionals on abstract Wiener space and verify the existence of the multiple $L_p$ analytic Fourier-Feynman transform for functionls in the Fresnel class. Moreover, we verify that the Fresnel class is closed under the $L_p$ analytic Fourier-Feynman transformation and the convolution product, respectively. And we establish some relationships among the multiple $L_p$ analytic Fourier-Feynman transform and the convolution product on the Fresnel class.

  • PDF

$L_1$ analytic fourier-feynman transform on the fresnel class of abstract wiener space

  • Ahn, Jae-Moon
    • 대한수학회보
    • /
    • 제35권1호
    • /
    • pp.99-117
    • /
    • 1998
  • Let $(B, H, p_1)$ be an abstract Wiener space and $F(B)$ the Fresnel class on $(B, H, p_1)$ which consists of functionals F of the form : $$ F(x) = \int_{H} exp{i(h,x)^\sim} df(h), x \in B, $$ where $(\cdot, \cdot)^\sim$ is a stochastic inner product between H and B, and f is in $M(H)$, the space of complex Borel measures on H. We introduce an $L_1$ analytic Fourier-Feynman transforms for functionls in $F(B)$. Furthermore, we introduce a convolution on $F(B)$, and then verify the existence of the $L_1$ analytic Fourier-Feynman transform for the convolution product of two functionals in $F(B)$, and we establish the relationships between the $L_1$ analytic Fourier-Feynman tranform of the convolution product for two functionals in $F(B)$ and the $L_1$ analytic Fourier-Feynman transforms for each functional. Finally, we show that most results in [7] follows from our results in Section 3.

  • PDF

CONDITIONAL FORUIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT FOR A VECTOR VALUED CONDITIONING FUNCTION

  • Kim, Bong Jin
    • Korean Journal of Mathematics
    • /
    • 제30권2호
    • /
    • pp.239-247
    • /
    • 2022
  • Let C0[0, T] denote the Wiener space, the space of continuous functions x(t) on [0, T] such that x(0) = 0. Define a random vector $Z_{\vec{e},k}:C_0[0,\;T] {\rightarrow}{\mathbb{R}}^k$ by $$Z_{\vec{e},k}(x)=({\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;e_1(t)dx(t),\;{\ldots},\;{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;ek(t)dx(t))$$ where ej ∈ L2[0, T] with ej ≠ 0 a.e., j = 1, …, k. In this paper we study the conditional Fourier-Feynman transform and a conditional convolution product for a cylinder type functionals defined on C0[0, T] with a general vector valued conditioning functions $Z_{\vec{e},k}$ above which need not depend upon the values of x at only finitely many points in (0, T] rather than a conditioning function X(x) = (x(t1), …, x(tn)) where 0 < t1 < … < tn = T. In particular we show that the conditional Fourier-Feynman transform of the conditional convolution product is the product of conditional Fourier-Feynman transforms.

ANALYTIC FOURIER-FEYNMAN TRANSFORMS ON ABSTRACT WIENER SPACE

  • Ahn, Jae Moon;Lee, Kang Lae
    • Korean Journal of Mathematics
    • /
    • 제6권1호
    • /
    • pp.47-66
    • /
    • 1998
  • In this paper, we introduce an $L_p$ analytic Fourier-Feynman transformation, show the existence of the $L_p$ analytic Fourier-Feynman transforms for a certain class of cylinder functionals on an abstract Wiener space, and investigate its interesting properties. Moreover, we define a convolution product for two functionals on the abstract Wiener space and establish the relationships between the Fourier-Feynman transform for the convolution product of two cylinder functionals and the Fourier-Feynman transform for each functional.

  • PDF