Browse > Article
http://dx.doi.org/10.11568/kjm.2021.29.2.321

GENERALIZED SEQUENTIAL CONVOLUTION PRODUCT FOR THE GENERALIZED SEQUENTIAL FOURIER-FEYNMAN TRANSFORM  

Kim, Byoung Soo (School of Liberal Arts, Seoul National University of Science and Technology)
Yoo, Il (Department of Mathematics, Yonsei University)
Publication Information
Korean Journal of Mathematics / v.29, no.2, 2021 , pp. 321-332 More about this Journal
Abstract
This paper is a further development of the recent results by the authors on the generalized sequential Fourier-Feynman transform for functionals in a Banach algebra Ŝ and some related functionals. We investigate various relationships between the generalized sequential Fourier-Feynman transform and the generalized sequential convolution product of functionals. Parseval's relation for the generalized sequential Fourier-Feynman transform is also given.
Keywords
generalized sequential Feynman integral; generalized sequential; Fourier-Feynman transform; generalized sequential convolution product; generalized first variation; Parseval's relation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.M. Chung, C. Park and D. Skoug, Generalized Feynman integrals via conditional Feynman integrals, Michigan Math. J. 40 (1993), 377-391.
2 T. Huffman, C. Park and D. Skoug, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), 247-261.
3 K.S. Chang, D.H. Cho, B.S. Kim, T.S. Song and I. Yoo, Relationships involving generalized Fourier-Feynman transform, convolution and first variation, Integral Transform. Spec. Funct. 16 (2005), 391-405.   DOI
4 K.S. Chang, D.H. Cho, B.S. Kim, T.S. Song and I. Yoo, Sequential Fourier-Feynman transform, convolution and first variation, Trans. Amer. Math. Soc. 360 (2008), 1819-1838.   DOI
5 I. Yoo and B.S. Kim, Generalized sequential Feynman integral and Fourier-Feynman transform, Rocky Mountain J. Math. accepted. (2021).
6 K.S. Chang, B.S. Kim and I. Yoo, Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space, Integral Transform. Spec. Funct. 10 (2000), 179-200.   DOI
7 C. Park and D. Skoug, A Kac-Feynman integral equation for conditional Wiener integrals, J. Integral Equations Appl. 3 (1991), 411-427.   DOI
8 T. Huffman, C. Park and D. Skoug, Generalized transforms and convolutions, Int. J. Math. Math. Sci. 20 (1997), 19-32.   DOI
9 C. Park, D. Skoug and D. Storvick, Relationships among the first variation, the convolution product, and the Fourier-Feynman transform, Rocky Mountain J. Math. 28 (1998), 1447-1468.   DOI
10 T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673.   DOI
11 R.H. Cameron and D.A. Storvick, A simple definition of the Feynman integral, with applications, Mem. Amer. Math. Soc. No. 288, Amer. Math. Soc., 1983.   DOI
12 R.H. Cameron and D.A. Storvick, Sequential Fourier-Feynman transforms, Annales Acad. Scient. Fenn. 10 (1985), 107-111.
13 R.H. Cameron and D.A. Storvick, New existence theorems and evaluation formulas for sequential Feynman integrals, Proc. London Math. Soc. 52 (1986), 557-581.
14 R.H. Cameron and D.A. Storvick, New existence theorems and evaluation formulas for analytic Feynman integrals, Deformations Math. Struct., Complex Analy. Phys. Appl., Kluwer Acad. Publ., Dordrecht (1989), 297-308.
15 S.J. Chang and J.G. Choi, Rotation of Gaussian paths on Wiener space with applications, Banach J. Math. Anal. 12 (2018), 651-672.   DOI
16 D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), 1147-1176.   DOI