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CONDITIONAL TRANSFORM WITH RESPECT TO THE
GAUSSIAN PROCESS INVOLVING THE CONDITIONAL
CONVOLUTION PRODUCT AND THE FIRST VARIATION

Hyun Soo CHUNG, IL YONG LEE, AND SEUNG JUN CHANG

ABSTRACT. In this paper, we define a conditional transform with respect
to the Gaussian process, the conditional convolution product and the first
variation of functionals via the Gaussian process. We then examine vari-
ous relationships of the conditional transform with respect to the Gauss-
ian process, the conditional convolution product and the first variation
for functionals F' in S, [5, 8].

1. Introduction

Let Cy[0,T] denote one-parameter Wiener space; that is the space of real-
valued continuous functions z(t) on [0,7T] with x(0) = 0. Let M denote the
class of all Wiener measurable subsets of Cy[0,7T], and let m denote Wiener
measure. (Cp[0,T], M,m) is a complete measure space, and we denote the
Wiener integral of a Wiener integrable functional F' by

/ F(x)dm(x).
Co[0,T]

A subset B of Cy[0,T] is said to be scale-invariant measurable provided pB is
M-measurable for all p > 0, and a scale-invariant measurable set A is said to
be a scale-invariant null set provided m(pN') = 0 for all p > 0. A property that
holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere (s-a.e.) [10].

In [5, 8], the authors introduced the concept of Banach algebra S,. In
[8], the authors studied the generalized integral transform (GIT) and the gen-
eralized convolution product (GCP) of functionals in S,. Additionally, they
established some properties for the GIT and GCP. In [5], the authors obtained
the conditional integral transform and the conditional convolution product of
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functionals in S,. They established relationships between two of the three
concepts of conditional integral transform, the conditional convolution product
and the first variation. Recently, in [14], the authors introduced the transform
with respect to the Gaussian process and the conditional convolution product.
In this paper, we introduce a conditional transform with respect to the
Gaussian process and conditional convolution product. We then establish re-
lationships between the conditional transform with respect to the Gaussian
process of the conditional convolution product and the first variation. In Sec-
tion 3, we establish the conditional transform with respect to the Gaussian
process involving the functional of a functional in S,. We also obtain the con-
ditional convolution product of functionals in S,,. In Section 4, we establish the
relationships between two of the three concepts of the conditional transform,
the conditional convolution product, and first variation of the functionals. In
Section 5, we establish all relationships between all three of these concepts.

2. Definitions and preliminaries

In this section, we list some definitions and properties from [5, 8, 11, 12, 14].

Now we state definitions and notations which are needed to understand this
paper.

(1) For h € L?0,T], we define the Gaussian process Z;, by

¢
(2.1) Zn(w,t) = / h(s)de(t),
0
where fot h(s)dz(t) denotes the PWZ integral. For each v € L2[0,T], let (v, z) =
fOT v(t)dz(t). From [6], we note that
<Uv Zh(SC, )> = <’Uh, :L'>

for h € Ly[0,T] and s-a.e. x € Cp[0,T]. Thus, throughout this paper, we
require h to be in Lo [0, T] rather than simply in L?[0, 7.
(2) For all v € L2[0,T], let

T
(2.2) B, = % /O u(t)dt.

(3) Let Ko[0,T] be the set of all complex-valued continuous functions z(t)
defined on [0, T'] which vanish at t = 0 and whose real and imaginary parts are
elements of Cy[0, T]; namely,

Ko[0,T] ={z:]0,T] = C | (0) = 0, Re(z) € Cy[0,T] and Im(z) € Cy[0,T]}.
Thus Cy[0, T is the subspace of all real-valued functions in Ky[0, 7.
(4) Let C be the class of all complex numbers. For each « € C, let
E, ={(7,B) € C x C:Re(a?y?) < 0 and Re(a?$?%) < 0}.

Now, we state the definitions of the transform with respect to the Gaussian
process, the conditional convolution product and the first variation.
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Definition 2.1. Let F' and G be functionals on K[0, 7] and let v, 8, p and 7 be
non-zero complex numbers. Then the transform with respect to the Gaussian
process, the convolution product and the first variation are defined by formulas

3 EENW = [P+ 8. ) i),

(24)  ((F ares Q) (4) = /

Co
G(rZy,7) = pZus(,) ) dm(a),

F<TZ52 (ya ) =+ pZSl (:L', ))
[0,T7]

@5)  0F(Zu(w. )24 )) = a%F(zh(x, )+ hZo(z,0)

k=0
if they exist.

Remark 2.2. (1) When hq(t) = ha(t) = 1on [0,T], Tié is the integral transform

used by Kim and Skoug [13]. In particular, T11121(F ) is the Fourier-Wiener
transform introduced by Cameron in [1]. Also, T\l/’ili(F ) is the Fourier-Wiener

transform used by Cameron and Martin [2].

(2) If s1(t) = s2(t) =1 on [0,T], 7 = % and p = \/%7 for \e Cy ={)\ ¢
C:X#0 and Re()) > 0}, then the convolution product (F'*;1 G), - coincides
with convolution product (F * G)x [3, 4, 7, 8]; that is to say, (F %11 G),r =
(F % @Q)y for A e Cy.

(3) If h(t) = s(t) = 1 on [0,T1], then the first variation of F' with respect to
the Gaussian process coincides with the first variation of F' [5].

Let X be a R-valued function on Cy[0, T'] whose probability distribution mx
is absolutely continuous with respect to Lebesgue measure on R. Let F' be a
C-valued m-integrable functional on Cy[0,T]. Then the conditional integral of
F given X, denoted by E[F||X](n), is a Lebesgue measurable function of 7,
unique up to null sets in R, satisfying the equation

[ Py = [ BEIX)@dnx )
X-1(B) B

for all Borel sets B in R.
Throughout this paper, we will condition by the function X : Cy[0,7] — R
given by

(2.6) X(x) = (T).

In [15], Park and Skoug gave a simple formula for expression conditional
function space integrals in terms of an ordinary function space integrals by the
formula

E[F|X]() = /

o F(z() - ?x(T) + fﬁ)dm(z).
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The following Wiener integral is used several times in this paper. For each
a € C and for v € L?[0,T)

(27) / vl 2)dmi) = exp {1z}

Next, we give the definition of the conditional transform with respect to the
Gaussian process.

For each partition 7 = {¢1,...,t,} of [0, T| with 0 =to < t1 <--- < t, =T,
let X, : Cy[0,T] — R™ be defined by

(2.8) X (z) = (z(t1), ..., z(tn)).
Define a function [z] on [0,7T] by
t—t

[2](t) = 2(tj—1) + P——

(z(tj) — z(tj-1))

for tj_l S

t < t;. Similarly, for 7 = (m1,...,n,) € R define the function
[7] of 7j on [0,T7] by

[71(6) = myy + ==L

—— (j — nj-1),

where t;_; <t <t;. Then both [z] and [f]] are continuous on [0,T], they are
line segments on each interval [t;_1,¢;], and [z](t;) = =z(¢;) and [7](¢;) = n; at
each t;.

Definition 2.3. Let F be a functional defined on Ky[0, 7] and let X be given
by equation (2.8). For each non-zero complex numbers v and 3, the conditional
transform with respect to the Gaussian process T,ilﬁ’hZ (F||1X)(y,n) of F given
X is given by the formula

T (F|IX) (y,m) = /

o (0 (e = (6] + 1) + 821, (0.) ) dim(a)

for y € Ky[0,T] and n € R, if it exists. In particular, if X is given by equation
(2.6), then

(29)  TIM(FIX)(y.0)
= /CO[O’T] F(')’Zhl (SC() - ?SC(T) + ?7], ) =+ ﬂth (y, ))dm(x)

The following simple example illustrates Definition 2.3 above.

Example 2.4. Define the functional F' : Ky[0,7] — C by F(z) = exp{{v,z)}
for v € L?[0,T]. Then

hi,ha
T (P X)(y.m)

_ /CO[O,T] F (420, (2) = () + 0,7 ) + 820,y ) ) dm(z)
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/CO[O,T] <P {7<U’ Zhy (:C() - ?SC(T) + %77, )> + B{vha, y>}dm(x)

exp{B(vha, y) + 10 Bun ) / exp{y(vhy — Buny, 2)}dm(z)
Co[0,T]

2
= exp {Blvha,y) + Tl = Bu, I3+ ynBun, }-

Next, we state the definition of the conditional convolution product of func-
tionals F' and G on Ky[0,T].

Definition 2.5. Let F and G be functionals defined on Ky[0,7] and let X
be given by equation (2.6). For each non-zero complex numbers p and 7, the
conditional convolution product ((F *s,s, G), || X)(y,n) of F and G given X
is given by the formula

(210)  ((F *sy5, G)pr[1X) (s m)
- /CO[O,T] F(vZoaly. ) + 975, (20) = (D) + Zn,°) )
G(r 2y, ) = pZes (00) = 70(T) + 7, ) )dm()
for y € Ko[0,T] and n € R, if it exists.

Remark 2.6. (1) When hy(t) = ha(t) = 1 on [0,7], T.'5(F||X)(y,n) is the
conditional integral transform F., g(F || X)(y,n) introduced by Chung, Choi and
Chang [5].

(2) When s1(t) = s2(t) = 1 on [0,T], 7 = % and p = %, ((F *11
G)p,+1X)(y,n) is the conditional convolution product ((F * G)~||X)(y,n) in-
troduced by Chung, Choi and Chang [5].

3. Conditional transform with respect to the Gaussian process on
function space

In this section, we establish the conditional transform with respect to the
Gaussian process for the functional F' in S,. We then obtain the conditional
transform with respect to the Gaussian process involving the conditional con-
volution product and the first variation.

Let M(L?[0,T]) be the space of C-valued, countably additive (and hence
finite) Borel measures on L?[0, T [9, pp. 126-127] and [16, p. 119]. M(L?[0,T])
is a Banach algebra under the total variation norm and with convolution as
multiplication. For each complex number o with Re(a?) < 0, let S, be the
class of functionals of the form

(3.1) F(z) = / oy EPL )

for s-a.e. z € Cy[0,T], where f € M(L?[0,T]) [5, 8.
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Remark 3.1. (1) For each complex number o with Re(a?) < 0, using formula
(2.7) above, we have

— Oé_2 2
/CU[O,T] /L?[O,T] exp{a(v, z) }df (v)dm(z) = /Lz[o,T] exp{ 5 ||v|\2}df(v) < 0

since | exp{%2||v|\§}| < 1. This tells us that fLQ[O 7 exp{a(v, z) }df (v) exists for
a.e. x € Cy[0,T]. Furthermore, for all real number p > 0,

2.2
[ ] ewlatpden@= [ ew {E ) < oo
Co[0,T] J L?[0,T) L2[0,T]

because Re(p?a?) < 0. Hence the functional F given by equation (3.1) is well
defined for s-a.e. x € Cy[0, T7.

(2) The map f — F defined by (3.1) sets up on algebra isomorphism between
M(L?[0,T]) and S,. In this case, S, becomes a Banach algebra under the norm
IE] = 1 £l

(3) Note that for F' € S,, the function G : Cy[0,T] — C given by G(z) =
F(Zp(z,-)) with h € Lo[0,T], belongs to the Banach algebra S, see [6].

Remark 3.2 ([5, Remark 2.3]). (1) First we could consider the following integral
(3.2) / exp{a(v,z) + {B, Hdf (v), €& € C.
L2[0,T]

If we assume that

(33) Lol oot o)] < o0

for all complex number &, then

/ exp{£{B, }df (v) < oo and / exp{a(v, x) }df (v)
L2[0,T] L

20,1

exists for s-a.e. x € Cy[0, T]. However, the integral (3.2) might not exist because
the product of L'[0, T]-functionals might not be in L[0, T.

(2) In this paper, we need a condition for f in M(L?[0,T]) to show the
existence of the integral in equation (3.2).

(i) If v € L?[0,T] is a function of bounded variation, then for each z €
CVO [Oﬂ T]

(v, 2)] < [[lloo (J0(T)] + V5 () < o0,

where Vi (v) is the total variation of v on [0, T]. Hence if we assume that

(3.4) / o P {E @I+ 1 0] + / loolat] Har o) < .

then the integral (3.2) always exists.
(ii) Let v be an element of L?[0,T]. Then we note that

(35) )] = lim [(2)] < Tm allse(on(T)] + Vi (o),
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where v, (£) =Y _1_, (v, ¢ )20k (t), {¢r} is a complete orthonormal set in L2[0, 7]
and (-, )2 is the inner product on L?[0,T]. Hence if we add a condition

(3.6) lim (Jo, (T)] + V' (vn))

n—oo

exists, then we can obtain the existence of the integral (3.2) under the condition
which is similar to the condition (3.4).

(3) As mentioned above, we can give the condition (3.6) because the expres-
sion (3.5) is independent of the choice of the complete orthonormal set {¢y}
and the all expressions in equation (3.5) exists for s-a.e. z € Cy[0,T]. Hence,
we assume that for f € M(L?[0,T]) which satisfies the condition (3.3) above,
the integral (3.2) always exists.

In our next theorem, we obtain the conditional transform with respect to
the Gaussian process of a functional in S,.

Theorem 3.3. Let F be an element of S,. Let X be given by equation (2.6).
Then for all (v, 8) € E, the conditional transform with respect to the Gaussian
process T,?’lﬁ’hz (F||X) exists and is given by the formula

37 T (FIX)(y,n)

v’a? 2
= [ exp{asloha,y) + T3 ok — B[+ vaBun,n}df0)
£2[0,T] 2

for s-a.e. y € Cpl0,T] and a.e. n € R, where By, is given by equation (2.2).
Furthermore T,ﬁlﬁ’hQ (F||X) is an element of Sap with associated measure ¢
defined by

2 2
38 B = [ ow T loh = Bl + 0B} ()
for E € B(L?[0,T7).
Proof. Using equations (2.9) and (3.1), we have

T (F1 X ) (y,m)

= / / eXp{awvhl—thl,wHaWthl+aﬁ<vh2,y>}df(v)dm(w)-
Co[0,T] J L2[0,T]

Applying the Fubini theorem and equation (2.7) to the equation above, it
follows that

hi,ha
7" (P X)(y.m)
2042

= [ exp{aBtoha,y) + 5ok — B I3 + 20 B} 0).
L2[0,T]

Since (v,8) € E, and hypothesis of Remark 3.2, the last expression above
exists. Thus the equation (3.7) is established. Also, the last expression above
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becomes

T (F)|X) (g, ) = /
£2[0,T)

exp {aﬂ@hz, y>}d¢’f(v)-

Hence Tjghz(FHX) is an element of S,p because ¢f is an element of
M(L?[0,T)). O
Remark 3.4. The main result in [5, Theorem 3.1] follows immediately from
Theorem 3.3 above by choosing hy(t) = ha(t) =1 on [0, T].

In our next theorem, we establish the double conditional transform involving
the functional of a functional in S,,.

Theorem 3.5. Let F' and X be as in Theorem 3.3. Assume that hg(t) =
h1(t)ha(t) on [0,T] and y2 = v102. Then for all (2, B2) € Eua, (71,51) € Eap,
and (72)6162) S Eou

hi,ha (rmhs,h hs,hah 2+11
(3.9) T (TR (FIX) (o) | X)) = Thg"he (R X) (3, 2252

for s-a.e. y € Cy[0,T] and a.e. m1,m2 € R. Also, both sides of the expressions
in equation (3.9) are given by the formula
(3.10)

/2 exp {Oéﬁ152 (vhaha,y) + a®y3|[vhs — Bun, 3 + a2 (02 + 1) Bon, }df(v).
L2[0,T]

yhohy

e (F||X) is an element of Sap,p, with associated measure
2,P10P2

Furthermore, T\}}%
¢ defined by

03(E) = [ exp {3 lvns = B+ aralin + m)Buns Y )

for E € B(L?[0,T7).
Proof. By using equations (2.9) and (3.1), we have

hi,ha reha,h
T%lﬁlz(TVzS,ﬂz4(F|‘X>('7nl)HX)(ya772)

= / / {/ exp {045152@’12}14, y) + aya(vhs — Byp,, w)
col0,1] Jcolo,1] LS L2[0,1)
+ ayan1 Byny + ay182(vhihs — Bynyhy, )

+ a1 8212 Buny by }df(v)] dm(z)dm(w)
= / exp {Oéﬂlﬂz (vhoha,y) + ayom Byns + a71527723vh1h4}
£2[0,7)
) [/ exp {O{’}/lﬂg (vhihy — thlh“z}}dm(x)}
Cp[0,T]

1 e et = B, ) )| 410
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= / exp {Oéﬂlﬂz (vhohy,y) + ayamy Bony + ay182m2Bohy by
L2[0 ]

+ 12/82 || h/ h 2
1ha — Bunyhallz +

2
12 [uhg — Bun I3}

Since h3(t) = hi(t)ha(t) on [0, T] and o = 7132, the last expression equation
above is equal to

[ exp {adiBatuhaha, ) +a* 3 uha— B I3+ araloe ) By b ().
L2[0,T]

Hence by Definition 2.3, we have

hi,h2 h3,ha hs,haha
T s (T s, (FIX) Com)l| X) (g me) = T 572 0 (F I\X)(ya"ﬁ%)-

Thus the equation (3.9) is established. Using the similar method in the proof
of Theorem 3.3, both sides of the equation (3.5) exists. Also, equation (3.10)
becomes

/ exp {a5152 (vhohy, y)}dqbg(v).
£2[0,T)

Hence equation (3.9) above is an element of S,3,3, because ¢g is an element
of M(L?[0,T1). d

In our next theorem, we obtain the conditional convolution product of func-
tionals in Sy.

Theorem 3.6. Let F' and G be elements of S,. Let X be given by equation
(2.6). Then for all (p,7) € E,, the conditional convolution product ((F *s, s,
G)pr || X) exists and is given by the formula

(3.11)  ((F %5y, )p,TIIX)(y n)

= [ e {artwtwss + SN - s - Bws B
L2[0,T] J L2[0,T]

+ apnBy—u)s, }df() g(u)

for s-a.e. y € Cp[0,T] and a.e. n € R. Furthermore ((F *s,5, G)p || X) is an
element of Sor.

Proof. By using equations (2.7) and (2.10), we have
((F #5150 G)p,r 1X) (y,m)

= /CO[QT] F(TZ52 (y,-) + pZs, (x() — ?z(T) + ?7]))
G(7Zua0.) = pZuy (2() = (D) + ) )dm(a)

-/ exp {ar((v -+ w52, ) + 0pn(Bus, — Busy) )
L2[0,T] J L2[0,T)
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. [/ exp {ap((v —u)s1 — (Bys, — Busy)s x)}dm(m)} df (v)dg(u)
Co[0,T]

= / / exp {Oﬂ'<(’1} + U)SQa y> + apnB(vfu)sl
L2[0,7] J L2[0,T)

a22
L0 = w)s1 = Bouys, I3 paf (0)dg ().

Let a set function ¢3 : B(L?[0,T] x L?*[0,T]) — C be defined by

a22
3(E) = [ exp {0 = w51 = Bumsgu [+ apnBius, J ()dgla)

for E € B(L?*[0,T] x L?[0,7]). Then ¢7 is a complex Borel measure on
B(L?[0,T] x L?[0,T]). Now we define a function ¢ : L?[0,T] x L2[0,T] —
L2[0,T) by ¢(u,v) = u+v. Let ¢ = ¢Z o o~ '. Then ¢ belongs to M(L?[0,T))
since (p,7) € Eq. So

wwmxmwm@mz/' explar(wsz, y)}dd(w).

L2[0,T]
Hence ((F'xs, 5, G)p,-|| X) exists and is given by (3.11) and it belongs to So,. O

+

Remark 3.7. The main result in [5, Theorem 3.3] follows immediately from

Theorem 3.6 above by choosing s1(t) = s2(t) = 1 on [0,T], 7 = % and

P= 7
4. Relationships between two concepts

In Section 3, we introduced the conditional transform with respect to the
Gaussian process and the conditional convolution product. In this section,
we establish the relationships between exactly two of three concepts of the
conditional transform, conditional convolution product and the first variation
for functionals.

In our next theorem, we obtain the conditional transform with respect to the
Gaussian process involving the conditional convolution product of functionals
in S,.

Theorem 4.1. Let F, G and X be as in Theorem 3.3. Assume that Ty = p
and hy(t)s2(t) = s1(t) on [0,T]. Then for all (p,7) € Eq, (7,5) € Ear and
(p, BT) € Eq,

(41) 5" ((F #0155 G 1) m)l1X) (9 2)
_ ms1,has 2+M1 s1,has 2—11
= T (F)|X) (y, 50 ) T3 () X) (. )

for s-a.e. y € Cy[0,T] and a.e. n1,m2 € R. Also, both sides of the expression in
equation (4.1) are given by the formula

[ [ e {asri(o + uhasa )+ (105~ Bua |3 +us~ B )
L2[0,T] J L2[0,T]
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+ ap(Busays, + M Blo-uys,) ff (0)dg ().

Proof. First by using equations (2.9), (2.10) and the Fubini theorem, we obtain
that

(4.2)
TP (((F %105 @) | X) (om0 [ X) (9, 72)
= / / F(T’YZhlSz (:L', ) - T’YBh152:C(T) + T7772Bh152
Co[0,T] + Co[0,T7]
+ TBthSz (ya ) + pZSl (w’ ) - szlw(T) + Pmle)
' G(T’YZh152 (:C, ) - T’YBhlszz(T) + 77772ma
7B Znssa (U ) = P2, (w,) + pBayw(T) = pin By, ) dm(w)dim(x)
= / / exp {a7ﬂ<(v+u)h252, y> +apnlB(U—u)sl +aT77IQB(U+u)h152 }
£2[0,7] J £2[0,7]
. [/ exp {on'fy((v +u)hisy — B(v_‘_u)hlswsc)}dm(x)}
Co[0,T7]
[ e {anto - wn = B o) | 0)dg(u)
Co[0,T]
_ 2 2 2
= [ e {aBri(w+ whase, ) + a2 (loss - Bun
£20,1] J £2[0,7]

+ H“Sl — Bus, H%) + ap(TIQB(’UJr’U«)Sl + nlB(vfu)m)}df(U)dg(u)'
Next, using equation (3.7), we have
(4.3)

s1,h2s2 n2+n
T s P10 (0. 25

— [ exp{asriohase,y) + 0% us — Buu I3 + aplie + 1) By Jaf (0
L2[0,T]

and
(4.4)
T517h252 (GHX)( n2—1m )
V2p.r LA

— [ exp{adr(unasap) + o2 usi — Busy 3+ apl — ) B ()
L2[0,T]

Thus, equation (4.1) follows from equations (4.2)—(4.4). Since (p,7) € Ea,
(p, BT) € E, and hypothesis of Remark 3.2, the both sides of the expressions
in equation (4.1) exists. O
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Remark 4.2. The main result in [5, Theorem 3.3] follows immediately from
Theorem 4.1 above by choosing h;(t) = s;(t) = 1(j = 1,2) on [0,T], 7 = \%
and p = %

The following theorem follows immediately from Theorems 3.5 and 4.1.

Theorem 4.3. Let F' and X be as in Theorem 4.1. Assume that Ty = p,
v = V2pB, s1(t) = hi(t)s2(t) and hi(t) = s1(t)ha(t) on [0,T]. Then for all
(’7 6) € B, ﬂEozBT7 (/)a ) S Ea,(i’7 and (’7;627) €k,

(4.5)
T (T2 (P X)(om) #6100 T (GlIX) (5 m2)) 2 X) (5 m8) | X) (9, ma)

hi,h 252 4 : 1 hi,h 252 4 — 12 2
= Tia (F”X)(y,ﬂjld;—\/i"l_)j‘\/_ . (G||X)( 11_7732+_\/5TL)

for s-a.e. y € Cy[0,T] and a.e. n;(j = 1,2,3,4) € R. Also, both sides of the
expression in equation (4.5) are given by the formula

/ / exp {a627'<(v +u)h3s2,y)
£2[0,T] J L2[0,T]

+a®y (bt = Bun, |13 + lluhy — Bun, [13)

n V2ary(n4 +2773 + \/5771) Bon, ‘/_O‘V(m _2773 +v2m) Bun, }df(v)dg(u)-

Proof. By using equation (4.1), it follows that

TG (T2 (FIX) ) v T3 (G0 m0)) i () | X )

= T3 (T (P0G 1) (3 2522

s1,has2 hi,h2 _
T (T (G0 () 1 X) (3, 2522 ).
Also, applying equation (3.9) to the last expression above, we obtain
TG (TG (P X) Com) #srse T05" (GIX)C12))pr (5 ma)1X) (9, ma)
=TIt ()X (y, wtmyin 1)T’“’ (G0 (y, e ),

V2, ﬂ2 V27,827
This proves the desired result. (I
Remark 4.4. Let A = {w € Cy[0,T] : fo s)ds for some u € L?[0,71}.

Note that for all u,v € L?[0, T}, we have that [(u,v)2 | < |lu|l2]|v]l2. In addition,
for w € A and v € L?[0,T], the PWZ integral (v, w) exists and is given by the
formula

(v, w) = /O ' u(s)dw(s) = /0 Tv(s)u(s)ds

and so |(v, w)| < [[o]2]|ulls-



CONDITIONAL TRANSFORM WITH RESPECT TO THE GAUSSIAN PROCESS 1573

The following observation below will be very useful in the development of
our theorems. Let w € A and let F' be an element of S, whose associated
measure f € M(L?[0,T]) satisfies the inequality

(4.6) / lall[o]l2]df ()] < oo.
£2[0,T)

Then §F is an element of S,. Hence in this paper, we always assume that the
associated measure f € M(L?[0,T]) of F satisfies the condition (4.6).

In our next theorem, we establish that the conditional transform involving
the first variation equals the first variation of the conditional transform with
respect to the Gaussian process.

Theorem 4.5. Let F' and X be as in Theorem 4.1. Assume that F satisfies
the hypothesis of Remark 4.4. Let h, s, I, m and h;(j = 1,2,3,4) satisfy the
following conditions:

(1) ha(t) = h(t)ha(t),

(2) 1(t)ha(t) = h(t)ha(t),

(3) m(t)ha(t) = s(t) on [0,T].
Then for all (v, ) € Ea,
(4.7)

1

Ty (OF (210501242, ) IX) () = 50T (FIX) (2009 )1 Zm (2, )m)

for s-a.e. y € Cy[0,T] and a.e. n € R. Also, both sides of the expression in
equation (4.7) are given by the formula

a? 2
/ a(vs, z) exp {aﬁ<vhh2, y) + 27 [vhhy = Bunn, 13 + oy Byhn, }df(v)-
L2[0,T]

Furthermore equation (4.7) is an element of Sap with associated measure ¢,
defined by

022

o4(E) = [ atvs,2)exp { T o~ Buw [ + rnBunn, Jaf ()
E

for E € B(L?[0,T7).

Proof. First, using equations (2.5) and (2.9), we obtain that

(4.8)
7 (68 (21,122, 1X) (o)
N /CO[O,T] oF (Zh (7Zh1 (z(')* ?x(T)ﬁL%U) +BZn,(y, ), ) |Zs(, .)) dm(z)

0
:/ a1, |:/ exp {Oéﬂ<’()hh2, y> + Oé’}/<’l)h,h,1 - th15z>
col0,7) Ok L JL2(0,1]
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kiodm(x)

+ aynBynh, + ak{vs, z>}df(v)]

:/ alvs, z) exp {aﬂ(vhhg, y) + a’ynthhl}
£2(0,7]

: { /C — {m@hhl - thl,z>}dm(x)} df (v)

o2~2
:/ a(vs, z) exp {aﬁ(vhhz, y)+ v [lvhhy — Byhn, Hg—l—a'ynthhl }df(v)
L2[0,T]
Next, using equations (2.5) and (3.3), it follows that
(4.9)
6T’7fgh4 (FHX) (Zl(ya ')lZm(Za ), 77)

- a% [Tﬁ“ (FHX)(ZZ(% )+ kZm(2, ')v”ﬂ ‘

el
= — exp  af{(vlhg, y) +
(9]6 |: L2[O,T] p{ < 4 y>

+ aynByn, + aBk{vhym, z>}df(v)]

k=0

lvhs — Bun, |13

k=0

2,}/2
Johs—Bung |3+ Bun, baf (v).

:/ afB(vhym, z) exp {aﬁ(vlh4, yy+
L2[0,T]

Thus, equation (4.7) follows from equations (4.8) and (4.4). O

Remark 4.6. The main result in [5, Theorem 4.2] follows immediately from
Theorem 4.5 above by choosing hy = hy = 1.

The following theorem follows immediately from Theorems 3.5 and 4.5.

Theorem 4.7. Let F' and X be as in Theorem 4.5. Let h, s, 1, m and h;(j =
1,2,3,4,5,6) satisfy the following conditions:

(1) hs(t) = h(B)ha(0),
(2) Uthot) = h(D)ha(t)ba(t)
(3) m(t)ho(t) = s(t) on [0,7].

Then for all (y2,82) € Eo and (y2,$152) € E,,

(4.10) Ti?é?( T (6F (200 )12, (2,) ) I1X) o) IX ) (3 m2)

huuh() 2+11
= G Tl FI) (2. ), 2252

for s-a.e. y € Cy[0,T] and a.e. n1,m2 € R. Also, both sides of the expression in
equation (4.10) are given by the formula

[ atos.z) exp {as Batohhaha,y) + 023 [uhhs ~ Bun, 3
L2[0,T]
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+ aya(nz + 1) Bonig Jf (0).

5. Relationships between three concepts

In Section 4, we obtained relationships between exactly two of the three
concepts of conditional transform, conditional convolution product and first
variation of functionals on S,. In this section, we establish all possible rela-
tionships between all three of these concepts.

In this section, to simplify the expressions, we will only state the formulas
without conditions for existences.

Formula 5.1. Let I’ and X be as in Theorem 4.5. Let h, s, [, m and h;
(j = 1,2,3,4) satisty the following conditions:

( ) ™ =P,

(2) ha(t)s2(t) = U(t)ha(t) = s1(t),
(3) h()ha(t)s2(t) = L(t)ha(t),

(4) m(t) = ha(t)s2(t)s(t) on [0,T].

Then

ST ((F s G 1) (o) 1) (Z0l. ) Zul ) )

*T\S/l_hw;(FHX)(Zh y,-), 12 ) ThSh4 5G< ))HX>( ﬂz_\;iu>
BTSN (52( 2 2 )>HX>( M>T\S/LZ2TSE(GHX)(Z;L o), B ).

Formula 5.2. Let I’ and X be as in Theorem 4.5. Let h, s, I, m and h;
( =1,2,3,4) satisfy the following conditions:

(1) T’}/ - pa

(2) ha(t)s2(t) = s1(1),

(3) hg(t) = h(t 81(t>,

(4) U(t)ha(t) = h(t)ha(t)s2(1),

(5) m(t)ha(t) = s(t) on [0,T]
Then

05" (((0F (20 )12(2.)) #0120 06201 Z0(2,) ) 1) Com)l1X) (9 712)

= ﬁ(SThg ha (F||X)(Zl(y7 ')‘Zm(zf nQ\?]l)&T\hfsh‘Lﬁ(GHX)(Zl yv')lzm(za )7%)

Formula 5.3. Let I’ and X be as in Theorem 4.5. Let h, s, I, m and h;
(j = 1,2,3,4) satisty the following conditions:

(1) ™y =p,

(2) hs(t)sa2(t) = s1(t),

(3) ha(t) = h(t)h(t),

(4) U(t)ha(t) = h(t)ha(t),

(5) m(t)ha(t) = s(t) on [0, 7]
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Then

705" (5(((F o100 G)pr X)) m)) (201 2.(2,)) 1X ) (9 m2)

— suhes2 (F||X) (Zl Y., nz+m> ST SLh2s2 (G| X) (Zl Y. )N Zm (2, ), nzfm)

V2p,8 B V2.8

s1,has o +11 s1,ha2s 2—11
+ 65T S22 (FIX) (2, 2 (2, ), 2 ) T2 (G X)) (20w, ), 2522 ).
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