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CONDITIONAL TRANSFORM WITH RESPECT TO THE

GAUSSIAN PROCESS INVOLVING THE CONDITIONAL

CONVOLUTION PRODUCT AND THE FIRST VARIATION

Hyun Soo Chung, Il Yong Lee, and Seung Jun Chang

Abstract. In this paper, we define a conditional transform with respect
to the Gaussian process, the conditional convolution product and the first
variation of functionals via the Gaussian process. We then examine vari-
ous relationships of the conditional transform with respect to the Gauss-
ian process, the conditional convolution product and the first variation
for functionals F in Sα [5, 8].

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space; that is the space of real-
valued continuous functions x(t) on [0, T ] with x(0) = 0. Let M denote the
class of all Wiener measurable subsets of C0[0, T ], and let m denote Wiener
measure. (C0[0, T ],M,m) is a complete measure space, and we denote the
Wiener integral of a Wiener integrable functional F by

∫

C0[0,T ]

F (x)dm(x).

A subset B of C0[0, T ] is said to be scale-invariant measurable provided ρB is
M-measurable for all ρ > 0, and a scale-invariant measurable set N is said to
be a scale-invariant null set provided m(ρN ) = 0 for all ρ > 0. A property that
holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere (s-a.e.) [10].

In [5, 8], the authors introduced the concept of Banach algebra Sα. In
[8], the authors studied the generalized integral transform (GIT) and the gen-
eralized convolution product (GCP) of functionals in Sα. Additionally, they
established some properties for the GIT and GCP. In [5], the authors obtained
the conditional integral transform and the conditional convolution product of
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functionals in Sα. They established relationships between two of the three
concepts of conditional integral transform, the conditional convolution product
and the first variation. Recently, in [14], the authors introduced the transform
with respect to the Gaussian process and the conditional convolution product.

In this paper, we introduce a conditional transform with respect to the
Gaussian process and conditional convolution product. We then establish re-
lationships between the conditional transform with respect to the Gaussian
process of the conditional convolution product and the first variation. In Sec-
tion 3, we establish the conditional transform with respect to the Gaussian
process involving the functional of a functional in Sα. We also obtain the con-
ditional convolution product of functionals in Sα. In Section 4, we establish the
relationships between two of the three concepts of the conditional transform,
the conditional convolution product, and first variation of the functionals. In
Section 5, we establish all relationships between all three of these concepts.

2. Definitions and preliminaries

In this section, we list some definitions and properties from [5, 8, 11, 12, 14].
Now we state definitions and notations which are needed to understand this

paper.
(1) For h ∈ L2[0, T ], we define the Gaussian process Zh by

(2.1) Zh(x, t) =

∫ t

0

h(s)d̃x(t),

where
∫ t

0 h(s)d̃x(t) denotes the PWZ integral. For each v ∈ L2[0, T ], let 〈v, x〉 =
∫ T

0
v(t)d̃x(t). From [6], we note that

〈v, Zh(x, ·)〉 = 〈vh, x〉
for h ∈ L∞[0, T ] and s-a.e. x ∈ C0[0, T ]. Thus, throughout this paper, we
require h to be in L∞[0, T ] rather than simply in L2[0, T ].

(2) For all v ∈ L2[0, T ], let

(2.2) Bv =
1

T

∫ T

0

v(t)dt.

(3) Let K0[0, T ] be the set of all complex-valued continuous functions x(t)
defined on [0, T ] which vanish at t = 0 and whose real and imaginary parts are
elements of C0[0, T ]; namely,

K0[0, T ] = {x : [0, T ] → C | x(0) = 0, Re(x) ∈ C0[0, T ] and Im(x) ∈ C0[0, T ]}.
Thus C0[0, T ] is the subspace of all real-valued functions in K0[0, T ].

(4) Let C be the class of all complex numbers. For each α ∈ C, let

Eα ≡ {(γ, β) ∈ C× C : Re(α2γ2) ≤ 0 and Re(α2β2) ≤ 0}.
Now, we state the definitions of the transform with respect to the Gaussian

process, the conditional convolution product and the first variation.
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Definition 2.1. Let F andG be functionals onK0[0, T ] and let γ, β, ρ and τ be
non-zero complex numbers. Then the transform with respect to the Gaussian
process, the convolution product and the first variation are defined by formulas

(T h1,h2

γ,β (F ))(y) =

∫

C0[0,T ]

F
(

γZh1
(x, ·) + βZh2

(y, ·)
)

dm(x),(2.3)

((F ∗s1s2 G)ρ,τ )(y) =

∫

C0[0,T ]

F
(

τZs2 (y, ·) + ρZs1(x, ·)
)

(2.4)

·G
(

τZs2(y, ·)− ρZs1(x, ·)
)

dm(x),

δF
(

Zh(x, ·)|Zs(z, ·)
)

=
∂

∂k
F
(

Zh(x, ·) + kZs(z, ·)
)

∣

∣

∣

∣

k=0

(2.5)

if they exist.

Remark 2.2. (1) When h1(t) = h2(t) = 1 on [0, T ], T 1,1
γ,β is the integral transform

used by Kim and Skoug [13]. In particular, T
1,1
1,i (F ) is the Fourier-Wiener

transform introduced by Cameron in [1]. Also, T 1,1
√
2,i
(F ) is the Fourier-Wiener

transform used by Cameron and Martin [2].

(2) If s1(t) = s2(t) = 1 on [0, T ], τ = 1√
2
and ρ = 1√

2λ
for λ ∈ C̃+ = {λ ∈

C : λ 6= 0 and Re(λ) ≥ 0}, then the convolution product (F ∗11G)ρ,τ coincides
with convolution product (F ∗ G)λ [3, 4, 7, 8]; that is to say, (F ∗11 G)ρ,τ =

(F ∗G)λ for λ ∈ C̃+.
(3) If h(t) = s(t) = 1 on [0, T ], then the first variation of F with respect to

the Gaussian process coincides with the first variation of F [5].

Let X be a R-valued function on C0[0, T ] whose probability distribution mX

is absolutely continuous with respect to Lebesgue measure on R. Let F be a
C-valued m-integrable functional on C0[0, T ]. Then the conditional integral of
F given X , denoted by E[F‖X ](η), is a Lebesgue measurable function of η,
unique up to null sets in R, satisfying the equation

∫

X−1(B)

F (x)dm(x) =

∫

B

E[F‖X ](η)dmX(η)

for all Borel sets B in R.
Throughout this paper, we will condition by the function X : C0[0, T ] → R

given by

(2.6) X(x) = x(T ).

In [15], Park and Skoug gave a simple formula for expression conditional
function space integrals in terms of an ordinary function space integrals by the
formula

E[F‖X ](η) =

∫

C0[0,T ]

F
(

x(·) − ·
T
x(T ) +

·
T
η
)

dm(x).
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The following Wiener integral is used several times in this paper. For each
α ∈ C and for v ∈ L2[0, T ]

(2.7)

∫

C0[0,T ]

exp{α〈v, x〉}dm(x) = exp

{

α2

2
‖v‖22

}

.

Next, we give the definition of the conditional transform with respect to the
Gaussian process.

For each partition τ = {t1, . . . , tn} of [0, T ] with 0 = t0 < t1 < · · · < tn = T ,
let Xτ : C0[0, T ] → Rn be defined by

(2.8) Xτ (x) = (x(t1), . . . , x(tn)).

Define a function [x] on [0, T ] by

[x](t) = x(tj−1) +
t− tj−1

tj − tj−1
(x(tj)− x(tj−1))

for tj−1 ≤ t ≤ tj . Similarly, for ~η = (η1, . . . , ηn) ∈ Rn+1, define the function
[~η] of ~η on [0, T ] by

[~η ](t) = ηj−1 +
t− tj−1

tj − tj−1
(ηj − ηj−1),

where tj−1 ≤ t ≤ tj . Then both [x] and [~η ] are continuous on [0, T ], they are
line segments on each interval [tj−1, tj ], and [x](tj) = x(tj) and [~η ](tj) = ηj at
each tj .

Definition 2.3. Let F be a functional defined on K0[0, T ] and let X be given
by equation (2.8). For each non-zero complex numbers γ and β, the conditional

transform with respect to the Gaussian process T h1,h2

γ,β (F‖X)(y, η) of F given
X is given by the formula

T
h1,h2

γ,β (F‖X)(y, η) =

∫

C0[0,T ]

F
(

γZh1
(x− [x] + [~η], ·) + βZh2

(y, ·)
)

dm(x)

for y ∈ K0[0, T ] and η ∈ R, if it exists. In particular, if X is given by equation
(2.6), then

T
h1,h2

γ,β (F‖X)(y, η)(2.9)

=

∫

C0[0,T ]

F
(

γZh1

(

x(·)− ·
T
x(T ) +

·
T
η, ·

)

+ βZh2
(y, ·)

)

dm(x).

The following simple example illustrates Definition 2.3 above.

Example 2.4. Define the functional F : K0[0, T ] → C by F (x) = exp{〈v, x〉}
for v ∈ L2[0, T ]. Then

T
h1,h2

γ,β (F‖X)(y, η)

=

∫

C0[0,T ]

F
(

γZh1

(

x(·) − ·
T
x(T ) +

·
T
η, ·

)

+ βZh2
(y, ·)

)

dm(x)
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=

∫

C0[0,T ]

exp
{

γ
〈

v, Zh1

(

x(·)− ·
T
x(T ) +

·
T
η, ·

)〉

+ β〈vh2, y〉
}

dm(x)

= exp{β〈vh2, y〉+ γηBvh1
}
∫

C0[0,T ]

exp{γ〈vh1 −Bvh1
, x〉}dm(x)

= exp
{

β〈vh2, y〉+
γ2

2
‖vh1 −Bvh1

‖22 + γηBvh1

}

.

Next, we state the definition of the conditional convolution product of func-
tionals F and G on K0[0, T ].

Definition 2.5. Let F and G be functionals defined on K0[0, T ] and let X

be given by equation (2.6). For each non-zero complex numbers ρ and τ , the
conditional convolution product ((F ∗s1s2 G)ρ,τ‖X)(y, η) of F and G given X

is given by the formula

((F ∗s1s2 G)ρ,τ‖X)(y, η)(2.10)

=

∫

C0[0,T ]

F
(

τZs2(y, ·) + ρZs1

(

x(·)− ·
T
x(T ) +

·
T
η, ·

))

·G
(

τZs2(y, ·)− ρZs1

(

x(·) − ·
T
x(T ) +

·
T
η, ·

))

dm(x)

for y ∈ K0[0, T ] and η ∈ R, if it exists.

Remark 2.6. (1) When h1(t) = h2(t) = 1 on [0, T ], T 1,1
γ,β(F‖X)(y, η) is the

conditional integral transform Fγ,β(F‖X)(y, η) introduced by Chung, Choi and
Chang [5].

(2) When s1(t) = s2(t) = 1 on [0, T ], τ = 1√
2

and ρ = γ√
2
, ((F ∗11

G)ρ,τ‖X)(y, η) is the conditional convolution product ((F ∗ G)γ‖X)(y, η) in-
troduced by Chung, Choi and Chang [5].

3. Conditional transform with respect to the Gaussian process on

function space

In this section, we establish the conditional transform with respect to the
Gaussian process for the functional F in Sα. We then obtain the conditional
transform with respect to the Gaussian process involving the conditional con-
volution product and the first variation.

Let M(L2[0, T ]) be the space of C-valued, countably additive (and hence
finite) Borel measures on L2[0, T ] [9, pp. 126–127] and [16, p. 119]. M(L2[0, T ])
is a Banach algebra under the total variation norm and with convolution as
multiplication. For each complex number α with Re(α2) ≤ 0, let Sα be the
class of functionals of the form

(3.1) F (x) =

∫

L2[0,T ]

exp{α〈v, x〉}df(v)

for s-a.e. x ∈ C0[0, T ], where f ∈ M(L2[0, T ]) [5, 8].
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Remark 3.1. (1) For each complex number α with Re(α2) ≤ 0, using formula
(2.7) above, we have
∫

C0[0,T ]

∫

L2[0,T ]

exp{α〈v, x〉}df(v)dm(x) =

∫

L2[0,T ]

exp
{α2

2
‖v‖22

}

df(v) < ∞

since | exp{α2

2 ‖v‖22}| ≤ 1. This tells us that
∫

L2[0,T ]
exp{α〈v, x〉}df(v) exists for

a.e. x ∈ C0[0, T ]. Furthermore, for all real number ρ > 0,
∫

C0[0,T ]

∫

L2[0,T ]

exp{α〈v, ρx〉}df(v)dm(x)=

∫

L2[0,T ]

exp
{ρ2α2

2
‖v‖22

}

df(v) < ∞

because Re(ρ2α2) ≤ 0. Hence the functional F given by equation (3.1) is well
defined for s-a.e. x ∈ C0[0, T ].

(2) The map f → F defined by (3.1) sets up on algebra isomorphism between
M(L2[0, T ]) and Sα. In this case, Sα becomes a Banach algebra under the norm
‖F‖ = ‖f‖.

(3) Note that for F ∈ Sα, the function G : C0[0, T ] → C given by G(x) =
F (Zh(x, ·)) with h ∈ L∞[0, T ], belongs to the Banach algebra Sα, see [6].

Remark 3.2 ([5, Remark 2.3]). (1) First we could consider the following integral

(3.2)

∫

L2[0,T ]

exp{α〈v, x〉 + ξBv}df(v), ξ ∈ C.

If we assume that

(3.3)

∫

L2[0,T ]

exp
{

|ξ|
∫ T

0

|v(t)|dt
}

|df(v)| < ∞

for all complex number ξ, then
∫

L2[0,T ]

exp{ξBv}df(v) < ∞ and

∫

L2[0,T ]

exp{α〈v, x〉}df(v)

exists for s-a.e. x ∈ C0[0, T ]. However, the integral (3.2) might not exist because
the product of L1[0, T ]-functionals might not be in L1[0, T ].

(2) In this paper, we need a condition for f in M(L2[0, T ]) to show the
existence of the integral in equation (3.2).

(i) If v ∈ L2[0, T ] is a function of bounded variation, then for each x ∈
C0[0, T ]

|〈v, x〉| ≤ ‖x‖∞(|v(T )|+ V T
0 (v)) < ∞,

where V T
0 (v) is the total variation of v on [0, T ]. Hence if we assume that

(3.4)

∫

L2[0,T ]

exp
{

|ξ|
[

|v(T )|+ |V T
0 (v)|+

∫ T

0

|v(t)|dt
]}

|df(v)| < ∞,

then the integral (3.2) always exists.
(ii) Let v be an element of L2[0, T ]. Then we note that

(3.5) |〈v, x〉| = lim
n→∞

|〈vn, x〉| ≤ lim
n→∞

‖x‖∞(|vn(T )|+ V T
0 (vn)),
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where vn(t)=
∑n

k=1(v, φk)2φk(t), {φk} is a complete orthonormal set in L2[0, T ]
and (·, ·)2 is the inner product on L2[0, T ]. Hence if we add a condition

(3.6) lim
n→∞

(|vn(T )|+ V T
0 (vn))

exists, then we can obtain the existence of the integral (3.2) under the condition
which is similar to the condition (3.4).

(3) As mentioned above, we can give the condition (3.6) because the expres-
sion (3.5) is independent of the choice of the complete orthonormal set {φk}
and the all expressions in equation (3.5) exists for s-a.e. x ∈ C0[0, T ]. Hence,
we assume that for f ∈ M(L2[0, T ]) which satisfies the condition (3.3) above,
the integral (3.2) always exists.

In our next theorem, we obtain the conditional transform with respect to
the Gaussian process of a functional in Sα.

Theorem 3.3. Let F be an element of Sα. Let X be given by equation (2.6).
Then for all (γ, β) ∈ Eα, the conditional transform with respect to the Gaussian

process T
h1,h2

γ,β (F‖X) exists and is given by the formula

T
h1,h2

γ,β (F‖X)(y, η)(3.7)

=

∫

L2[0,T ]

exp
{

αβ〈vh2, y〉+
γ2α2

2
‖vh1 −Bvh1

‖22 + γαBvh1
η
}

df(v)

for s-a.e. y ∈ C0[0, T ] and a.e. η ∈ R, where Bvh1
is given by equation (2.2).

Furthermore T
h1,h2

γ,β (F‖X) is an element of Sαβ with associated measure φ
η
1

defined by

(3.8) φ
η
1(E) =

∫

E

exp
{γ2α2

2
‖vh1 −Bvh1

‖22 + γαBvh1
η
}

df(v)

for E ∈ B(L2[0, T ]).

Proof. Using equations (2.9) and (3.1), we have

T
h1,h2

γ,β (F‖X)(y, η)

=

∫

C0[0,T ]

∫

L2[0,T ]

exp
{

αγ〈vh1−Bvh1
, x〉+αγηBvh1

+αβ〈vh2, y〉
}

df(v)dm(x).

Applying the Fubini theorem and equation (2.7) to the equation above, it
follows that

T
h1,h2

γ,β (F‖X)(y, η)

=

∫

L2[0,T ]

exp
{

αβ〈vh2, y〉+
γ2α2

2
‖vh1 −Bvh1

‖22 + γαBvh1
η
}

df(v).

Since (γ, β) ∈ Eα and hypothesis of Remark 3.2, the last expression above
exists. Thus the equation (3.7) is established. Also, the last expression above
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becomes

T
h1,h2

γ,β (F‖X)(y, η) =

∫

L2[0,T ]

exp
{

αβ〈vh2, y〉
}

dφ
η
1(v).

Hence T
h1,h2

γ,β (F‖X) is an element of Sαβ because φn
1 is an element of

M(L2[0, T ]). �

Remark 3.4. The main result in [5, Theorem 3.1] follows immediately from
Theorem 3.3 above by choosing h1(t) = h2(t) = 1 on [0, T ].

In our next theorem, we establish the double conditional transform involving
the functional of a functional in Sα.

Theorem 3.5. Let F and X be as in Theorem 3.3. Assume that h3(t) =
h1(t)h4(t) on [0, T ] and γ2 = γ1β2. Then for all (γ2, β2) ∈ Eα, (γ1, β1) ∈ Eαβ2

and (γ2, β1β2) ∈ Eα,

(3.9) T
h1,h2

γ1,β1
(T h3,h4

γ2,β2
(F‖X)(·, η1)‖X)(y, η2) = T

h3,h2h4√
2γ2,β1β2

(F‖X)
(

y,
η2+η1√

2

)

for s-a.e. y ∈ C0[0, T ] and a.e. η1, η2 ∈ R. Also, both sides of the expressions

in equation (3.9) are given by the formula

(3.10)
∫

L2[0,T ]

exp
{

αβ1β2〈vh2h4, y〉+α2γ2
2‖vh3 −Bvh3

‖22 +αγ2(η2 + η1)Bvh3

}

df(v).

Furthermore, T
h3,h2h4√
2γ2,β1β2

(F‖X) is an element of Sαβ1β2
with associated measure

φ
η
2 defined by

φ
η
2(E) =

∫

E

exp
{

α2γ2
2‖vh3 −Bvh3

‖22 + αγ2(η2 + η1)Bvh3

}

df(v)

for E ∈ B(L2[0, T ]).

Proof. By using equations (2.9) and (3.1), we have

T
h1,h2

γ1,β1
(T h3,h4

γ2,β2
(F‖X)(·, η1)‖X)(y, η2)

=

∫

C0[0,T ]

∫

C0[0,T ]

[
∫

L2[0,T ]

exp
{

αβ1β2〈vh2h4, y〉+ αγ2〈vh3 −Bvh3
, w〉

+ αγ2η1Bvh3
+ αγ1β2〈vh1h4 −Bvh1h4

, x〉

+ αγ1β2η2Bvh1h4

}

df(v)

]

dm(x)dm(w)

=

∫

L2[0,T ]

exp
{

αβ1β2〈vh2h4, y〉+ αγ2η1Bvh3
+ αγ1β2η2Bvh1h4

}

·
[
∫

C0[0,T ]

exp
{

αγ1β2〈vh1h4 −Bvh1h4
, x〉

}

dm(x)

]

·
[
∫

C0[0,T ]

exp
{

αγ2〈vh3 −Bvh3
, w〉

}

dm(w)

]

df(v)
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=

∫

L2[0,T ]

exp
{

αβ1β2〈vh2h4, y〉+ αγ2η1Bvh3
+ αγ1β2η2Bvh1h4

+
α2γ2

1β
2
2

2
‖vh1h4 −Bvh1h4

‖22 +
α2γ2

2

2
‖vh3 −Bvh3

‖22
}

.

Since h3(t) = h1(t)h4(t) on [0, T ] and γ2 = γ1β2, the last expression equation
above is equal to
∫

L2[0,T ]

exp
{

αβ1β2〈vh2h4, y〉+α2γ2
2‖vh3−Bvh3

‖22+αγ2(η2+η1)Bvh3

}

df(v).

Hence by Definition 2.3, we have

T
h1,h2

γ1,β1
(T h3,h4

γ2,β2
(F‖X)(·, η1)‖X)(y, η2) = T

h3,h2h4√
2γ2,β1β2

(F‖X)
(

y,
η2+η1√

2

)

.

Thus the equation (3.9) is established. Using the similar method in the proof
of Theorem 3.3, both sides of the equation (3.5) exists. Also, equation (3.10)
becomes

∫

L2[0,T ]

exp
{

αβ1β2〈vh2h4, y〉
}

dφ
η
2(v).

Hence equation (3.9) above is an element of Sαβ1β2
because φ

η
2 is an element

of M(L2[0, T ]). �

In our next theorem, we obtain the conditional convolution product of func-
tionals in Sα.

Theorem 3.6. Let F and G be elements of Sα. Let X be given by equation

(2.6). Then for all (ρ, τ) ∈ Eα, the conditional convolution product ((F ∗s1s2
G)ρ,τ‖X) exists and is given by the formula

((F ∗s1s2 G)ρ,τ‖X)(y, η)(3.11)

=

∫

L2[0,T ]

∫

L2[0,T ]

exp
{

ατ〈(v + u)s2, y〉+
α2ρ2

2
‖(v − u)s1 −B(v−u)s1‖22

+ αρηB(v−u)s1

}

df(v)dg(u)

for s-a.e. y ∈ C0[0, T ] and a.e. η ∈ R. Furthermore ((F ∗s1s2 G)ρ,τ‖X) is an

element of Sατ .

Proof. By using equations (2.7) and (2.10), we have

((F ∗s1s2 G)ρ,τ‖X)(y, η)

=

∫

C0[0,T ]

F
(

τZs2 (y, ·) + ρZs1

(

x(·) − ·
T
x(T ) +

·
T
η
))

·G
(

τZs2(y, ·)− ρZs1

(

x(·) − ·
T
x(T ) +

·
T
η
))

dm(x)

=

∫

L2[0,T ]

∫

L2[0,T ]

exp
{

ατ〈(v + u)s2, y〉+ αρη(Bvs1 −Bus1 )
}



1570 H. S. CHUNG, I. Y. LEE, AND S. J. CHANG

·
[
∫

C0[0,T ]

exp
{

αρ〈(v − u)s1 − (Bvs1 −Bus1), x〉
}

dm(x)

]

df(v)dg(u)

=

∫

L2[0,T ]

∫

L2[0,T ]

exp
{

ατ〈(v + u)s2, y〉+ αρηB(v−u)s1

+
α2ρ2

2
‖(v − u)s1 −B(v−u)s1‖22

}

df(v)dg(u).

Let a set function φ
η
3 : B(L2[0, T ]× L2[0, T ]) → C be defined by

φ
η
3(E) =

∫

E

exp
{α2ρ2

2
‖(v − u)s1 −B(v−u)s1‖22 + αρηB(v−u)s1

}

df(v)dg(u)

for E ∈ B(L2[0, T ] × L2[0, T ]). Then φ
η
3 is a complex Borel measure on

B(L2[0, T ] × L2[0, T ]). Now we define a function ϕ : L2[0, T ] × L2[0, T ] →
L2[0, T ] by ϕ(u, v) = u+ v. Let φ̃ = φ

η
3 ◦ ϕ−1. Then φ̃ belongs to M(L2[0, T ])

since (ρ, τ) ∈ Eα. So

((F ∗s1s2 G)ρ,τ‖X)(y, η) =

∫

L2[0,T ]

exp{ατ〈ws2, y〉}dφ̃(w).

Hence ((F ∗s1s2G)ρ,τ‖X) exists and is given by (3.11) and it belongs to Sατ . �

Remark 3.7. The main result in [5, Theorem 3.3] follows immediately from
Theorem 3.6 above by choosing s1(t) = s2(t) = 1 on [0, T ], τ = 1√

2
and

ρ = γ√
2
.

4. Relationships between two concepts

In Section 3, we introduced the conditional transform with respect to the
Gaussian process and the conditional convolution product. In this section,
we establish the relationships between exactly two of three concepts of the
conditional transform, conditional convolution product and the first variation
for functionals.

In our next theorem, we obtain the conditional transform with respect to the
Gaussian process involving the conditional convolution product of functionals
in Sα.

Theorem 4.1. Let F , G and X be as in Theorem 3.3. Assume that τγ = ρ

and h1(t)s2(t) = s1(t) on [0, T ]. Then for all (ρ, τ) ∈ Eα, (γ, β) ∈ Eατ and

(ρ, βτ) ∈ Eα,

T
h1,h2

γ,β (((F ∗s1s2 G)ρ,τ‖X)(·, η1)‖X)(y, η2)(4.1)

= T
s1,h2s2√
2ρ,βτ

(F‖X)
(

y,
η2+η1√

2

)

T
s1,h2s2√
2ρ,βτ

(G‖X)
(

y,
η2−η1√

2

)

for s-a.e. y ∈ C0[0, T ] and a.e. η1, η2 ∈ R. Also, both sides of the expression in

equation (4.1) are given by the formula
∫

L2[0,T ]

∫

L2[0,T ]

exp
{

αβτ〈(v + u)h2s2, y〉+α2ρ2(‖vs1−Bvs1‖22+‖us1−Bus1‖22)
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+ αρ(η2B(v+u)s1 + η1B(v−u)s1 )
}

df(v)dg(u).

Proof. First by using equations (2.9), (2.10) and the Fubini theorem, we obtain
that

T
h1,h2

γ,β (((F ∗s1s2 G)ρ,τ‖X)(·, η1)‖X)(y, η2)

(4.2)

=

∫

C0[0,T ]

∫

C0[0,T ]

F
(

τγZh1s2(x, ·)− τγBh1s2x(T ) + τγη2Bh1s2

+ τβZh2s2(y, ·) + ρZs1(w, ·) − ρBs1w(T ) + ρη1Bs1

)

·G
(

τγZh1s2(x, ·) − τγBh1s2x(T ) + τγη2Bh1s2

+ τβZh2s2(y, ·)− ρZs1(w, ·) + ρBs1w(T )− ρη1Bs1

)

dm(w)dm(x)

=

∫

L2[0,T ]

∫

L2[0,T ]

exp
{

ατβ〈(v+u)h2s2, y〉+αρη1B(v−u)s1+ατγη2B(v+u)h1s2

}

·
[
∫

C0[0,T ]

exp
{

ατγ〈(v + u)h1s2 −B(v+u)h1s2 , x〉
}

dm(x)

]

·
[
∫

C0[0,T ]

exp
{

αργ〈(v − u)s1 −B(v−u)s1 , w〉
}

dm(w)

]

df(v)dg(u)

=

∫

L2[0,T ]

∫

L2[0,T ]

exp
{

αβτ〈(v + u)h2s2, y〉+ α2ρ2(‖vs1 −Bvs1‖22

+ ‖us1 −Bus1‖22) + αρ(η2B(v+u)s1 + η1B(v−u)s1)
}

df(v)dg(u).

Next, using equation (3.7), we have

T
s1,h2s2√
2ρ,βτ

(F‖X)
(

y,
η2+η1√

2

)

(4.3)

=

∫

L2[0,T ]

exp
{

αβτ〈vh2s2, y〉+ α2ρ2‖vs1 −Bvs1‖22 + αρ(η2 + η1)Bvs1

}

df(v)

and

T
s1,h2s2√
2ρ,βτ

(G‖X)
(

y,
η2−η1√

2

)

(4.4)

=

∫

L2[0,T ]

exp
{

αβτ〈uh2s2, y〉+ α2ρ2‖us1 −Bus1‖22 + αρ(η2 − η1)Bus1

}

dg(u).

Thus, equation (4.1) follows from equations (4.2)–(4.4). Since (ρ, τ) ∈ Eα,
(ρ, βτ) ∈ Eα and hypothesis of Remark 3.2, the both sides of the expressions
in equation (4.1) exists. �
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Remark 4.2. The main result in [5, Theorem 3.3] follows immediately from
Theorem 4.1 above by choosing hj(t) = sj(t) = 1(j = 1, 2) on [0, T ], τ = 1√

2

and ρ = γ√
2
.

The following theorem follows immediately from Theorems 3.5 and 4.1.

Theorem 4.3. Let F and X be as in Theorem 4.1. Assume that τγ = ρ,

γ =
√
2ρβ, s1(t) = h1(t)s2(t) and h1(t) = s1(t)h2(t) on [0, T ]. Then for all

(γ, β) ∈ Eα ∩ Eαβτ , (ρ, τ) ∈ Eαβ, and (γ, β2τ) ∈ Eα,

T
h1,h2

γ,β (((T h1,h2

γ,β (F‖X)(·, η1) ∗s1s2 T h1,h2

γ,β (G‖X)(·, η2))ρ,τ‖X)(·, η3)‖X)(y, η4)

(4.5)

= T
h1,h

2

2
s2√

2γ,β2τ
(F‖X)

(

y,
η4+η3+

√
2η1

2

)

T
h1,h

2

2
s2√

2γ,β2τ
(G‖X)

(

y,
η4−η3+

√
2η2

2

)

for s-a.e. y ∈ C0[0, T ] and a.e. ηj(j = 1, 2, 3, 4) ∈ R. Also, both sides of the

expression in equation (4.5) are given by the formula
∫

L2[0,T ]

∫

L2[0,T ]

exp
{

αβ2τ〈(v + u)h2
2s2, y〉

+ α2γ2(‖vh1 −Bvh1
‖22 + ‖uh1 −Buh1

‖22)

+

√
2αγ(η4 + η3 +

√
2η1)

2
Bvh1

+

√
2αγ(η4 − η3 +

√
2η1)

2
Buh1

}

df(v)dg(u).

Proof. By using equation (4.1), it follows that

T
h1,h2

γ,β ((T h1,h2

γ,β (F‖X)(·, η1) ∗s1s2 T h1,h2

γ,β (G‖X)(·, η2))ρ,τ (·, η3)‖X)(y, η4)

= T
s1,h2s2√
2ρ,βτ

(

T
h1,h2

γ,β (F‖X)(·, η1)‖X
)(

y,
η4+η3√

2

)

· T s1,h2s2√
2ρ,βτ

(

T
h1,h2

γ,β (G‖X)(·, η1)‖X
)(

y,
η4−η3√

2

)

.

Also, applying equation (3.9) to the last expression above, we obtain

T
h1,h2

γ,β ((T h1,h2

γ,β (F‖X)(·, η1) ∗s1s2 T h1,h2

γ,β (G‖X)(·, η2))ρ,τ (·, η3)‖X)(y, η4)

= T
h1,h

2

2
s2√

2γ,β2τ
(F‖X)

(

y,
η4+η3+

√
2η1

2

)

T
h1,h

2

2
s2√

2γ,β2τ
(G‖X)

(

y,
η4−η3+

√
2η2

2

)

.

This proves the desired result. �

Remark 4.4. Let A ≡ {w ∈ C0[0, T ] : w(t) =
∫ t

0 u(s)ds for some u ∈ L2[0, T ]}.
Note that for all u, v ∈ L2[0, T ], we have that |(u, v)2| ≤ ‖u‖2‖v‖2. In addition,
for w ∈ A and v ∈ L2[0, T ], the PWZ integral 〈v, w〉 exists and is given by the
formula

〈v, w〉 =
∫ T

0

v(s)dw(s) =

∫ T

0

v(s)u(s)ds

and so |〈v, w〉| ≤ ‖v‖2‖u‖2.
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The following observation below will be very useful in the development of
our theorems. Let w ∈ A and let F be an element of Sα whose associated
measure f ∈ M(L2[0, T ]) satisfies the inequality

(4.6)

∫

L2[0,T ]

|α|‖v‖2|df(v)| < ∞.

Then δF is an element of Sα. Hence in this paper, we always assume that the
associated measure f ∈ M(L2[0, T ]) of F satisfies the condition (4.6).

In our next theorem, we establish that the conditional transform involving
the first variation equals the first variation of the conditional transform with
respect to the Gaussian process.

Theorem 4.5. Let F and X be as in Theorem 4.1. Assume that F satisfies

the hypothesis of Remark 4.4. Let h, s, l, m and hj(j = 1, 2, 3, 4) satisfy the

following conditions:

(1) h3(t) = h(t)h1(t),
(2) l(t)h4(t) = h(t)h2(t),
(3) m(t)h4(t) = s(t) on [0, T ].

Then for all (γ, β) ∈ Eα,

(4.7)

T
h1,h2

γ,β

(

δF
(

Zh(·, ·)|Zs(z, ·)
)

‖X
)

(y, η) =
1

β
δT

h3,h4

γ,β (F‖X)
(

Zl(y, ·)|Zm(z, ·), η
)

for s-a.e. y ∈ C0[0, T ] and a.e. η ∈ R. Also, both sides of the expression in

equation (4.7) are given by the formula
∫

L2[0,T ]

α〈vs, z〉 exp
{

αβ〈vhh2, y〉+
α2γ2

2
‖vhh1 −Bvhh1

‖22 + αγηBvhh1

}

df(v).

Furthermore equation (4.7) is an element of Sαβ with associated measure φ
η
4

defined by

φ
η
4(E) =

∫

E

α〈vs, z〉 exp
{α2γ2

2
‖vhh1 −Bvhh1

‖22 + αγηBvhh1

}

df(v)

for E ∈ B(L2[0, T ]).

Proof. First, using equations (2.5) and (2.9), we obtain that

T
h1,h2

γ,β

(

δF
(

Zh(·, ·)|Zs(z, ·)
)

‖X
)

(y, η)

(4.8)

=

∫

C0[0,T ]

δF
(

Zh

(

γZh1

(

x(·)− ·
T
x(T )+

·
T
η
)

+βZh2
(y, ·), ·

)

|Zs(z, ·)
)

dm(x)

=

∫

C0[0,T ]

∂

∂k

[
∫

L2[0,T ]

exp
{

αβ〈vhh2, y〉+ αγ〈vhh1 −Bvh1
, x〉
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+ αγηBvhh1
+ αk〈vs, z〉

}

df(v)

]∣

∣

∣

∣

k=0

dm(x)

=

∫

L2[0,T ]

α〈vs, z〉 exp
{

αβ〈vhh2, y〉+ αγηBvhh1

}

·
[
∫

C0[0,T ]

exp
{

αγ〈vhh1 −Bvh1
, x〉

}

dm(x)

]

df(v)

=

∫

L2[0,T ]

α〈vs, z〉 exp
{

αβ〈vhh2, y〉+
α2γ2

2
‖vhh1−Bvhh1

‖22+αγηBvhh1

}

df(v).

Next, using equations (2.5) and (3.3), it follows that

δT
h3,h4

γ,β (F‖X)
(

Zl(y, ·)|Zm(z, ·), η
)

(4.9)

=
∂

∂k

[

T
h3,h4

γ,β (F‖X)
(

Zl(y, ·) + kZm(z, ·), η
)]∣

∣

∣

k=0

=
∂

∂k

[
∫

L2[0,T ]

exp
{

αβ〈vlh4, y〉+
α2γ2

2
‖vh3 −Bvh3

‖22

+ αγηBvh3
+ αβk〈vh4m, z〉

}

df(v)

]∣

∣

∣

∣

k=0

=

∫

L2[0,T ]

αβ〈vh4m, z〉 exp
{

αβ〈vlh4, y〉+
α2γ2

2
‖vh3−Bvh3

‖22+αγηBvh3

}

df(v).

Thus, equation (4.7) follows from equations (4.8) and (4.4). �

Remark 4.6. The main result in [5, Theorem 4.2] follows immediately from
Theorem 4.5 above by choosing h1 = h2 = 1.

The following theorem follows immediately from Theorems 3.5 and 4.5.

Theorem 4.7. Let F and X be as in Theorem 4.5. Let h, s, l, m and hj(j =
1, 2, 3, 4, 5, 6) satisfy the following conditions:

(1) h5(t) = h(t)h3(t),
(2) l(t)h6(t) = h(t)h2(t)h4(t),
(3) m(t)h6(t) = s(t) on [0, T ].

Then for all (γ2, β2) ∈ Eα and (γ2, β1β2) ∈ Eα,

T
h1,h2

γ1,β1

(

T
h3,h4

γ2,β2

(

δF
(

Zh(·, ·)|Zs(z, ·)
)

‖X
)

(·, η1)‖X
)

(y, η2)(4.10)

=
1

β1β2
δT

h5,h6√
2γ2,β1β2

(F‖X)
(

Zl(y, ·)|Zm(z, ·), η2+η1√
2

)

for s-a.e. y ∈ C0[0, T ] and a.e. η1, η2 ∈ R. Also, both sides of the expression in

equation (4.10) are given by the formula
∫

L2[0,T ]

α〈vs, z〉 exp
{

αβ1β2〈vhh2h4, y〉+ α2γ2
2‖vhh3 −Bvhh3

‖22
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+ αγ2(η2 + η1)Bvhh3

}

df(v).

5. Relationships between three concepts

In Section 4, we obtained relationships between exactly two of the three
concepts of conditional transform, conditional convolution product and first
variation of functionals on Sα. In this section, we establish all possible rela-
tionships between all three of these concepts.

In this section, to simplify the expressions, we will only state the formulas
without conditions for existences.

Formula 5.1. Let F and X be as in Theorem 4.5. Let h, s, l, m and hj

(j = 1, 2, 3, 4) satisfy the following conditions:

(1) τγ = ρ,
(2) h1(t)s2(t) = l(t)h3(t) = s1(t),
(3) h(t)h2(t)s2(t) = l(t)h4(t),
(4) m(t) = h2(t)s2(t)s(t) on [0, T ].

Then

δT
h1,h2

γ,β (((F ∗s1s2 G)ρ,τ‖X)(·, η1)‖X)
(

Zh(y, ·)|Zs(z, ·), η2
)

= T
s1,h2s2√
2ρ,τβ

(F‖X)
(

Zh(y, ·), η2+η1√
2

)

τβT
h3,h4√
2ρ,τβ

(

δG
(

Zl(·, ·)|Zm(z, ·)
)

‖X
)(

y,
η2−η1√

2

)

+τβT
h3,h4√
2ρ,τβ

(

δF
(

Zl(·, ·)|Zm(z, ·)
)

‖X
)(

y,
η2+η1√

2

)

T
s1,h2s2√
2ρ,τβ

(G‖X)
(

Zh(y, ·), η2−η1√
2

)

.

Formula 5.2. Let F and X be as in Theorem 4.5. Let h, s, l, m and hj

(j = 1, 2, 3, 4) satisfy the following conditions:

(1) τγ = ρ,
(2) h1(t)s2(t) = s1(t),
(3) h3(t) = h(t)s1(t),
(4) l(t)h4(t) = h(t)h2(t)s2(t),
(5) m(t)h4(t) = s(t) on [0, T ].

Then

T
h1,h2

γ,β

(((

δF
(

Zh(·, ·)|Zs(z, ·)
)

∗s1s2 δG
(

Zh(·, ·)|Zs(z, ·)
))

ρ,τ
‖X

)

(·, η1)‖X
)

(y, η2)

=
1

β2
δT

h3,h4√
2ρ,τβ

(F‖X)
(

Zl(y, ·)|Zm(z, ·), η2+η1√
2

)

δT
h3,h4√
2ρ,τβ

(G‖X)
(

Zl(y, ·)|Zm(z, ·), η2−η1√
2

)

.

Formula 5.3. Let F and X be as in Theorem 4.5. Let h, s, l, m and hj

(j = 1, 2, 3, 4) satisfy the following conditions:

(1) τγ = ρ,
(2) h3(t)s2(t) = s1(t),
(3) h3(t) = h(t)h1(t),
(4) l(t)h4(t) = h(t)h2(t),
(5) m(t)h4(t) = s(t) on [0, T ].
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Then

T
h1,h2

γ,β

(

δ
((

(F ∗s1s2 G)ρ,τ‖X
)

(·, η1)
)(

Zh(·, ·)|Zs(z, ·)
)

‖X
)

(y, η2)

= T
s1,h2s2√
2ρ,γβ

(F‖X)
(

Zl(y, ·), η2+η1√
2

) 1

β
δT

s1,h2s2√
2ρ,γβ

(G‖X)
(

Zl(y, ·)|Zm(z, ·), η2−η1√
2

)

+
1

β
δT

s1,h2s2√
2ρ,γβ

(F‖X)
(

Zl(y, ·)|Zm(z, ·), η2+η1√
2

)

T
s1,h2s2√
2ρ,γβ

(G‖X)
(

Zl(y, ·), η2−η1√
2

)

.
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