Bull. Korean Math. Soc. 35 (1998), No. 1, pp. 99-117

L; ANALYTIC FOURIER-FEYNMAN
TRANSFORM ON THE FRESNEL
CLASS OF ABSTRACT WIENER SPACE

JAE MOON AHN

ABSTRACT. Let (B, H,p1) be an abstract Wiener space and F(B)
the Fresnel class on (B, H, p1) which consists of furictionals F of the
form:

F(z) = /Hexp{i(h,x)N}df(h), z € B,

where (-, )™ is a stochastic inner product between H and B, and f
is in M(H), the space of complex Borel measures on H.

We introduce an L; analytic Fourier-Feynman transform on F(B)
and verify the existence of the L) analytic Fourier-Feynman trans-
forms for functionls in F(B). Furthermore, we introduce a con-
volution on F(B), and then verify the existence of the L1 analytic
Fourier-Feynman transform for the convolution product of two func-
tionals in F(B), and we establish the relationships between the L;
analytic Fourier-Feynman transform of the convolution product for
two functionals in F(B) and the L; analytic Fourier-Feynman trans-
forms for each functional. Finally, we show that most results in [7]
follows from our results in Section 3.

§1. Introduction

The study of an L; analytic Fourier-Feynman transform on a classical
Wiener space was initiated by Brue in [1]. In [2] Cameron and Storvick
introduced an L, analytic Fourier-Feynman transform on a classical
Wiener space. In [8] Johnson and Skoug developed an L, analytic
Fourier-Feynman transform theory for 1 < p < 2 which extended the
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results in [2] and established several relationships between the L, and
Ly analytic Fourier-Feynman transform theories. In (6, 7] Huffman,
Park and Skoug developed an L, analytic Fourier-Feynman transform
theory on certain classes of functionals defined on a classical Wiener
space and they defined a convolution product for two functionals in
the classes and then verified that the Fourier-Feynman transform of
the convolution product of two functionals is the product of Fourier-
Feynman transforms of each functional.

It is well known [9] that every element in the Fresnel class of the
abstract Wiener space (B, H, p;) has the analytic Wiener and Feynman
integral and the Fresnel class is an analogue of the Banach algebra S on
the classical Wiener space C,[0, T introduced by Cameron and Storvick
[3]. Moreover, the analytic Fourier-Feynman transform is based on the
analytic Wiener and Feynman integral.

In this paper, we intend to make a study on an L; analytic Fourier-
Feynman transform on the Fresnel class of the abstract Wiener space.
Also we define the convolution product of certain functionals on the
abstract Wiener space and establish the relationships between the L;
analytic Fourier-Feynman transforms of each functional in F (B) and
the L) analytic Fourier-Feynman transform of their convolution prod-
uct. Finally, we show that most results in [7] follows from our results
in Section 3.

§2. Definitions and Preliminaries

Let H be a real separable infinite dimensional Hilbert space with
norm |- | = y/(:,-) and let || - ||, denote a fixed measurable norm on H
(for definition see [11]). Let B be the completion of H with respect to
the measurable norm ||- ||, and p:(t > 0) the Gauss measure on H with
variance t. Then yu, induces a cylinder set measure i: on B which in
turn extends to a countably additive measure p; on (B, B(B)), where
B(B) is the Borel o-algebra of Borel sets in B. p; is called the Wiener
measure with variance ¢ and it has the following properties:

pst(E) = Pt(S*l/zE) for s > 0,

(1) p(~E) = pu(E).
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Ly analytic Fourier-Feynman transform on the Fresnel class

Let {e,) denote a complete orthonormal systera on H such that e,’s
are in B*, the topological dual space of B. For each h € H and z € B,
we define a stochastic inner product (-,-)~ between H and B as follows :

n

lim h,ex)(ex, ), if the limit exist
(2.2) (h,z)~ = { nroo k§1< k)(ex,T) i ists
0, otherwise,

where (-, -) is the natural dual pairing between B* and B.

It is well known [9, 10] that for every h € H, (h, z)™ exists for p;-a.e.
z € B, and is a Borel measurable functional on B having a Gauss-
ian distribution with mean zero and variance t|h|? with respect to the
Wiener measure p;. Furthermore, it is easy to show that for each real
number «, (ah,z)™ = a(h,z)™~ = (h,azr)™ holds for every h € H and
r € B.

Let (B, H, p;) be an abstract Wiener space. For each A > 0, let S,(B)
be the completion of B(B) with respect to py, and let Ny(B) = {A €
Sx(B) : pa(A) = 0}. Let §(B) = )QOS,\(B), and N(B) = /\QON,\(B).

Every set in S(B) ( or N(B) ) is called a scale-invariant measurable ( or
scale-invariant null ) set. A real ( or complex )-valued functional F on
B is called a scale-invariant measurable functional if F is measurable
with respect to S(B). A property that holds except on a scale-invariant
null set is said to hold scale-invariant almost everywhere (briefly, s-a.e.).
If two functionals F' and G are equal s-a.e., then we write F ~ G. It
is easy to show that this relation ~ is an equivalence relation on the
class of functionals on B. For a functional F on B, we will denote by
[F] the equivalence class of functionals which are equal to F s-a.e..

DEFINITION 2.1. Let (B, H,p1) be an abstract Wiener space and let
M(H) denote the space of all complex Borel measures on H. Consider
the functional F' defined for s-a.e. £ € B by the formula

(23) F@) = [ exp{ih o)} df(h),
H
where f is in M(H). The class F(B) consists of equivalence classes [F]

of functionals which are equal to F s-a.e. for some f in M(H). We
call 7(B) the Fresnel class of the abstract Wiener space (B, H,p;).
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REMARKS. (1) As is customary, we will identify a functional with
its equivalence class and think of F(B) as a class of functionals on B
rather than as a class of equivalence classes.

(2) M(H) is a Banach algebra over the complex field under the total
variation norm || -|| where the convolution is taken as the multiplication
(see [5]). There exists an isomorphism of Banach algebras between
M(H) and F(B) [9 ; Proposition 2.1].

Throughout this paper, let R and C denote the real numbers and
the complex numbers, respectively, and let C, = {z € C: Re(z) > 0}
and CY = {z € C: 2 # 0, Re(z) > 0}, where Re(z) is the real part of
the complex number 2.

Let F' be a complex-valued scale-invariant measurable functional on
the abstract Wiener space (B, H, p1) such that the Wiener integral

J[F; A] :/BF(A—V%) dp; (z)

exists as a finite number for all A > 0. If there exists an analytic function
J*[F; A] of X in the half-plane C.; such that J*[F'; Al=J[F; \] for
all A > 0, then we define this analytic extension J*[F; Al of J[F; A]
to be the analytic Wiener integral of F' over B with parameter A and
we write

anwy
/ F(z)dpi(z) = I°™[F; A\ = J'[F; A]
B
forall A e C,.

Let g be a nonzero real number and F a functional on B such that
the analytic Wiener integral Z°"“[ F'; \] exists for all A € C+. If the
following limit exists, then we call it the analytic Feyman integral of F
over B with parameter ¢ and we write

anfq,
/ F(z)dpi(z) =I°™[F; q] = lim I F; A,
B A— —iq

where A approaches —ig through C, .
Now we are ready to define an L; analytic Fourier-Feynman trans-
form on the Fresnel class F(B).
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L) analytic Fourier-Feynman transform on the Fresnel class

DEFINITION 2.2. Let F' be a complex-valued functional on the ab-

stract Wiener space (B, H,p;) . For each t € C,, we define a transform
FiF of F as follows :

(2.4) (FeF)(y) = T°™[F(- +y); t],

for y € B, if it exists. Now we define the L, analytic Fourier-Feynman
transform FoF of F by the formula :

(2.5) (FF)w) = lim (FF)(w)

for s-a.e. y € B, where q is nonzero real number and t approaches —ig
through C .

We finish this section by giving the definition of the convolution
product of two functionals on the abstract Wiener space (B, H, p).

DEFINITION 2.3. Let F and G be two complex-valued functionals
on the abstract Wiener space (B, H,p;). For each t € C} , we define
their convolution product (F x G); as follows :

When ¢ belongs to C,,

26) (PO =T [F( v+ ) 6(75- ) ¢]
for y € B, if it exists.

When t = —iq (¢ € R — {0} ),
1) (PO =T [F(S5w+) 655 -)i ]

for y € B, if it exists.

§3. L1 Analytic Fourier-Feynman Transform and Convolu-
tion

In this section, we first show that the L; analytic Fourier-Feynman
transform exists for functionals in the Fresnel class F(B) and it belongs
to the Fresnel class F(B) . And we establish the relationships between
the L; analytic Fourier-Feynman transform of the convolution product
for two functionals and the L; analytic Fourier-Feynman transforms for
each functional.

103



Jae Moon Ahn

‘THEOREM 3.1. Let F' € F(B) be given by the formula (2.3). Then
the transform JF F' exists for allt € C, and is expressed by the formula

6D FERW = [ ew{- g b+ ihy) }a

for s-a.e. y € B, where f is in M(H).

Moreover, the Ly analytic Fourier-Feynman transform F,F(q €
R — {0}) belongs to the Fresnel class F(B), and it is expressed by
the formula

62 EF) = [ exn{- i+ ith )

for s-a.e. y € B, where f is in M(H).

Proof. We first show that the transform F,F exists for t > 0. Using
Fubini’s Theorem and the well-known integration formula :

2
(3.3) /;3 exp{it(h,z)~} dp(x) = exp{—%]hﬁ}3 he H, teR,

we obtain, for all £ > 0,

ERw = [ [ ewfi(h 2 +0) }arw ane)
:/I.{exp{i(h,y)"’}{‘/Bexp{i(h,%)N}dpl(m)}df(h)

= /H e:’cp{—§12|h|2 + i(h,y)“} df (h).

for s-a.e.y € B.

Now we can verify with the help of Morera’s Theorem that the last
expression is an analytic function of ¢ throughout C, and is a bounded
continuous function of ¢ throughout C7 for all y € B, because f is in
M(H). Therefore the transform F;F exists for all t € C,, and we can
show that the formulas (3.1) and (3.2) hold.
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L, analytic Fourier-Feynman transform on the Fresnel class

Finally we shall show that 7, F (¢ € R — {0}) belongs to F(B).
Define a set function 1 : B(H) — C as follows :

n(B) = [ ew{-g W}, E e B,

where B(H) is the Borel o-algebra of H. Then it is easy to show that
7 belongs to the Banach algebra M(H) of complex Borel measures on
B(H). And the formula (3.2) is expressed as follows :

(FoF)w) = [ explith,u)™} dnh)
Thus F,F belongs to F(B). O

REMARKS. (1) We define the transform F7*F' of the functional F' on
the abstract Wiener space (B, H,p;) as follows :

FoF = (Zeo- o R)E),

T

that is, F{* means the n-times composition of F;, wheren =0, 1, 2, ---
and t > 0. When n = 0, F2F is equal to F' ; When n =1, FIF is
equal to Fy F.

When ¢ belongs to C7, the transform F;'F' means the analytic ex-
tension of F/*F (t > 0) as the function of t € C7}.

We have already shown that for every F' € F(B), the transforms
FiF(t € Cy) and F,F(q # 0) belong to the Fresnel class F(B)
again. Hence, using the mathematical induction, we can obtain the
following result :

For every F € F(B) and t € C, the formula

n i -
6o (FrR) = [ exp{- gl +ilhy) | dr(A)
H
holds for s-a.e.y € B, where n = 0,1,2,---. In particular, when ¢t =
—ig(g € R~ {0}),
(35) |
7 - : n . _E 2 - ~
F ) = tim (FPF)@) = [ e{ -5+ iy} ).
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When n =1 in the formulas (3.4) and (3.5), the formulas (3.4) and
(3.5) are reduced to the formulas (3.1) and (3.2), respectively.

(2) From the formulas (3.1) and (3.2) in Theorem 3.1, we deduce the
expression for the analytic Wiener integral and the analytic Feynman
integral of a functional F in F(B) as follows :

Taking t = z (2 € C;) and y = 0 in the formula (3.1), we obtain the
formula :

FLF(0) = /H exp{—iw?} df(h) = I°"[F ; 2],

This coincides with the analytic Wiener integral of F' € F (B) which is
obtained in [9; Proposition 2.2 ].
Next taking y = 0 in the formula (3.2), we obtain the formula :

Fop©) = [ e~ 102} i) =711 F1q).

This coincides with the analytic Feynman integral of F € F (B) which
is obtained in [9; Proposition 2.2 ].

THEOREM 3.2. Let F' and G be in F(B) which are given by the
formula (2.3). Then the convolution product (F x G); exists for each
t € CY and is expressed by the formula

t

36) (F+O)y) = [ exp{=flumvl+ T (wsv,0)”} i) o)

for s-a.e. y € B, where f and g are in M(H).

Furthermore, for each t € C7%, the convolution product (F * G),
belongs to the Fresnel class F(B). In particular, when t = —iq(q €
R —{0}), the convolution product (F x G, is expressed by the formula

?

87) (Fe@) = [ ep{—Lumvls L uo.y)} ar) doto)

H?

for s-a.e. y € B, where f and g are in M(H).
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Ly analytic Fourier-Feynman transform on the Fresnel class

Proof. Proceeding as in the proof of Theorem 3.1, for all ¢ > 0 and
s-a.e. y € B, we have

(F *G)i(y) :/BF(-\%(N %>)G(:/}_5(y - 7)) dn@)
= [ {5+ 2) Yar)
. [/H exp{—\j—_z-(v,y— %)N}dg(v)] dp: ()
:/m exp{%(u—i—v,y)w}
. UB exp{\/%z(u _ v,x)N} dpl(.r)] df (u) dg(v)
_ /H exp{—zll—t-Ju—vF-i- %(uﬂ,yr}df(u) dg(v).

Now we can verify with the help of Morera’s Theorem that the last
expression is an analytic function of ¢ throughout C, , and is a bounded
continuous function of ¢ over C7 for all y in B, beacuse f and g are
in M(H). By Definition 2.3, we conclude that the formulas (3.6) and
(3.7) hold.

Next we shall show that (F' x G); belongs to F(B) for every t € C7.
Let ¢ be in C7} and define a set function v : B(H?) — C by

(B = /Eexp{~%|u—v|2}df(u) dg(v), E e B(H?).

Then v is a complex Borel measure on B(H?). Now define a function
@: H? — H as follows :

olu,v) = %(u—kv), (u,v) € HZ.

Then ¢ is continuous , and so it is a Borel measurable function. Hence
pu=v-p-1isacomplex Borel measure on B(H). Using the Change of
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Variable Formula, we have

(F+G)uly -/exp{ |u—v12+ﬁ(u+vy> }df (u) do(v)

:/H2exp{\/§(u+v y)™ }du(u,v)
_ /H exp{i(w, y)™ } du(w)

Thus (F * G); belongs to F(B). O

Our next theorem shows that the L, analytic Fourier-Feynman trans-
form of the convolution product for two functionals in the Fresnel class
F(B) is a product of transforms for each functional.

THEOREM 3.3. Let F' and G be as in Theorem 3.2. Then the trans-
form F(F + G), exists for allt € C, , and is given by the formula

(3.8) (Fi(F*G)i)(y) = (ftF)(—\ny‘) ' (ftGI’(%)

for s-a.e. y € B.
Moreover, the L1 analytic Fourier-Feynman transform Fo(FxG),(q €
R — {0}) is given by the formula

(3.9) (Fo(F x G)qg)(y) = (f'qF)( ) ' (qu)(%)

Sl

for s-a.e. y € B.

Proof. We first show that the formula (3.8) holds for all £ > 0. Using
Fubini’s Theorem and the formulas (3.1), (3.3) and (3.6), we have, for
s-a.e. y € B,

F(F+ €)W = [ (F+6x(Z+) dnilz)
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Ly analytic Fourier-Feynman transform on the Fresnel class
= _/13./1{2 exp{—%tlu —v]? + é(u-}— v, —\% +y)~}
- df (u) dg(v) dp: (x) '

= /H? exp{—%thz —v)? + Vz—i(u + v,y)“"}

. [-/13 exp{\/L;‘z_t(u + v,;c)”} dm (a:)] df (u) dg(v)

= [ exo{ =g (ul + o)+ S5 (ut )

- df(u) dg(v)
=70 J5) RGO (J5)

Since F:F' and F;G are analytic functions of ¢t over C,;, we conclude
that F¢(F * G); is an analytic function of ¢ over C,. Moreover F.F'
and F;G are bounded continuous functions of ¢ over C7 for all y € B
and so is F(F * G);. Therefore F;(F * G); exists for all t € C7, and
we obtain the formulas (3.8) and (3.9). O

In our next theorem we establish an interesting Parseval’s identity
for two functionals in the Fresnel class F(B).

THEOREM 3.4. Let F' and G be as in Theorem 3.2. Then the fol-
lowing Parseval’s identity

(3.10) fLAf“F*(DJUDzaE&F(;E)-G(—;é))m)

holds for each g € R — {0}.

Proof. First of all, we show that the transform F;(Fq(F * G)4)(0)
exists for all ¢ > 0 and ¢ € R — {0}. Using Fubini’s Theorem and the
formulas (3.2), (3.3) and (3.9), we have, for all ¢ >> 0,

Fo(F4(F % G)g)(0)
=F((FF) (=)  (F6)(==) )0
)dpl( )

= [ Fm(55) - e

&\
Sl

3
g
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:L[/}L{exp{—i|u|2+z'(u,——\/;%)w}df(u)]
([t
ool K ol e o]

- df(u) dg(0)
= [ exp{=g-(uP + o) = g+ oP }dr(w) do(w)

Since the last expression has an analytic extension for ¢ over C,,
and is a bounded continuous function of ¢ over C7/, by letting t — iq
(g € R —{0}) through C,, we have

F_q(Fo(F % G)y)(0) = tl_ifriqut (Fo(F % G)q)(0)
(3.11) i
= /H‘z exp{mz;ﬂu - v|2} df (u) dg(v).

Next we show that the transform F; (F(E)G(_ﬁ))(o) exists for
all ¢ > 0. Using the formula (3.3) and Fubini’s Theorem,

7(F(5)6(-5))©

:/BF(%)G(——\/J%) dpy (z)

e el o
(w02} @) @) doto

:/H? exp{—%m—v\ }df(u)dg(v).

Since the last expression has an analytic extension for ¢ over C,,
and is a bounded continuous function of ¢ throughout C7, by letting
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L, analytic Fourier-Feynman transform on the Fresnel class

t— —ig (g€ R— {0} ) through C,, we have
(3.12)

A(F() )0 = im 7 (7 () 6= 5)) o

= [ exo{-ylu—vP} drta) doto).

From the formulas (3.11) and (3.12), we have the desired result. O

COROLLARY 3.5. Let F' € F(B) be given by the formula (2.3). Then
the following formulas hold for each g € R — {0} :

f—q(fq(F*F)q)(O) :f—q( ( 2)) (0)
(3.13)
7(F(55) (- 7)) 0.
and
FoalFo(F + 10 @) = 7y ((7,F) (55) ) ©
(3.14(a) .
=7(F(75)) )
F_o(Fa1 % G) ) (0) = F_, ((F,6) (==)) (0)
(3.14(b)) ( ) (( )(‘/5))

Proof. By taking G = F in the formulas (3.9) and (3.10) we obtain
the formula (3.13). By taking G = 1 in the formulas (3.9) and (3.10)
we obtain the formula(3.14(a)) . By taking F' = 1 in the formulas (3.9)
and (3.10) we obtain the formula (3.14(b)). O

Because we have already proved that the L; analytic Fourier-Feynman
transform F, F' of F' in the Fresnel class F(B) belongs to F(B) again,

where g is in R — {0}, we can deduce the following theorem.
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THEOREM 3.6. Let F' and G be in F(B) which are given by the
formula (2.3). Then for each q € R — {0}, the formula

615 ((FF)*(FQ)_ W =7F (F(5) G(ﬁ))@)

holds for s-a.e.y € B.

Proof. With the help of the formulas (3.2), (3.3) and Fubini’s The-
orem, we first calculate the convolution product ((FoF) * (F, G)),(y)
for each t > 0 and s-a.e.y € B as follows :

((FoF) * (Fo()),(v)

(y
(50 2)) (- 2) o

. -/B exp{ﬁ(u — v,x)”} dpl(:z)] df (u) dg(v)
= [ ew{ Jstur v = o (1l ) - i ol } ) dofo)

But we can verify with the help of Morera’s Theorem that the last
expression is an analytic function of ¢ throughout C, and is a bounded
continuous function of ¢ throughout C7. Therefore, by letting ¢ —
iq(q € R — {0} ) through C,we have, s-a.e y € B,

(FoF) = (F4G)) _,(v) = lim (FF) » (F,6)),(9)

t— iq

(3.16) . .
= /H2 exp{ T(u +v,y)"~ — 4—q}u + U|2} df (u)dg(v).

oV
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Next let us calculate the transform F; (F (ﬁ) G (E))(y) for each
¢t > 0 and s-a.e y € B. Then we have , for each t > 0 and s-a.e. y € B,

@

:LQexp{-j—E(u+v, )~}[/BeXp{VZ—'%(uﬂ,z)N}dpl(x)]

- df (u) dg(v)

] 1
= /m exp{\—;_a(u +v,y)~ — 4—t|u + U|2} df (u) dg(v).
But we can verify with the help of Morera’s Theorem that the last
expression is an analytic function of ¢ throughout C, and is a bounded

continuous function of ¢ throughout C7. Therefore, by letting t — —iq
(g € R—{0}) through C,, we obtain, s-a.e.y € B,

(3.17) fq(F(ﬁ)G(;ﬁ))(y) :tliri‘iqft(p(:_‘ﬁ)a(?—i))(y)
‘ = /H2 exp{%(u—kv,y)w - 4—Zélu+v|2}df(u)dg(v).

From the formulas (3.16) and (3.17), we have the desired result. [

§4. Corollaries

In this section we apply our results in the preceding section to the
classical Wiener space to obtain some results in [7] as corollaries.
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Fix T > 0 and let B, = C,[0, 7] be the real separable Banach space of
all real-valued continuous functions f on the closed interval [0, T} which
vanish at 0 and equip B, with the uniform norm. Let (B,, W(B,), m,,)
be the classical Wiener space , where m,, is the Wiener measure on the
o-algebra W(B,) which is the completion of Borel o-algebra B(B,).

Put

= {f € C,[0,T]: f(t) = /tv(s)ds, visin Ly[0,T], t € [0,T] },

and define an inner product (-,-} on H, as follows -

i
<ﬂw::A (Df)(s) (Dg)(s)ds, f,g<H,,

where Df = %, the derivative of f. Then H, is a real separable infinite
dimensional Hilbert space , and (B,, H,,m,) is a typical example of
an abstract Wiener space (see [11]). It is well known [9] that for each
h € H,,

- -
(ha)” = [ (DR)(s) dals)
0
holds for s-a.e.x € H,, where fOT(Dh)(s) dxz(s) is the Paley-Wiener-
Zygmund stochastic integral of Dh (see [3]).

In [3) Cameron and Storvick introduced a Banach algebra S of func-
tionals on B, given by

T
S = {F . F(z) :/ exp{i/ v(s)dm(s)}df(v), fe M(LQ[O,T})}.
LZ[OT} 0
Let I be the unitary operator from L2[0,T] onto H, given by

¢
Iv(t) = / v(s)ds, forwve L[0,T] and ¢ € [0,T).
0

(41) F@).ANTGW{/ dz(s) } df (v
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for some f € M(L;[0,T)), then we have

F(z) :/ exp{i(h,x)N}d(foI'l)(h).

o

Conversely, if
F(z) = /H exp{i(h,z)~ } df (h)

for some f € M(H,), then we have

F(z) = /L o exp{i /0 " os) dx(s) } d(f o I)(v).

Thus we show that F' € S if and only if F' € F(B,) (see [9]).

COROLLARY 4.1. (Theorem 3.1 in [7]) Let F € S be given by the

formula (4.1). Then the L; analytic Fourier-Feynman transform Tq(l) ’a
exists for allg € R — {0} , and the following formula
(4.2)

T _ . T
PR = [ eofi [ o - o [ Pod}aw)
L»[0,T) 0 29 Jo
holds for s-a.e. y € B,.

Proof. Taking H = H,, FsF = Tq(l)F, and h = Iv for some
v € L3[0,T] in the formula (3.2) of Theorem 3.1, we have the desired
result. a

COROLLARY 4.2. (Theorem 3.2 in [7]) Let F and G be elements of
S with corresponding complex Borel measures f and g in M(L»[0,T)).
Then the convolution product (F' x G), exists for allg € R — {0}, and
the following formula

(F+Gn) = | von 73 / "0t + w(t) o))

: exp{_é /O o(t) — w(®)? dt} df (v) dg(w)

holds for s-a.e.y € B,.

(4.3)
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Proof. Taking H = H, and u = v and v = Iw for some v and w
in L2[0,7] in the formula (3.7) of Theorem 3.2, we have the desired
result. 0

COROLLARY 4.3. (Theorem 3.3 in [7]) Let F’ and G be as in Corol-
lary 4.2. Then, for all g € R — {0}, the following formula

(19 (TPFE)) = (TR () (106) ()

holds for s-a.e.y € B,.

Proof. Taking F,F = T( )F for every F' € S in the formula (3.9) of
Theorem 3.3, we have the des1red result. O

COROLLARY 4.4. (Theorem 3.4 in [7]) Let F and G be as in Corol-
lary 4.2. Then, for all ¢ € R — {0}, the Parseval’s identity

anf.q
[ a0 6),) @) malds)
CAOJW

anf.q
45 = /C (TOF)(2/v/3) (TVG) () V2) ma(dz)

0[07T]

anfq

_ / F(2/V2)G(~2/v/2) my(dz)

C,[0,T]
holds .

Proof. Taking F,F(0) = |, Can[{)"T z) my(dz) and FgF =T, W F for
every F' € S in the formula (3.10) of Theorem 3.4, we have the desired
result. a
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