• 제목/요약/키워드: convex metric space

검색결과 32건 처리시간 0.023초

ON FARTHEST POINTS IN METRIC SPACES

  • Narang, T.D.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2002
  • For A bounded subset G of a metric Space (X,d) and $\chi \in X$, let $f_{G}$ be the real-valued function on X defined by $f_{G}$($\chi$)=sup{$d (\chi, g)\in:G$}, and $F(G,\chi)$={$z \in X:sup_{g \in G}d(g,z)=sup_{g \in G}d(g,\chi)+d(\chi,z)$}. In this paper we discuss some properties of the map $f_G$ and of the set $ F(G, \chi)$ in convex metric spaces. A sufficient condition for an element of a convex metric space X to lie in $ F(G, \chi)$ is also given in this pope.

  • PDF

𝛿-CONVEX STRUCTURE ON RECTANGULAR METRIC SPACES CONCERNING KANNAN-TYPE CONTRACTION AND REICH-TYPE CONTRACTION

  • Sharma, Dileep Kumar;Tiwari, Jayesh
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제29권4호
    • /
    • pp.293-306
    • /
    • 2022
  • In the present paper, we introduce the notation of 𝛿-convex rectangular metric spaces with the help of convex structure. We investigate fixed point results concerning Kannan-type contraction and Reich-type contraction in such spaces. We also propound an ingenious example in reference of given new notion.

STRONG CONVERGENCE IN NOOR-TYPE ITERATIVE SCHEMES IN CONVEX CONE METRIC SPACES

  • LEE, BYUNG-SOO
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제22권2호
    • /
    • pp.185-197
    • /
    • 2015
  • The author considers a Noor-type iterative scheme to approximate com- mon fixed points of an infinite family of uniformly quasi-sup(fn)-Lipschitzian map- pings and an infinite family of gn-expansive mappings in convex cone metric spaces. His results generalize, improve and unify some corresponding results in convex met- ric spaces [1, 3, 9, 16, 18, 19] and convex cone metric spaces [8].

S-ITERATION PROCESS FOR ASYMPTOTIC POINTWISE NONEXPANSIVE MAPPINGS IN COMPLETE HYPERBOLIC METRIC SPACES

  • Atsathi, Thikamporn;Cholamjiak, Prasit;Kesornprom, Suparat;Prasong, Autchara
    • 대한수학회논문집
    • /
    • 제31권3호
    • /
    • pp.575-583
    • /
    • 2016
  • In this paper, we study the modified S-iteration process for asymptotic pointwise nonexpansive mappings in a uniformly convex hyperbolic metric space. We then prove the convergence of the sequence generated by the modified S-iteration process.

BEST PROXIMITY POINTS FOR CONTRACTIVE MAPPINGS IN GENERALIZED MODULAR METRIC SPACES

  • V. Anbukkarasi;M. Marudai;R. Theivaraman
    • Korean Journal of Mathematics
    • /
    • 제31권2호
    • /
    • pp.123-131
    • /
    • 2023
  • In this paper, we prove existence of best proximity points for 2-convex contraction, 2-sided contraction, and M-weakly cyclic 2-convex contraction mappings in the setting of complete strongly regular generalized modular metric spaces that generalize many results in the literature.

퍼지 집합 공간 위에서의 Skorokhod metric의 성질 (Some properties of the Skorokhod metric on the space of fuzzy sets)

  • 김윤경;박병인
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.21-24
    • /
    • 2001
  • In this paper, we investigate some properties of the Skorokhod metric on the space F(R$\^$p/) of upper semicontinuous fuzzy subsets of R$\^$p/ with compact support, which include the continuity of operations, the translation inveriance and convexity.

  • PDF

DEFORMATION SPACES OF CONVEX REAL-PROJECTIVE STRUCTURES AND HYPERBOLIC AFFINE STRUCTURES

  • Darvishzadeh, Mehdi-Reza;William M.Goldman
    • 대한수학회지
    • /
    • 제33권3호
    • /
    • pp.625-639
    • /
    • 1996
  • A convex $RP^n$-structure on a smooth anifold M is a representation of M as a quotient of a convex domain $\Omega \subset RP^n$ by a discrete group $\Gamma$ of collineations of $RP^n$ acting properly on $\Omega$. When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $B(M)$ homeomorphic to an open cell of dimension 16(g-1) (Goldman [2]). This cell contains the Teichmuller space $T(M)$ of M and it is of interest to know what of the rich geometric structure extends to $B(M)$. In [3], a symplectic structure on $B(M)$ is defined, which extends the symplectic structure on $T(M)$ defined by the Weil-Petersson Kahler form.

  • PDF

Some Notes on Lp-metric Space of Fuzzy Sets

  • Kim, Yun-Kyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권3호
    • /
    • pp.242-246
    • /
    • 2010
  • It is well-known that the space $E^n$ of fuzzy numbers(i.e., normal, upper-semicontinuous, compact-supported and convex fuzzy subsets)in the n-dimensional Euclidean space $R^n$ is separable but not complete with respect to the $L_p$-metric. In this paper, we introduce the space $F_p(R^n)$ that is separable and complete with respect to the $L_p$-metric. This will be accomplished by assuming p-th mean bounded condition instead of compact-supported condition and by removing convex condition.