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Abstract. The aim of this study is to establish some mean convergence theorems for

double array of fuzzy random variables in metric space endowed with a convex combination

operation under various assumptions.

1. Introduction

Mean convergence theorems for sequences of random variables have been
studied and extended to the array case by many researchers. For example,
Cabrera and Volodin [3] derived mean convergence theorems and weak laws of
large numbers for weighted sums of dependence random variables under the
condition of integrability and appropriate conditions on the array of weights,
Thanh [16] proved Lp-convergence for double arrays of independent random
variables under the conditions that the series of p-th order moments is conver-
gent or the random variables are dominated in distribution. In addition, vari-
ous mean convergence theorems for arrays of random variables or arrays of ran-
dom elements in Banach spaces were also established in [1, 6, 8, 9, 13, 20, 21].

Recently, Thuan and Quang [18] have proved the mean convergence theorem
for sequences of pairwise independent random elements in convex combination
spaces under the condition that the sequence of random elements is compactly
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uniformly r-th order integrable in Cesàro sense (r ≥ 1), this result extends the
corresponding result of Chen and Wang in [4] from Banach spaces to convex
combinatorial spaces. The convex combination space is a metric space endowed
with a convex combination operation and introduced by Terán and Molchanov
[14]. The class of these metric spaces is not only larger than the class of Banach
spaces but also larger than the class of hyperspace of compact subsets, as
well as the class of upper semicontinuous functions (fuzzy sets) with compact
support in Banach space. Since Puri and Ralescu [10] introduced the concept
of fuzzy random variables as a natural generalization of random sets, several
authors have studied limit theorems for fuzzy random variables. Continuing
in this direction, in this study we establish some results on mean convergence
for double arrays of fuzzy random variables in a convex combination space and
with or without compactly uniformly integrable condition.

This paper is organized as follows: In Section 2, we state and summa-
rize basic results in a convex combination space and some related concepts.
Main results, some results on mean convergence theorems for double arrays
of fuzzy random variables are established in Section 3. First, we give mean
convergence theorem for double arrays of levelwise pairwise independent and
(α, α+)-levelwise Cesàro r-th CUI (r ≥ 1) fuzzy random variables. Then, we
establish necessary and sufficient conditions for mean convergence of double
arrays of fuzzy random variables under the restrictive assumptions.

2. Preliminaries

Throughout this paper, (Ω,A, P ) is a complete probability space. For no-
tational convenience, for a, b ∈ R, max(a, b) and min(a, b) are denoted by a∨ b
and a ∧ b respectively. For A ∈ A, the notation I{A} (or IA) is the indica-
tor function of A. At first, we present a short introduction to the approach
given by Terán and Molchanov [14]. Let (X, d) be a metric space. Based on
X, introduce a convex combination operation which for all n ≥ 2, numbers
λ1, ..., λn > 0 satisfying

∑n
i=1 λi = 1, and all u1, ..., un ∈ X, this operation

produces an element of X, which is denoted by [λi, ui]
n
i=1 or [λ1, u1; ...;λn, un].

Assume that [1, u] = u for every u ∈ X and the following axioms are satisfied:

(CC.i) (Commutativity) [λi, ui]
n
i=1 = [λσ(i), uσ(i)]

n
i=1 for every permutation

σ of {1, ..., n};
(CC.ii) (Associativity)

[λi, ui]
n+2
i=1 = [λ1, u1; ...;λn, un;λn+1 + λn+2, [

λn+j

λn+1+λn+2
, un+j ]

2
j=1];

(CC.iii) (Continuity) If u, v ∈ X and λ(k) → λ ∈ (0, 1) as k → ∞, then

[λ(k), u; 1− λ(k), v]→ [λ, u; 1− λ, v];
(CC.iv) (Negative curvature) If u1, u2, v1, v2 ∈ X and λ ∈ (0, 1), then

d([λ, u1; 1− λ, u2], [λ, v1; 1− λ, v2]) ≤ λd(u1, v1) + (1− λ)d(u2, v2);
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(CC.v) (Convexification) For each u ∈ X, there exists lim
n→∞

[n−1, u]ni=1, which

will be denoted by KXu (or Ku so no confusion can arise), and K is
called the convexification operator.

The metric space X endowed with a convex combination operation is referred
to as the convex combination space (CC space for short).

Note that, based on the inductive method and (CC.ii), we can be extended
(CC.iv) to convex combinations of n elements, as follows: if ui, vi ∈ X, λi ∈
(0; 1),

∑n
i=1 λi = 1, then d([λi, ui]

n
i=1, [λi, vi]

n
i=1) ≤

∑n
i=1 λid(ui, vi). From ax-

iom (CC.v) we see that if X is linear space, then K is the identity operator.
In a general X it is well possible that [n−1, u]ni=1 6= u, so Ku and u may be not
identical. If [λi, u]ni=1 = u for all n ≥ 2 and λ1, ..., λn > 0 with

∑n
i=1 λi = 1,

then u will be called convexly decomposable element (or convex element) of X
and K(X) coincides with the family of convexly decomposable elements of X.
Moreover, if (X, d) is a separable and complete CC space, then so is (K(X), d)
(see Proposition 2.1 [17]). The axioms (CC.i)–(CC.v) imply the following
properties:

(1) For every u11, ..., umn ∈ X and α1, ..., αm, β1, ..., βn > 0 with
∑m

i=1 αi =∑n
j=1 βj = 1, we have

[αi, [βj , uij ]
n
j=1]

m
i=1 = [αiβj , uij ]

i=m,j=n
i=1,j=1 .

(2) The convex combination operation is jointly continuous in its 2n ar-
guments.

(3) The convexification operator K is linear, that is K([λj , uj ]
n
j=1) =

[λj ,Kuj ]
n
j=1.

(4) If u ∈ X and λ1, ..., λn > 0 with
∑n

j=1 λj = 1, then K([λj , u]nj=1) =

Ku = [λj ,Ku]nj=1.

(5) For every λ1, λ2, λ3 > 0 with λ1 + λ2 + λ3 = 1 and u, v ∈ X,

[λ1, u;λ2,Kv;λ3,Kv] = [λ1, u; (λ2 + λ3),Kv].

(6) The mapping K is nonexpansive with respect to metric d, which means
that d(Ku,Kv) ≤ d(u, v), for all u, v ∈ X.

A mapping X : Ω → X is called an X-valued random element (or A-
measurable) if X−1(B) ∈ A for all B ∈ B(X), where B(X) is the Borel σ-
algebra on X. When an X-valued random element X takes finite values, it is
called a simple random element.

The collection of X-valued random elements {Xi : i ∈ I} is said to be
independent (pairwise independent, respectively) if the collection of σ-algebras
{σ(Xi) : i ∈ I} is independent (pairwise independent, respectively), where
σ(X) = {X−1(B) : B ∈ B(X)}.



624 P. T. Nguyen

Next,we assume that (X, d) is a separable and complete CC space. If X is
a simple random element that takes a distinct value xi ∈ X for each non-null
set Ωi, i = 1, ..., n, the expectation of X is defined by EX = [P (Ωi),Kxi]

n
i=1.

We fix u0 ∈ K(X) (by (CC.v), K(X) 6= ∅) and u0 will be considered as the
special element of X. An X-valued random element X is said to be integrable if
Ed(u0, X) <∞. Note that this definition does not depend on the selection of
the element u0. The space of all integrable X-valued random elements will be
denoted by L1X, and the metric on L1X is defined by ∆(X,Y ) = Ed(X,Y ). By
continuity of all Borel functionsX ∈ L1X, then forX ∈ L1X, the expectation ofX
is defined as the limit of the expectations sequence of simple random elements.
Note that, if X,Y ∈ L1X then d(EX,EY ) ≤ Ed(X,Y ), and EX ∈ K(X)
if X ∈ L1X. Moreover, Corollary 4.2 [17] shows that, if X1, X2 ∈ L1X and
λ1, λ2 ∈ (0; 1), λ1 + λ2 = 1, then E[λ1, X1;λ2, X2] = [λ1, EX1;λ2, EX2]. By
axiom (CC.ii), we also have E[λi, Xi]

n
i=1 = [λi, EXi]

n
i=1, for all Xi ∈ L1X and

λi ∈ (0; 1),
∑n

i=1 λi = 1.

Let k(X) be the set of nonempty compact subsets of X and denote by dH
the Hausdorff metric on k(X), that is

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)}

for A,B ∈ k(X). It follows from Theorem 6.2 [14] that if X is a separable
complete CC space then the space k(X) with the convex combination

[λi, Ai]
n
i=1 = {[λi, ui]ni=1 : ui ∈ Ai, for all i}

and Hausdorff metric dH is a separable complete CC space, where the convex-
ification operator Kk(X) is given by

Kk(X)A = coKXA = co{KXu : u ∈ A},

where coKXA denotes the closed convex hull of KXA. Based on this property,
if a result holds for elements in CC space X then it can be uplifted to the
space of nonempty compact subsets k(X). We denote the expectation of an
integrable random element X in (k(X), dH) by Ek(X)X.

The notion of compactly uniformly integrable in Cesàro sense for a sequence
of random elements taking values in Banach space was discussed by many
authors (for example, see [2, 4]). To this end the summary, we introduce this
notion for double array of random elements in metric space, which is also
naturally extended from Banach space to metric space. Let r > 0. Then a
double array {Xmn : m ≥ 1, n ≥ 1} of X-valued (k(X)-valued, respectively)
random elements is said to be compactly uniformly r-th order integrable in
Cesàro sense (Cesàro r-th CUI for short) if for every ε > 0, there exists a
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compact subset Kε of X (k(X), respectively) such that

sup
m,n≥1

1

mn

m∑
i=1

n∑
j=1

E
[
dr(u0, Xij)I{Xij /∈ Kε}

]
≤ ε

(
sup
m,n≥1

1

mn

m∑
i=1

n∑
j=1

E
[
drH({u0}, Xij)I{Xij /∈ Kε}

]
≤ ε, respectively

)
.

3. Mean convergence theorems for double array of
fuzzy random variables

In this section, we will establish mean convergence theorems for double
arrays of fuzzy random variables in convex combination space. For u0 is a
fixed element of K(X), which is mentioned in Section 2. We denote ‖x‖u0 :=
d(x, u0), ‖A‖{u0} := dH(A, {u0}) for all x ∈ X, A ∈ k(X). First, we introduce
some related concepts.

Let F(X) denote the family of all fuzzy set v : X → [0, 1] that satisfy the
following properties:

(i) v is a upper semicontinuous function,
(ii) v is normal, that is, there exists x ∈ X such that v(x) = 1,

(iii) supp v = cl{x ∈ X : v(x) > 0} is compact in X, where cl(A) denotes
the closure of A in X.

For v ∈ F(X), its α-level set is denoted by Lαv = {x ∈ X : v(x) ≥ α} ∈ k(X)
with α ∈ (0, 1]. We also denote L+

α v = cl{x ∈ X : v(x) > α} for α ∈ [0, 1),
and especially L+

0 v = supp v.

Theorem 3 [15] shows that if X is a convex combination space then the space
F(X) with the convex combination operator given by

Lα([λi, vi]
n
i=1) = [λi, Lαvi]

n
i=1, α ∈ (0, 1]

and the metric

d∞(v1, v2) = sup
α∈(0,1]

dH(Lαv1, Lαv2)

is a convex combination space, where the convexification operator KF(X) is

given by

Lα(KF(X)v) = Kk(X)Lαv = coKX(Lαv), α ∈ (0, 1].

Furthermore, Theorem 4 [15] also shows that the space F(X) with the same
convex combination operation described above and the metric

dp(v1, v2) =
(∫ 1

0
dpH(Lαv1, Lαv2)dα

)1/p



626 P. T. Nguyen

is a convex combination space, where KF(X) is given by

Lα(KF(X)v) = Kk(X)Lαv, α ∈ (0, 1].

A mapping X : Ω → F(X) is called a fuzzy random variable (also called
fuzzy random set) if X is (F(X), dp)-valued random variable, for any p ≥ 1.
Note that this condition is equivalent to the condition: LαX is k(X)-valued
random variable for all α ∈ (0, 1] (see Theorem 5 [15]).

A fuzzy random variable X is called integrably bounded if ‖L+
0 X‖{u0} ∈ L1R,

and we denote X ∈ L1(F(X)). Also in [15], Terán and Molchanov define the
expectation of X ∈ L1(F(X)) as follows. For X ∈ L1(F(X)), the expectation
of X is a fuzzy set, denoted by EF(X)X, such that for each α ∈ (0, 1]

Lα(EF(X)X) = Ek(X)(LαX).

Proposition 3.1. ([19]) For α ∈ [0, 1), we have

(2) L+
α ([λi, vi]

n
i=1) = [λi, L

+
α vi]

n
i=1, for vi ∈ F(X);

(2) L+
α (EF(X)X) = Ek(X)(L

+
αX), for X ∈ L1(F(X)).

A collection {Xi : i ∈ I} of fuzzy random variables is said to be levelwise
independent (resp. levelwise pairwise independent) if {LαXi : i ∈ I} is a
collection of independent (resp. pairwise independent) k(X)-valued random
elements for each α ∈ (0, 1]. Note that, if {Xi : i ∈ I} is a collection of
levelwise independent (resp. levelwise pairwise independent) fuzzy random
variables, then {L+

αXi : i ∈ I} is also collection of independent (resp. pairwise
independent) k(X)-valued random elements for each α ∈ (0, 1] (see Lemma 4.3
[19]).

A collection {Xi : i ∈ I} of fuzzy random variables is said to be (α, α+)-
levelwise Cesàro r-th CUI if {LαXi : i ∈ I} is k(X)-valued Cesàro r-th CUI
for each α ∈ (0, 1] and {L+

αXi : i ∈ I} is k(X)-valued Cesàro r-th CUI for
each α ∈ [0, 1). Note that, the concept of (α, α+)-levelwise Cesàro r-th CUI
extends really the concept of CUI which has been introduced in [5, 7].

We now present some lemmas which will be used later.

Lemma 3.2. ([11]) Let v ∈ F(X). Then for each ε > 0, there exists a partition
0 = α0 < α1 < · · · < αp = 1 of [0, 1] such that

max
1≤k≤p

dH(L+
αk−1

v, Lαk
v) < ε.

The next lemma is extended from Theorem 3.4(b) [18] to the case of double
arrays.
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Lemma 3.3. Let {Xij : i ≥ 1, j ≥ 1} be an array of pairwise independent and
Cesàro r-th CUI (r ≥ 1) X-valued random elements. Then

Edr([m−1, [n−1, Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, EXij ]
n
j=1]

m
i=1)→ 0 as m ∨ n→∞.

Proof. For ε > 0 arbitrarily small, by Cesàro r-th CUI hypothesis, there exist
a compact subset Kε of X such that for all m,n

1

mn

m∑
i=1

n∑
j=1

E
(
‖Xij‖ru0I{Xij /∈ Kε}

)
≤ ε.

By the compactness of Kε, there exists {c1, c2, ..., cp} ⊂ Kε such that

Kε ⊂
p⋃
t=1

B(ct, ε), where B(ct, ε) = {x ∈ X : d(x, ct) < ε}.

For each i ≥ 1, j ≥ 1, we define the X-valued random elements as follows:

Yij(ω) =


c0 := u0, if Xij(ω) /∈ Kε
c1, if Xij(ω) ∈ B(c1, ε) ∩ Kε
ct, if Xij(ω) ∈ B(ct, ε) ∩ {∪t−1k=1B(ck, ε)}c ∩ Kε, t = 2, ..., p

and

Zij(ω) =

{
Xij(ω), if Xij(ω) ∈ Kε
u0, if Xij(ω) /∈ Kε.

By triangular inequality, we have

d([m−1, [n−1, Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, EXij ]
n
j=1]

m
i=1)

≤ d([m−1, [n−1, Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, Zij ]
n
j=1]

m
i=1)

+ d([m−1, [n−1, Zij ]
n
j=1]

m
i=1, [m

−1, [n−1, Yij ]
n
j=1]

m
i=1)

+ d([m−1, [n−1, Yij ]
n
j=1]

m
i=1, [m

−1, [n−1,KYij ]
n
j=1]

m
i=1)

+ d([m−1, [n−1,KYij ]
n
j=1]

m
i=1, [m

−1, [n−1, EYij ]
n
j=1]

m
i=1)

+ d([m−1, [n−1, EYij ]
n
j=1]

m
i=1, [m

−1, [n−1, EZij ]
n
j=1]

m
i=1)

+ d([m−1, [n−1, EZij ]
n
j=1]

m
i=1, [m

−1, [n−1, EXij ]
n
j=1]

m
i=1)

:= (I1) + (I2) + (I3) + (I4) + (I5) + (I6).

Let us estimate the parts above as follows:
For (I1), we have

(I1) ≤
1

mn

m∑
i=1

n∑
j=1

d(Xij , Zij) =
1

mn

m∑
i=1

n∑
j=1

‖Xij‖u0I{Xij /∈ Kε}.
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By Cesàro r-th CUI hypothesis and Jensen’s inequality,

E(I1)
r ≤ E

( 1

mn

m∑
i=1

n∑
j=1

‖Xij‖u0I{Xij /∈ Kε}
)r

≤ 1

mn

m∑
i=1

n∑
j=1

E
(
‖Xij‖ru0I{Xij /∈ Kε}

)
≤ ε.

For (I2), by the definition of Yij and Zij ,

(I2) ≤
1

mn

m∑
i=1

n∑
j=1

d(Zij , Yij) ≤ ε.

For (I3), we will prove that (I3) < ε for all ω ∈ Ω when m ∨ n is sufficiently
large. Indeed, for t = 0, 1, ..., p, we put

Qtmn = card{(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n, Yij = ct} =

m∑
i=1

n∑
j=1

I{Yij = ct},

Tmn = {t : 0 ≤ t ≤ p,Qtmn > 0} ; m,n ≥ 1.

By properties (2.1) and (2.4),

[m−1, [n−1, Yij ]
n
j=1]

m
i=1 = [(mn)−1Qtmn, [(Q

t
mn)−1, ct]

Qt
mn

i=1 ]t∈Tmn

and

[m−1, [n−1,KYij ]
n
j=1]

m
i=1 = [(mn)−1Qtmn, [(Q

t
mn)−1,Kct]

Qt
mn

i=1 ]t∈Tmn .

Therefore,

(I3) = d([m−1, [n−1, Yij ]
n
j=1]

m
i=1, [m

−1, [n−1,KYij ]
n
j=1]

m
i=1)

≤
∑
t∈Tmn

Qtmn
mn

d([(Qtmn)−1, ct]
Qt

mn
i=1 ,Kct).

By the definition of K, we have

lim
n→∞

d([n−1, ct]
n
i=1,Kct) = 0.

Thus, there exists n1(ε) ∈ N such that

d([n−1, ct]
n
i=1,Kct) <

ε

p+ 1
for all n ≥ n1(ε) and for all t = 0, 1, ..., p.

We put

Mt(ε) = max
1≤k<n1(ε)

d([k−1, ct]
k
i=1,Kct), M(ε) = max

0≤t≤p
Mt(ε)

and choose the smallest integer number n(ε) such that

n(ε) ≥ ε−1(p+ 1)M(ε)n1(ε).
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Now, for all m ∨ n ≥ n(ε):
If Qtmn ≥ n1(ε), then

Qtmn
mn

d([(Qtmn)−1, ct]
Qt

mn
i=1 ,Kct) <

ε

p+ 1
(since m−1n−1Qtmn ≤ 1).

If 0 < Qtmn < n1(ε), then

Qtmn
mn

d([(Qtmn)−1, ct]
Qt

mn(ω)
i=1 ,Kct) <

n1(ε)

n(ε)
M(ε) ≤ ε

p+ 1
.

Hence, for m ∨ n ≥ n(ε) and for all ω ∈ Ω

Qtmn
mn

d([(Qtmn)−1, ct]
Qt

mn
i=1 ,Kct) <

ε

p+ 1
.

This implies that

(I3) ≤
∑
t∈Tmn

Qtmn
mn

d([(Qtmn)−1, ct]
Qt

mn
i=1 ,Kct) <

p∑
t=0

ε

p+ 1
= ε

for values of m ∨ n that are sufficiently large.
For (I4), by property (2.1) and Lemma 3.3 [12],

(I4) = d([m−1, [n−1,KYij ]
n
j=1]

m
i=1, [m

−1, [n−1, EYij ]
n
j=1]

m
i=1)

= d([m−1, [n−1, [I{Yij = ct},Kct]t=pt=0]
n
j=1]

m
i=1,

[m−1, [n−1, [P{Yij = ct},Kct]t=pt=0]
n
j=1]

m
i=1)

≤
p∑
t=0

∣∣∣ 1

mn

m∑
i=1

n∑
j=1

(
I{Yij = ct} − P{Yij = ct}

)∣∣∣‖ct‖u0
≤ C

p∑
t=1

∣∣∣ 1

mn

m∑
i=1

n∑
j=1

(
I{Yij = ct} − P{Yij = ct}

)∣∣∣,
where C = max1≤t≤p ‖ct‖u0 . Hence, Jensen’s inequality yields

E(I4)
r ≤ Crpr−1

p∑
t=1

E
∣∣∣ 1

mn

m∑
i=1

n∑
j=1

(
I{Yij = ct} − P{Yij = ct}

)∣∣∣r
≤ Crpr−1

p∑
t=1

1

mn
E
∣∣∣ m∑
i=1

n∑
j=1

(
I{Yij = ct} − P{Yij = ct}

)∣∣∣
≤ Crpr−1

p∑
t=1

1

mn

(
E
∣∣∣ m∑
i=1

n∑
j=1

(
I{Yij = ct} − P{Yij = ct}

)∣∣∣2)1/2
≤ Crpr(mn)−1/2.
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For (I5), by the definition of Yij and Zij ,

(I5) ≤
1

mn

m∑
i=1

n∑
j=1

d(EYij , EZij)

≤ 1

mn

m∑
i=1

n∑
j=1

Ed(Yij , Zij) ≤ ε.

For (I6),

(I6) ≤
1

mn

m∑
i=1

n∑
j=1

d(EZij , EXij)

≤ 1

mn

m∑
i=1

n∑
j=1

Ed(Zij , Xij)

=
1

mn

m∑
i=1

n∑
j=1

E
(
‖Xij‖u0I{Xij /∈ Kε}

)
.

By Cesàro r-th CUI hypothesis and Jensen’s inequality again

(I6)
r ≤

[ 1

mn

m∑
i=1

n∑
j=1

E
(
‖Xij‖u0I{Xij /∈ Kε}

)]r
≤ 1

mn

m∑
i=1

n∑
j=1

E
(
‖Xij‖ru0I{Xij /∈ Kε}

)
≤ ε.

Combining the parts above and for m∨n large enough, by Jensen’s inequality,
we obtain

Edr([m−1, [n−1, Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, EXij ]
n
j=1]

m
i=1)

≤ 6r−1
[
E(I1)

r + E(I1)
r + E(I2)

r + E(I3)
r + E(I4)

r + E(I5)
r + E(I6)

r
]

≤ 6r−1
[
2ε+ 3εr + Crpr(mn)−1/2

]
.

Letting m∨n→∞ and by the arbitrariness of ε, we derive the conclusion. �

Remark 3.4. Lemma 3.3 extends Theorem 1.2 [4] for sequence of pairwise
independent and Cesàro r-th CUI (r ≥ 1) random elements in Banach space to
double array of pairwise independent and Cesàro r-th CUI random elements
in CC space.

In the first theorem, we establish mean convergence conditions for double
array of levelwise pairwise independent and (α, α+)-levelwise Cesàro r-th CUI
(r ≥ 1) fuzzy random variables.
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Theorem 3.5. Let {Xmn : m ≥ 1, n ≥ 1} be an array of levelwise pairwise
independent and (α, α+)-levelwise Cesàro r-th CUI (r ≥ 1) fuzzy random
variables, and for each ε > 0, there exists a partition 0 = α0 < α1 < · · · <
αp = 1 of [0, 1] such that for all m,n

max
1≤k≤p

dH(L+
αk−1

[m−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1,

Lαk
[m−1, [n−1, EF(X)Xij ]

n
j=1]

m
i=1) < ε.

(3.1)

Then

Edr∞([m−1, [n−1Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1)→ 0

as m ∨ n→∞.

Proof. By condition (3.1), for ε > 0, there exists a partition 0 = α0 < α1 <
· · · < αp = 1 of [0, 1] such that for all m,n,

max
1≤k≤p

dH(L+
αk−1

[m−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1,

Lαk
[m−1, [n−1, EF(X)Xij ]

n
j=1]

m
i=1) < ε.

Note that if A,A1, A2, B,B1, B2 are compact sets such that A1 ⊂ A ⊂ A2 and
B1 ⊂ B ⊂ B2, then

dH(A,B) ≤ max{dH(A1, B2), dH(A2, B1)}
≤ dH(A1, B2) + dH(A2, B1).

We have

sup
αk−1<α≤αk

dH(Lα[m−1, [n−1Xij ]
n
j=1]

m
i=1, Lα[m−1, [n−1, EF(X)Xij ]

n
j=1]

m
i=1)

≤ dH(Lαk
[m−1, [n−1, Xij ]

n
j=1]

m
i=1, L

+
αk−1

[m−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1)

+ dH(L+
αk−1

[m−1, [n−1, Xij ]
n
j=1]

m
i=1, Lαk

[m−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1)

= dH(Lαk
[m−1, [n−1, Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1)

+ dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)

≤ dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)

+ dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1)

+ 2dH([m−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)Lαk
Xij]

n
j=1]

m
i=1)

≤ dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)

+ dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1)+2ε.
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Therefore

d∞([m−1, [n−1Xij ]
n
j=1]

m
i=1, [m

−1, [n−1EF(X)Xij ]
n
j=1]

m
i=1)

= max
1≤k≤p

sup
αk−1<α≤αk

dH(Lα[m−1, [n−1Xij ]
n
j=1]

m
i=1,

Lα[m−1, [n−1EF(X)Xij ]
n
j=1]

m
i=1)

≤ max
1≤k≤p

dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)

+ max
1≤k≤p

dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1,

[m−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1) + 2ε.

Using the above estimation and Jensen’s inequality, we have

Edr∞([m−1, [n−1Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1)

≤ E
(

max
1≤k≤p

dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)

+ max
1≤k≤p

dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1,

[m−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1) + 2ε

)r
≤ E

( p∑
k=1

dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)

+

p∑
k=1

dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1,

[m−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1) + 2ε

)r
≤ 3r−1

[
E
( p∑
k=1

dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1,

[m−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)

)r
+ E

( p∑
k=1

dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1,

[m−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1)

)r
+ (2ε)r

]
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≤ 3r−1
[
pr−1

p∑
k=1

EdrH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1,

[m−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)

+ pr−1
p∑

k=1

EdrH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1,

[m−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1) + (2ε)r

]
.

Note that {Lαk
Xmn : m ≥ 1, n ≥ 1} and {L+

αk−1
Xmn : m ≥ 1, n ≥ 1}

are arrays of pairwise independent and Cesàro r-th CUI (r ≥ 1) k(X)-valued
random elements, for all k = 1, 2, ..., p. Thus, applying Lemma 3.3 to these
arrays, we get

EdrH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)→ 0

as m ∨ n→∞, and

EdrH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1)→ 0

as m ∨ n→∞. Hence

lim sup
m∨n→∞

Edr∞([m−1, [n−1Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1)

≤ 3r−1(2ε)r.

By the arbitrariness of ε, the proof is completed. �

In the next theorem, we will establish necessary and sufficient conditions
for mean convergence of double arrays of fuzzy random variables under the
restrictive assumptions without Cesàro r-th CUI hypothesis.

Theorem 3.6. Let {Xmn : m ≥ 1, n ≥ 1} be an array of fuzzy random
variables. Suppose that for each ε > 0, there exists a partition 0 = α0 < α1 <
· · · < αp = 1 of [0, 1] such that for all m,n

E
[

max
1≤k≤p

dH(L+
αk−1

[m−1, [n−1Xij ]
n
j=1]

m
i=1, Lαk

[m−1, [n−1Xij ]
n
j=1]

m
i=1)

]
< ε.

(3.2)
Then

Ed∞([m−1, [n−1Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1)→ 0

as m ∨ n→∞, if and only if for each α ∈ [0; 1]

EdH([m−1, [n−1LαXij ]
n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)LαXij ]
n
j=1]

m
i=1)→ 0

as m ∨ n→∞.
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Proof. The necessity is obvious. To prove the sufficiency, for ε > 0 arbitrarily
small, there exists a partition 0 = α0 < α1 < · · · < αp = 1 of [0, 1] such that
condition (3.2) is satisfied. First we have following estimations

sup
αk−1<α≤αk

dH(Lα[m−1, [n−1, Xij ]
n
j=1]

m
i=1, Lα[m−1, [n−1, EF(X)Xij ]

n
j=1]

m
i=1)

≤ sup
αk−1<α≤αk

dH([m−1, [n−1, LαXij ]
n
j=1]

m
i=1, [m

−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1)

+ dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)

+ sup
αk−1<α≤αk

dH([m−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1,

[m−1, [n−1, Ek(X)LαXij ]
n
j=1]

m
i=1)

= dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1)

+ dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)

+ dH([m−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1,

[m−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1).

Therefore

Ed∞([m−1, [n−1Xij ]
n
j=1]

m
i=1, [m

−1, [n−1EF(X)Xij ]
n
j=1]

m
i=1)

= E
[

max
1≤k≤p

sup
αk−1<α≤αk

dH(Lα[m−1, [n−1Xij ]
n
j=1]

m
i=1,

Lα[m−1, [n−1EF(X)Xij ]
n
j=1]

m
i=1)

]
≤ E

[
max
1≤k≤p

dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1)

]
+ E

[
max
1≤k≤p

dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1,

[m−1, [n−1, Ek(X)Lαk
Xij ]

n
j=1]

m
i=1)

]
+ max

1≤k≤p
dH([m−1, [n−1, ELαk

Xij ]
n
j=1]

m
i=1,

[m−1, [n−1, Ek(X)L
+
αk−1

Xij ]
n
j=1]

m
i=1)

:= (II1) + (II2) + (II3).

For (II1), by (3.2) we have (II1) < ε.
For (II2), by assumption we have (II2)→ 0 as m ∨ n→∞.
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For (II3), by (3.2) we have

(II3) = max
1≤k≤p

dH(Ek(X)[m
−1, [n−1, Lαk

Xij ]
n
j=1]

m
i=1,

Ek(X)[m
−1, [n−1, L+

αk−1
Xij ]

n
j=1]

m
i=1)

≤ max
1≤k≤p

EdH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1)

≤ E
[

max
1≤k≤p

dH(L+
αk−1

[m−1, [n−1, Xij ]
n
j=1]

m
i=1,

Lαk
[m−1, [n−1, Xij ]

n
j=1]

m
i=1)

]
< ε.

Combining the parts above, we obtain

lim sup
m∨n→∞

Ed∞([m−1, [n−1Xij ]
n
j=1]

m
i=1, [m

−1, [n−1EF(X)Xij ]
n
j=1]

m
i=1) ≤ 2ε.

This completes the proof. �

Applying Theorem 3.6, we obtain the following corollary.

Corollary 3.7. Let {Xmn : m ≥ 1, n ≥ 1} be an array of fuzzy random
variables. Suppose that for each ε > 0, there exists a partition 0 = α0 < α1 <
· · · < αp = 1 of [0, 1] such that for all m,n

E
[

max
1≤k≤p

dH(L+
αk−1

Xmn, Lαk
Xmn)

]
< ε. (3.3)

Then

Ed∞([m−1, [n−1, Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1)→ 0

as m ∨ n→∞, if and only if for each α ∈ [0; 1]

EdH([m−1, [n−1, LαXij ]
n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)LαXij ]
n
j=1]

m
i=1)→ 0

as m ∨ n→∞.

Proof. We have

E
[

max
1≤k≤p

dH(L+
αk−1

[m−1, [n−1, Xij ]
n
j=1]

m
i=1, Lαk

[m−1, [n−1, Xij ]
n
j=1]

m
i=1)

]
≤ E

[
max
1≤k≤p

1

mn

m∑
i=1

n∑
j=1

dH(L+
αk−1

Xij , Lαk
Xij)

]
≤ 1

mn

m∑
i=1

n∑
j=1

E
[

max
1≤k≤p

dH(L+
αk−1

Xij , Lαk
Xij)

]
.

Thus, if (3.3) holds then so does (3.2). The proof is completed by applying
Theorem 3.6. �
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In the case, the expectations of double arrays of fuzzy random variables are
convergent, we obtain the following result.

Theorem 3.8. Let {Xmn : m ≥ 1, n ≥ 1} be an array of fuzzy random
variables. If there exists v ∈ F(X) such that

d∞([m−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1, v)→ 0 as m ∨ n→∞, (3.4)

then

Ed∞([m−1, [n−1, Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1)→ 0

as m ∨ n→∞, if and only if for each α ∈ [0; 1)

EdH([m−1, [n−1, LαXij ]
n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)LαXij ]
n
j=1]

m
i=1)→ 0

as m ∨ n→∞, and for each α ∈ (0; 1]

EdH([m−1, [n−1L+
αXij ]

n
j=1]

m
i=1, [m

−1, [n−1, Ek(X)L
+
αXij ]

n
j=1]

m
i=1)→ 0

as m ∨ n→∞.

Proof. The necessity is obvious. To prove the sufficiency, it suffices to prove
that

Ed∞([m−1, [n−1Xij ]
n
j=1]

m
i=1, v)→ 0 as m ∨ n→∞.

For ε > 0, by Lemma 3.2, there exists a partition 0 = α0 < α1 < · · · < αp = 1
of [0; 1] such that

max
1≤k≤p

dH(L+
αk−1

v, Lαk
v) < ε. (3.5)

By condition (3.4), there exists N ∈ N such that for all α ∈ [0; 1] and m∨n >
N ,

dH([m−1, [n−1, LαEF(X)Xij ]
n
j=1]

m
i=1, Lαv) < ε (3.6)

and

dH([m−1, [n−1, L+
αEF(X)Xij ]

n
j=1]

m
i=1, L

+
α v) < ε. (3.7)



Mean convergence theorems for double array of fuzzy random variables 637

Now, by (3.5), (3.6) and (3.7), for m ∨ n > N , we have

sup
αk−1<α≤αk

dH(Lα[m−1, [n−1, Xij ]
n
j=1]

m
i=1, Lαv)

≤ dH(Lαk
[m−1, [n−1, Xij ]

n
j=1]

m
i=1, L

+
αk−1

v)

+ dH(L+
αk−1

[m−1, [n−1, Xij ]
n
j=1]

m
i=1, Lαk

v)

= dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, L

+
αk−1

v)

+ dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1, Lαk

v)

≤ dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, Lαk

v)

+ dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1, L

+
αk−1

v) + 2dH(L+
αk−1

v, Lαk
v)

≤ dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, Lαk

v)

+ dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1, L

+
αk−1

v) + 2ε

≤ dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Lαk
EF(X)Xij ]

n
j=1]

m
i=1)

+ dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1,

[m−1, [n−1, L+
αk−1

EF(X)Xij ]
n
j=1]

m
i=1)

+ dH([m−1, [n−1, Lαk
EF(X)Xij ]

n
j=1]

m
i=1, Lαk

v)

+ dH([m−1, [n−1, L+
αk−1

EF(X)Xij ]
n
j=1]

m
i=1, L

+
αk−1

v) + 2ε

≤ dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Lαk
EF(X)Xij ]

n
j=1]

m
i=1)

+ dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1,

[m−1, [n−1, L+
αk−1

EF(X)Xij ]
n
j=1]

m
i=1)

+ 4ε.

Thus for m ∨ n > N ,

d∞([m−1, [n−1Xij ]
n
j=1]

m
i=1, v)

= max
1≤k≤p

sup
αk−1<α≤αk

dH(Lα[m−1, [n−1, Xij ]
n
j=1]

m
i=1, Lαv)

≤ max
1≤k≤p

dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1,

[m−1, [n−1, Lαk
EF(X)Xij ]

n
j=1]

m
i=1)

+ max
1≤k≤p

dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1,

[m−1, [n−1, L+
αk−1

EF(X)Xij ]
n
j=1]

m
i=1) + 4ε.
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Therefore, by the assumption we obtain

Ed∞([m−1, [n−1Xij ]
n
j=1]

m
i=1, v)

≤ E
[

max
1≤k≤p

dH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1,

[m−1, [n−1, Lαk
EF(X)Xij ]

n
j=1]

m
i=1)

]
+ E

[
max
1≤k≤p

dH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1,

[m−1, [n−1, L+
αk−1

EF(X)Xij ]
n
j=1]

m
i=1)

]
+ 4ε

≤
p∑

k=1

EdH([m−1, [n−1, Lαk
Xij ]

n
j=1]

m
i=1, [m

−1, [n−1, Lαk
EF(X)Xij ]

n
j=1]

m
i=1)

+

p∑
k=1

EdH([m−1, [n−1, L+
αk−1

Xij ]
n
j=1]

m
i=1,

[m−1, [n−1, L+
αk−1

EF(X)Xij ]
n
j=1]

m
i=1) + 4ε

= o(1) + 4ε as m ∨ n→∞.
The proof is completed. �

Applying Theorem 3.8, we obtain the following corollary.

Corollary 3.9. Let {Xmn : m ≥ 1, n ≥ 1} be an array of identically dis-
tributed fuzzy random variables with X11 ∈ L1(F(X)). Then

Ed∞([m−1, [n−1, Xij ]
n
j=1]

m
i=1, EF(X)X11)→ 0 as m ∨ n→∞

if and only if for each α ∈ [0; 1)

EdH([m−1, [n−1, LαXij ]
n
j=1]

m
i=1, Ek(X)LαX11)→ 0 as m ∨ n→∞

and for each α ∈ (0; 1]

EdH([m−1, [n−1L+
αXij ]

n
j=1]

m
i=1, Ek(X)L

+
αX11)→ 0 as m ∨ n→∞.

Proof. The necessity is obvious. To prove the sufficiency, we note that

Lα(EF(X)X11) = Ek(X)(LαX11) ∈ Kk(X)(k(X)), for all α ∈ (0; 1].

Therefore, for all m,n,

d∞([m−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1, EF(X)X11)

= sup
α∈(0;1]

dH(Lα[m−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1, LαEF(X)X11)

= sup
α∈(0;1]

dH([m−1, [n−1, LαEF(X)X11]
n
j=1]

m
i=1, LαEF(X)X11) = 0.
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On the other hand, we have

d∞([m−1, [n−1, Xij ]
n
j=1]

m
i=1, EF(X)X11)

≤ d∞([m−1, [n−1, Xij ]
n
j=1]

m
i=1, [m

−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1)

+ d∞([m−1, [n−1, EF(X)Xij ]
n
j=1]

m
i=1, EF(X)X11).

The proof is completed by applying Theorem 3.8. �
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