International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 3, September 2010, pp.242-246 DOI: 10.5391/IJFIS.2010.10.3.242

Some Notes on *L_p*-metric Space of Fuzzy Sets

Yun Kyong Kim

Department of Information & Communication Engineering, Dongshin University, Geonjaero 253, Naju, Jeonnam, 520-714, Korea

Abstract

It is well-known that the space E^n of fuzzy numbers (i.e., normal, upper-semicontinuous, compact-supported and convex fuzzy subsets) in the *n*-dimensional Euclidean space R^n is separable but not complete with respect to the L_p -metric.

In this paper, we introduce the space $F_p(\mathbb{R}^n)$ that is separable and complete with respect to the L_p -metric. This will be accomplished by assuming *p*-th mean bounded condition instead of compact-supported condition and by removing convex condition.

Key Words: Fuzzy numbers, Compact sets, *L_p*-metric.

1. Introduction

The metric in a space of fuzzy sets plays an important role both in the theory and in its applications. There are various useful metrics defined on the fuzzy number space E^n of normal, upper-semicontinuous, compact-supported and convex fuzzy subsets of *n*-dimensional Euclidean space R^n . The readers may refer to [2] for supremum metric, sendograph metric and L_p -metric, and refer to [6] for Skorohod metric.

It is well-known that E^n is complete and separable if it is equipped with the metric except L_p -metric. Characterizations of compact subsets of E^n equipped supremum metric, sendograph metric and the Skorohod metric were given by Greco [4], Greco and Moschen [5], Greco [3], Zhao and Wu [10], Joo and Kim [6], respectively.

However, it is known that E^n is separable but not complete with respect to the L_p -metric. This problem arises from the fact that compact-supported condition is inadequate for the L_p -metric.

Related to this problem, Kraschmer [7] dealt with completion of E^n w.r.t. the L_p -metric by introducing the notion of support function for noncompact fuzzy number and Degang et al. [1] proposed the completion of E^1 w.r.t. the L_1 -metric by using representation theorem of noncompact fuzzy number in E^1 . But these approaches cannot be valid any more if we drop the convexity condition.

In this paper, we introduce the space $F_p(\mathbb{R}^n)$ without convexity that is complete and separable with respect to the L_p -metric. 2. Preliminaries

Let $K(\mathbb{R}^n)$ denote the family of all non-empty compact subsets of the *n*-dimensional Euclidean space \mathbb{R}^n with the usual norm $|\cdot|$. Then the space $K(\mathbb{R}^n)$ is metrizable by the Hausdorff metric *h* defined by

$$h(A,B) \ = \ \max[\sup_{a\in A} \inf_{b\in B} \ |a-b|, \sup_{b\in B} \inf_{a\in A} \ |a-b|].$$

The norm of $A \in K(\mathbb{R}^n)$ is defined by

$$||A|| = h(A, \{0\}) = \sup_{a \in A} |a|.$$

It is well-known that $K(\mathbb{R}^n)$ is complete and separable with respect to the Hausdorff metric *h*. Also, if we denote by $K_c(\mathbb{R}^n)$ the family of all $A \in K(\mathbb{R}^n)$ which is convex, then $K_c(\mathbb{R}^n)$ is a closed subspace of $(K(\mathbb{R}^n), h)$.

Let $F(\mathbb{R}^n)$ denote the family of all fuzzy sets $u: \mathbb{R}^n \to [0, 1]$ with the following properties;

- (i) *u* is normal, i.e., there exists $x \in \mathbb{R}^n$ such that u(x) = 1.
- (ii) $L_{\alpha}u = \{x \in \mathbb{R}^n : u(x) \ge \alpha\}$ is a compact subset of \mathbb{R}^n for each $0 < \alpha \le 1$.

 $L_{\alpha}u$ is called the α -level set of u. We denote by $F_c(\mathbb{R}^n)$ the family of all $u \in F(\mathbb{R}^n)$ which is convex, i.e., $u(\lambda x + (1 - \lambda)y) \ge \min(u(x), u(y))$ for all $x, y \in \mathbb{R}^n$ and $0 \le \lambda \le 1$. Then $u \in F_c(\mathbb{R}^n)$ if and only if $L_{\alpha}u \in K_c(\mathbb{R}^n)$ for each $0 < \alpha \le 1$.

Manuscript received May. 11, 2010; revised Aug. 19, 2010; accepted Aug 24, 2010 Corresponding Author : Yun Kyong Kim, ykkim@dsu.ac.kr

Also, we denote by $F_{\infty}(\mathbb{R}^n)$ (resp. $F_{c\infty}(\mathbb{R}^n)$) the family of all $u \in F(\mathbb{R}^n)$ (resp. $F_c(\mathbb{R}^n)$) with compact support, i.e., $L_0u = \overline{\{x \in \mathbb{R}^n : u(x) > 0\}}$ is compact, where \overline{A} denotes the closure of A w.r.t. the usual norm in \mathbb{R}^n . Briefly, $F_{c,\infty}(\mathbb{R}^n)$ is denoted by \mathbb{E}^n and a member of \mathbb{E}^n is called a fuzzy number.

Joo and Kim [6] showed that $u \in F_{\infty}(\mathbb{R}^n)$ can be characterized by a function f_u defined as $f_u : [0,1] \to K(\mathbb{R}^n), f_u(\alpha) = L_{\alpha}u$, which is non-increasing, left-continuous on (0,1], right-continuous at 0 and right-limits on [0,1). By very similar arguments, we can obtain the following lemma.

Lemma 2.1. For $u \in F(\mathbb{R}^n)$, we define

$$f_u: (0,1] \longrightarrow (K(\mathbb{R}^n),h), f_u(\alpha) = L_{\alpha}u.$$

Then the followings hold;

- (i) f_u is non-increasing, i.e., $\alpha \leq \beta$ implies $f_u(\alpha) \supset f_u(\beta)$,
- (ii) f_u is left continuous on (0, 1],
- (iii) f_u has right-limits on (0, 1).

Conversely, if $g : [0,1] \to K(\mathbb{R}^n)$ is a function satisfying the above conditions (i) - (iii), then there exists a unique $v \in F(\mathbb{R}^n)$ such that $g(\alpha) = L_{\alpha}v$ for all $\alpha \in (0,1]$.

If we denote by $L_{\alpha^+}u$ the right-limit of f_u at $\alpha \in (0, 1)$, then it is well-known that

$$L_{\alpha^+} u = \overline{\{x \in \mathbb{R}^n : u(x) > \alpha\}}.$$

3. Main Results

The L^p -metric d_p on the fuzzy number space E^n is defined as follows;

$$d_p(u,v) = \left(\int_0^1 h(L_{\alpha}u,L_{\alpha}v)^p \, d\alpha\right)^{1/p}.$$

It is well-known that (E^n, d_p) is separable but not complete. This fact seems to be natural since E^n is too small for it to be complete w.r.t. d_p . In order to achieve completeness, we need to introduce a new family of fuzzy sets that includes E^n .

For $1 \le p < \infty$, let $F_p(\mathbb{R}^n)$ (resp. $F_{c,p}(\mathbb{R}^n)$) be the family of all fuzzy sets $u \in F(\mathbb{R}^n)$ (resp. $F_c(\mathbb{R}^n)$) such that

$$\int_0^1 \|L_{\alpha}u\|^p \, d\alpha < \infty.$$

It is obvious that $F_{\infty}(\mathbb{R}^n) \subset F_p(\mathbb{R}^n)$ but $F_{\infty}(\mathbb{R}^n) \neq F_p(\mathbb{R}^n)$. It is easy to prove that the d_p on $F_p(\mathbb{R}^n)$ satisfies

the axioms of metric. We first prove the completeness of $(F_p(\mathbb{R}^n), d_p)$.

Theorem 3.1. $(F_p(\mathbb{R}^n), d_p)$ is complete.

Proof. Let $\{u_i\}$ be a Cauchy sequence in $(F_p(\mathbb{R}^n), d_p)$ such that $\int_0^1 h(L_\alpha u_i, L_\alpha u_j)^p d\alpha \to 0$ as $i, j \to \infty$.

Step 1: First, we show that there exists a subsequence $\{u_{i_k}\}$ of $\{u_i\}$ such that $\{L_{\alpha}u_{i_k}\}$ is a Cauchy sequence in $(K(\mathbb{R}^n), h)$ for almost all α .

We note that for each $\varepsilon > 0$,

$$\mu\{\alpha: h(L_{\alpha}u_i, L_{\alpha}u_j) > \varepsilon\}$$

$$\leq \quad \frac{1}{\varepsilon^p} \int_0^1 h(L_{\alpha}u_i, L_{\alpha}u_j)^p \, d\alpha \to 0$$

as $i, j \rightarrow \infty$, where μ denote the Lebesgue measure.

For any positive integer k, we find an integer N_k such that

$$\mu(\{\alpha:h(L_{\alpha}u_i,L_{\alpha}u_j)\geq\frac{1}{2^k}\})<\frac{1}{2^k}\}$$

for $i, j \ge N_k$. Now we write

$$i_1 = N_1, i_k = (i_{k-1} + 1) \lor N_k$$
 for $k \ge 2$,

then $\{u_{i_k}\}$ is a subsequence of $\{u_i\}$.

Let
$$I_k = \{ \alpha : h(L_{\alpha}u_{i_k}, L_{\alpha}u_{i_{k+1}}) \ge \frac{1}{2^k} \}$$
 and

$$I_0 = \limsup_{k \to \infty} I_k = \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} I_k.$$

Then since

$$\mu(\cup_{k=m}^{\infty}I_k)\leq \sum_{k=m}^{\infty}\mu(I_k)<\frac{1}{2^{m-1}},$$

we have that $\mu(I_0) = 0$. And if $\alpha \notin I_0$, then there exists *m* such that $\alpha \notin \bigcup_{k=m}^{\infty} I_k$ and so for $k, l \ge m$,

$$h(L_{\alpha}u_{i_k},L_{\alpha}u_{i_l}) \leq \sum_{k=m}^{\infty}h(L_{\alpha}u_{i_k},L_{\alpha}u_{i_{k+1}}) < \frac{1}{2^{m-1}}$$

which implies $\{L_{\alpha}u_{i_k}\}$ is a Cauchy sequence in $(K(\mathbb{R}^n),h)$.

Step 2: By completeness of $(K(\mathbb{R}^n),h)$, $\{L_{\alpha}u_{i_k}\}$ converges to A_{α} for some $A_{\alpha} \in K(\mathbb{R}^n)$ for each $\alpha \notin I_0$.

If $0 < \alpha \le 1$ and $\alpha \in I_0$, then we define

$$A_{\alpha} = \cap_{\beta < \alpha, \beta \notin I_0} A_{\beta}.$$

Then by Lemma 2.1, there exists a $u \in F(\mathbb{R}^n)$ such that $L_{\alpha}u = A_{\alpha}$ for each $0 < \alpha \le 1$. Now we have to show that $u \in F_p(\mathbb{R}^n)$ and $d_p(u_i, u) \to 0$ as $i \to \infty$.

Since $\{u_{i_k}\}$ is Cauchy sequence in $(F_p(\mathbb{R}^n), d_p)$, there exist an M such that for $k, l \ge M$,

$$\int_0^1 h(L_\alpha u_{i_k}, L_\alpha u_{i_l})^p \, d\alpha < 1.$$

For a fixed $k \ge M$, since

$$\lim_{l\to\infty}h(L_{\alpha}u_{i_k},L_{\alpha}u_{i_l})=h(L_{\alpha}u_{i_k},L_{\alpha}u)$$

for almost all α , we have that by Fatou's lemma,

$$\int_0^1 h(L_{\alpha}u_{i_k}, L_{\alpha}u)^p \, d\alpha$$

$$\leq \liminf_{l \to \infty} \int_0^1 h(L_{\alpha}u_{i_k}, L_{\alpha}u_{i_l})^p \, d\alpha \leq 1.$$

Thus,

$$\int_0^1 \|L_{\alpha}u\|^p d\alpha$$

$$\leq 2^p \int_0^1 \|L_{\alpha}u_{i_k}\|^p d\alpha + 2^p \int_0^1 h(L_{\alpha}u_{i_k}, L_{\alpha}u)^p d\alpha < \infty$$

which implies $u \in F_p(\mathbb{R}^n)$.

Finally, the triangle inequality

$$d_p(u_i, u) \le d_p(u_i, u_{i_k}) + d_p(u_{i_k}, u)$$

shows that
$$d_p(u_i, u) \to 0$$
 as $i \to \infty$.

Corollary 3.2. $F_{cp}(\mathbb{R}^n)$ is a closed subspace of $(F_p(\mathbb{R}^n), d_p)$ and so it is complete.

Proof. Let $\{u_i\}$ be a sequence in $(F_{cp}(\mathbb{R}^n), d_p)$ such that for some $v \in F_p(\mathbb{R}^n)$,

$$d_p(u_i, v) \to 0$$
 as $i \to \infty$.

Then there exists a $I \subset (0, 1]$ with Lebesgue measure 0 such that for all $\alpha \notin I$,

$$h(L_{\alpha}u_i, L_{\alpha}v) \rightarrow 0$$
 as $i \rightarrow \infty$

Since $L_{\alpha}u_i \in K_c(\mathbb{R}^n)$ and $K_c(\mathbb{R}^n)$ is a closed subspace of $K(\mathbb{R}^n)$, $L_{\alpha}v \in K_c(\mathbb{R}^n)$ for all $\alpha \notin I$. If $0 < \alpha \le 1$ and $\alpha \in I$, then we can choose a increasing sequence $\{\alpha_k\}$ with $\alpha_k \notin I$ so that $\alpha_k \to \alpha$ as $k \to \infty$. Then by left-continuity of $L_{\alpha}v$ as a function of α , we have $h(L_{\alpha_k}v, L_{\alpha}v) \to 0$ as $k \to \infty$, and so $L_{\alpha}v \in K_c(\mathbb{R}^n)$. This completes the proof.

Now we prove that $(F_p(\mathbb{R}^n), d_p)$ is separable. To do this, we need some lemmas.

Lemma 3.3. If
$$A_j, B_j \in K(\mathbb{R}^n)$$
, $j = 1, 2$, then
 $h(A_1 \cup A_2, B_1 \cup B_2) \le \max[h(A_1, B_1), h(A_2, B_2)].$

Proof. It follows from the fact that

$$\sup_{a \in A_1 \cup A_2} \inf_{b \in B_1 \cup B_2} |a - b|$$

$$= \max(\sup_{a \in A_1} \inf_{b \in B_1 \cup B_2} |a - b|, \sup_{a \in A_2} \inf_{b \in B_1 \cup B_2} |a - b|)$$

$$\le \max(\sup_{a \in A_1} \inf_{b \in B_1} |a - b|, \sup_{a \in A_2} \inf_{b \in B_2} |a - b|)$$

Lemma 3.4. If $u \in F(\mathbb{R}^n)$ and $0 < \beta < 1$, then there exists a partition $\beta = \beta_0 < \cdots < \beta_m = 1$ of $[\beta, 1]$ such that

$$h(L_{\beta_k}u, L_{\beta_{k-1}^+}u) < \varepsilon \text{ for all } k = 1, \cdots, m.$$

Proof. Let $\varepsilon > 0$ be given. By applying Lemma 2.1, for each $\beta < \alpha < 1$, we can take $\delta_{\alpha} > 0$ so that

$$h(L_{\alpha}u, L_{\alpha-\delta_{\alpha}}u) < \varepsilon$$

and

$$h(L_{\alpha^+}u, L_{\alpha+\delta_\alpha}u) < \varepsilon.$$

Also, we can choose $\delta_{\beta}, \delta_1 > 0$ so that

$$h(L_{\beta^+}u, L_{\beta+\delta_\beta}u) < \varepsilon$$

and

$$h(L_1u, L_{1-\delta_1}u) < \varepsilon.$$

Let $\mathit{I}_\beta = [\beta,\beta+\delta_\beta), \mathit{I}_1 = (1-\delta_1,1]$ and for each $\beta < \alpha < 1,$

$$I_{\alpha} = (\alpha - \delta_{\alpha}, \alpha - \delta_{\alpha}).$$

Then by the compactness of $[\beta, 1]$, there exists $\alpha_1, \dots, \alpha_N \in (\beta, 1)$ such that

$$[0,1] = I_{\beta} \cup I_1 \cup (\cup_{i=1}^N I_{\alpha_i}).$$

The collection of points $\{\beta, \beta + \delta_{\beta}, 1 - \delta_{1}, 1\} \cup \{\alpha_{i} - \delta_{\alpha_{i}}, \alpha_{i}, \alpha_{i} + \delta_{\alpha_{i}} : i = 1, \dots, N\}$ forms a partition of $[\beta, 1]$. We denote these points in ascending order by

$$\beta = \beta_0 < \beta_1 < \cdots < \beta_m = 1.$$

Then it is obvious that for all $k = 1, 2, \dots, m$,

$$h(L_{\beta_k}u,L_{\beta_{k-1}^+}u)<\varepsilon.$$

Theorem 3.5. $(F_p(\mathbb{R}^n), d_p)$ is separable.

Proof. Since $(K(\mathbb{R}^n), h)$ is separable, there exists a countable dense subclass \mathcal{K} of $K(\mathbb{R}^n)$.

Now let \mathcal{F} be the family of fuzzy sets v which for some positive *m*, there exist a finite unions $A_1 \supset \cdots \supset A_m$ of sets in \mathcal{K} and rational points $0 < \alpha_1 \leq \cdots \leq \alpha_{m-1} < 1$ such that

$$v(x) = \sum_{k=1}^{m-1} \alpha_k I_{A_k \setminus A_{k+1}}(x) + I_{A_m}(x),$$

where I_A denotes the indicator function of A.

Then it is obvious that \mathcal{F} is countable subset of $F_p(\mathbb{R}^n)$. Now it suffices to prove that \mathcal{F} is dense in $(F_p(\mathbb{R}^n), d_p)$. Let $u \in F_p(\mathbb{R}^n)$ and $\varepsilon > 0$ be given. First we choose $0 < \beta < 1$ so that

$$\int_0^\beta \|L_{\alpha}u\|^p \, d\alpha < (\varepsilon/16)^p. \tag{1}$$

And then, by applying Lemma 3.4, we choose a partition $\beta = \beta_0 < \cdots < \beta_m = 1$ of $[\beta, 1]$ such that

$$h(L_{\beta_k}u, L_{\beta_{k-1}^+}u) < \varepsilon/8$$
 for all $k = 1, \cdots, m$.

If we take $B_k \in \mathcal{K}, k = 1, 2, \cdots, m$ so that

$$h(B_k, L_{\beta_k}u) < \varepsilon/8$$
 for each k.

and let $A_k = \bigcup_{i=k}^m B_i$, then by lemma 3.3,

$$h(L_{\beta_k}u,A_k)<\varepsilon/8,$$

and

$$h(L_{\beta_{k-1}^+}u, A_k) \le h(L_{\beta_{k-1}^+}u, L_{\beta_k}u) + h(L_{\beta_k}u, A_k) < \varepsilon/4.$$
(2)

Let $\alpha_m = \beta_m = 1$ and for each $k = 1, \dots, m-1$, we choose rational points α_k so that

$$\beta_{k-1} < \alpha_k \leq \beta_k, \ h(L_{\alpha_k}u, L_{\beta_k}u) < \varepsilon/8$$

and

$$\sum_{k=1}^{m} \int_{\alpha_{k}}^{\beta_{k}} (\|L_{\alpha}u\| + \|A_{1}\|)^{p} d\alpha < \varepsilon^{p}/4.$$
(3)

Then

$$h(L_{\alpha_k}u, A_k) \le h(L_{\alpha_k}u, L_{\beta_k}u) + h(L_{\beta_k}u, A_k) < \varepsilon/4.$$
(4)

Now if we define

$$v(x) = \sum_{k=1}^{m-1} \alpha_k I_{A_k \setminus A_{k+1}}(x) + I_{A_m}(x),$$

then

$$L_{\alpha}v = \begin{cases} A_1 & \text{if} & 0 < \alpha \leq \alpha_1, \\ A_k & \text{if} & \alpha_{k-1} < \alpha \leq \alpha_k, k = 2, \cdots, n. \end{cases}$$

Since for $0 < \alpha \leq \beta$,

$$\begin{aligned} h(L_{\alpha}u,L_{\alpha}v) &\leq h(L_{\alpha}u,L_{\beta}+u) + h(L_{\beta}+u,A_{1}) \\ &\leq 2\|L_{\alpha}u\| + \varepsilon/4 \quad \text{by (2),} \end{aligned}$$

we have

$$\int_0^\beta h(L_\alpha u, L_\alpha v)^p \, d\alpha$$

$$\leq 2^p [4^p \int_0^\beta \|L_\alpha u\|^p \, d\alpha + (\varepsilon/4)^p \beta]$$

$$\leq (\varepsilon/2)^p (1+\beta) \quad \text{by (1).}$$

And for $1 \le k \le m$,

Therefore, we conclude that

$$d_p^p(u,v) = \int_0^\beta h(L_\alpha u, A_1)^p d\alpha + \sum_{k=1}^m \int_{\beta_{k-1}}^{\beta_k} h(L_\alpha u, A_k)^p d\alpha$$

< $(\varepsilon/2)^p (1+\beta) + (\varepsilon/4)^p (1-\beta)$
 $+ \sum_{k=1}^m \int_{\alpha_k}^{\beta_k} (\|L_\alpha u\| + \|A_1\|)^p d\alpha$
< $2\varepsilon^p$ by (3).

This completes the proof.

We note that $\mathcal{F} \subset F_{\infty}(\mathbb{R}^n)$ in the proof of Theorem 3.5. This means that $F_p(\mathbb{R}^n)$ is the completion of $(F_{\infty}(\mathbb{R}^n), d_p)$.

Remark. The results established in the above are valid even though R^n is replaced by any real separable Banach space.

Reference

- C. Degang, X. Xiaoping and Z. Liangkuan, "On the integrable noncompact fuzzy number space", *Appl. Math.Lett.* vol.21, pp.1260-1266, 2008.
- [2] P. Diamond and P. Kloeden, Metric spaces of fuzzy sets: Theory and Applications, World Scientific, Singapore, 1994.
- [3] G. H. Greco, "Sendograph metric and relatively compact sets of fuzzy sets", *Fuzzy sets and Systems* ,vol.157, pp.286-291,2006.
- [4] G. H. Greco, "A characterization of relatively compactsets of fuzzy sets", *Nonlinear Anal*, vol.64, pp.518-529, 2006.
- [5] G. H. Greco and M. P. Moschen, "Supremum metric and relatively compact sets of fuzzysets", *Nonlinear Anal*, vol.64, pp.1325-1335, 2006.
- [6] S. Y. Joo and Y. K. Kim, "Topological properties on the space of fuzzy sets", *Jour.Math.Anal.Appl.* vol.246, pp.576-590, 2000.

- [7] V. Kratschmer, "Some complete metrics on spaces of fuzzy sub sets", *Fuzzy Sets and Systems*, vol.130, pp.357-365, 2002.
- [8] M. Ming, "Some notes on the characterization of compact sets in (E^n, d_p) ", Fuzzy Sets and Systems, vol.56, pp.297-301, 1993.
- [9] C. Wuand Z. Zhao, "Some notes on the characterization of compact sets with L_p metric", *Fuzzy Sets and Systems* vol.159, pp.2104-2115, 2008.
- [10] Z. Zhaoand C. Wu, "The equivalence of convergence of sequences of fuzzy numbers and its applications to the characterization of compact sets", *Information Sciences* vol.179, pp.3018-3025, 2009.

Yun Kyong Kim

Professor of Dongshin University Research Area: Fuzzy Probability Theory, Fuzzy Analysis and Related Fields E-mail : ykkim@dsu.ac.kr