• 제목/요약/키워드: contact metric manifold

검색결과 42건 처리시간 0.02초

QUASI CONTACT METRIC MANIFOLDS WITH KILLING CHARACTERISTIC VECTOR FIELDS

  • Bae, Jihong;Jang, Yeongjae;Park, JeongHyeong;Sekigawa, Kouei
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1299-1306
    • /
    • 2020
  • An almost contact metric manifold is called a quasi contact metric manifold if the corresponding almost Hermitian cone is a quasi Kähler manifold, which was introduced by Y. Tashiro [9] as a contact O*-manifold. In this paper, we show that a quasi contact metric manifold with Killing characteristic vector field is a K-contact manifold. This provides an extension of the definition of K-contact manifold.

ON 3-DIMENSIONAL NORMAL ALMOST CONTACT METRIC MANIFOLDS SATISFYING CERTAIN CURVATURE CONDITIONS

  • De, Uday Chand;Mondal, Abul Kalam
    • 대한수학회논문집
    • /
    • 제24권2호
    • /
    • pp.265-275
    • /
    • 2009
  • The object of the present paper is to study 3-dimensional normal almost contact metric manifolds satisfying certain curvature conditions. Among others it is proved that a parallel symmetric (0, 2) tensor field in a 3-dimensional non-cosympletic normal almost contact metric manifold is a constant multiple of the associated metric tensor and there does not exist a non-zero parallel 2-form. Also we obtain some equivalent conditions on a 3-dimensional normal almost contact metric manifold and we prove that if a 3-dimensional normal almost contact metric manifold which is not a ${\beta}$-Sasakian manifold satisfies cyclic parallel Ricci tensor, then the manifold is a manifold of constant curvature. Finally we prove the existence of such a manifold by a concrete example.

A (k, µ)-CONTACT METRIC MANIFOLD AS AN η-EINSTEIN SOLITON

  • Arup Kumar Mallick;Arindam Bhattacharyya
    • Korean Journal of Mathematics
    • /
    • 제32권2호
    • /
    • pp.315-328
    • /
    • 2024
  • The aim of the paper is to study an η-Einstein soliton on (2n + 1)-dimensional (k, µ)-contact metric manifold. At first, we establish various results related to (2n + 1)-dimensional (k, µ)-contact metric manifold that exhibit an η-Einstein soliton. Next we study some curvature conditions admitting an η-Einstein soliton on (2n+1)-dimensional (k, µ)-contact metric manifold. Furthermore, we consider specific conditions associated with an η-Einstein soliton on (2n+1)-dimensional (2n+1)-dimensional (k, µ)-contact metric manifold. Finally, we show the existance of an η-Einstein soliton on (k, µ)-contact metric manifold.

Generalized Quasi-Einstein Metrics and Contact Geometry

  • Biswas, Gour Gopal;De, Uday Chand;Yildiz, Ahmet
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.485-495
    • /
    • 2022
  • The aim of this paper is to characterize K-contact and Sasakian manifolds whose metrics are generalized quasi-Einstein metric. It is proven that if the metric of a K-contact manifold is generalized quasi-Einstein metric, then the manifold is of constant scalar curvature and in the case of a Sasakian manifold the metric becomes Einstein under certain restriction on the potential function. Several corollaries have been provided. Finally, we consider Sasakian 3-manifold whose metric is generalized quasi-Einstein metric.

NEARLY KAEHLERIAN PRODUCT MANIFOLDS OF TWO ALMOST CONTACT METRIC MANIFOLDS

  • Ki, U-Hang;Kim, In-Bae;Lee, Eui-Won
    • 대한수학회보
    • /
    • 제21권2호
    • /
    • pp.61-66
    • /
    • 1984
  • It is well-known that the most interesting non-integrable almost Hermitian manifold are the nearly Kaehlerian manifolds ([2] and [3]), and that there exists a complex but not a Kaehlerian structure on Riemannian product manifolds of two normal contact manifolds [4]. The purpose of the present paper is to study nearly Kaehlerian product manifolds of two almost contact metric manifolds and investigate the geometrical structures of these manifolds. Unless otherwise stated, we shall always assume that manifolds and quantities are differentiable of class $C^{\infty}$. In Paragraph 1, we give brief discussions of almost contact metric manifolds and their Riemannian product manifolds. In paragraph 2, we investigate the perfect conditions for Riemannian product manifolds of two almost contact metric manifolds to be nearly Kaehlerian and the non-existence of a nearly Kaehlerian product manifold of contact metric manifolds. Paragraph 3 will be devoted to a proof of the following; A conformally flat compact nearly Kaehlerian product manifold of two almost contact metric manifolds is isomatric to a Riemannian product manifold of a complex projective space and a flat Kaehlerian manifold..

  • PDF

ON WEAKLY EINSTEIN ALMOST CONTACT MANIFOLDS

  • Chen, Xiaomin
    • 대한수학회지
    • /
    • 제57권3호
    • /
    • pp.707-719
    • /
    • 2020
  • In this article we study almost contact manifolds admitting weakly Einstein metrics. We first prove that if a (2n + 1)-dimensional Sasakian manifold admits a weakly Einstein metric, then its scalar curvature s satisfies -6 ⩽ s ⩽ 6 for n = 1 and -2n(2n + 1) ${\frac{4n^2-4n+3}{4n^2-4n-1}}$ ⩽ s ⩽ 2n(2n + 1) for n ⩾ 2. Secondly, for a (2n + 1)-dimensional weakly Einstein contact metric (κ, μ)-manifold with κ < 1, we prove that it is flat or is locally isomorphic to the Lie group SU(2), SL(2), or E(1, 1) for n = 1 and that for n ⩾ 2 there are no weakly Einstein metrics on contact metric (κ, μ)-manifolds with 0 < κ < 1. For κ < 0, we get a classification of weakly Einstein contact metric (κ, μ)-manifolds. Finally, it is proved that a weakly Einstein almost cosymplectic (κ, μ)-manifold with κ < 0 is locally isomorphic to a solvable non-nilpotent Lie group.

On N(κ)-Contact Metric Manifolds Satisfying Certain Curvature Conditions

  • De, Avik;Jun, Jae-Bok
    • Kyungpook Mathematical Journal
    • /
    • 제51권4호
    • /
    • pp.457-468
    • /
    • 2011
  • We consider pseudo-symmetric and Ricci generalized pseudo-symmetric N(${\kappa}$) contact metric manifolds. We also consider N(${\kappa}$)-contact metric manifolds satisfying the condition $S{\cdot}R$ = 0 where R and S denote the curvature tensor and the Ricci tensor respectively. Finally we give some examples.