
Commun. Korean Math. Soc. 24 (2009), No. 2, pp. 265–275
DOI 10.4134/CKMS.2009.24.2.265

ON 3-DIMENSIONAL NORMAL ALMOST CONTACT
METRIC MANIFOLDS SATISFYING

CERTAIN CURVATURE CONDITIONS

Uday Chand De and Abul Kalam Mondal

Abstract. The object of the present paper is to study 3-dimensional
normal almost contact metric manifolds satisfying certain curvature con-
ditions. Among others it is proved that a parallel symmetric (0, 2) tensor
field in a 3-dimensional non-cosympletic normal almost contact metric
manifold is a constant multiple of the associated metric tensor and there
does not exist a non-zero parallel 2-form. Also we obtain some equivalent
conditions on a 3-dimensional normal almost contact metric manifold and
we prove that if a 3-dimensional normal almost contact metric manifold
which is not a β-Sasakian manifold satisfies cyclic parallel Ricci tensor,
then the manifold is a manifold of constant curvature. Finally we prove
the existence of such a manifold by a concrete example.

1. Introduction

Let M be an almost contact manifold and (φ, ξ, η) its almost contact struc-
ture. This means, M is an odd-dimensional differentiable manifold and φ, ξ, η
are tensor fields on M of types (1, 1), (1, 0), (0, 1) respectively, such that

(1.1) φ2 = −I + η ⊗ ξ, η(ξ) = 1.

Then also
φξ = 0, η ◦ φ = 0.

Let R be the real line and t a coordinate on R. Define an almost complex
structure J on M × R by

(1.2) J(X,
λd

dt
) = (φX − λξ, η(X)

d

dt
),

where the pair (X, λd/dt) denotes a tangent vector to M × R, X and λd/dt
being tangent to M and R respectively.

M and (φ, ξ, η) are said to be normal if the structure J is integrable [1], [2].

Received September 9, 2008; Revised December 8, 2008.
2000 Mathematics Subject Classification. 53C15, 53C40.
Key words and phrases. normal almost contact metric manifolds, non-cosympletic, cyclic

parallel Ricci tensor, Einstein manifold.

c©2009 The Korean Mathematical Society

265



266 UDAY CHAND DE AND ABUL KALAM MONDAL

The necessary and sufficient condition for (φ, ξ, η) to be normal is

(1.3) [φ, φ] + 2dη ⊗ ξ = 0,

where the pair [φ, φ] is the Nijenhuis tensor of φ defined by

(1.4) [φ, φ](X, Y ) = [φX, φY ] + φ2[X, Y ]− φ[φX, Y ]− φ[X, φY ]

for any X, Y ∈ χ(M); χ(M) being the Lie algebra of vector fields on M .
We say that the form η has rank r = 2s if (dη)s 6= 0, and η ∧ (dη)s = 0, and

has rank r = 2s + 1 if η ∧ (dη)S 6= 0 and (dη)s+1 = 0. We also say that r is the
rank of the structure (φ, ξ, η).

A Riemannian metric g on M satisfying the condition

(1.5) g(φX, φY ) = g(X, Y )− η(X)η(Y )

for any X,Y ∈ χ(M), is said to be compatible with the structure (φ, ξ, η). If
g is such a metric, then the quadruple (φ, ξ, η, g) is called an almost contact
metric structure on M and M is an almost contact metric manifold. On such
a manifold we also have

η(X) = g(X, ξ)
for any X ∈ χ(M) and we can always define the 2-form Φ by

Φ(X, Y ) = g(X,φY ),

where X, Y ∈ χ(M).
It is no hard to see that if dim M = 3, then two Riemannian metric g and

ǵ are compatible with the same almost contact structure (φ, ξ, η) on M if and
only if

ǵ = σg + (1− σ)η ⊗ η

for a certain positive function σ on M .
A normal almost contact metric structure (φ, ξ, η, g) satisfying additionally

the condition dη = Φ is called Sasakian. Of course, any such structure on
M has rank 3. Also a normal almost contact metric structure satisfying the
condition dΦ = 0 is said to be quasi Sasakian [3].

In a recent paper [8], Olszak studied the curvature properties of normal
almost contact manifold of dimension three with several examples.

A Riemannian manifold is called Ricci-semisymmetric if

(1.6) R(X, Y ).S = 0,

where R(X, Y ) is treated as a derivation of the tensor algebra for any tangent
vectors X, Y ; R denotes the curvature tensor and S is the Ricci tensor of type
(0, 2) of the manifold.

Throughout this paper we consider α, β as constants.
In the present paper after preliminaries in Section 2 we prove in Section 3

that a parallel symmetric (0, 2) tensor field in a 3-dimensional non-cosympletic
normal almost contact metric manifold is a constant multiple of the associ-
ated metric tensor and a parallel 2-form does not exist on such manifolds. In
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Section 4 for a Ricci-semisymmetric manifold we obtain some equivalent condi-
tions. In the next section we prove that a 3-dimensional normal almost contact
manifold which is not a β-Sasakian manifold satisfying cyclic parallel Ricci ten-
sor is a manifold of constant curvature. Finally we construct an example of a
3-dimensional normal almost contact metric manifold which is not a β-Sasakian
manifold.

2. Preliminaries

For a normal almost contact metric structure (φ, ξ, η, g) on M , we have [8]

(2.1) (∇Xφ)(Y ) = g(φ∇Xξ, Y )ξ − η(Y )φ∇Xξ,

(2.2) ∇Xξ = α{X − η(X)ξ} − βφX,

where 2α = divξ and 2β = tr(φ∇ξ), divξ is the divergence of ξ defined by
divξ = trace{X −→ ∇Xξ} and tr(φ∇ξ) = trace{X −→ φ∇Xξ}.

R(X,Y )ξ = {Y α + (α2 − β2)η(Y )}φ2X − {Xα + (α2 − β2)η(X)}φ2Y(2.3)

+ {Y β + 2αβη(Y )}φX − {Xβ + 2αβη(X)}φY,

(2.4) S(Y, ξ) = −Y α− (φY )β − {ξα + 2(α2 − β2)}η(Y ),

(2.5) ξβ + 2αβ = 0,

where R denotes the curvature tensor and S is the Ricci tensor.
On the other hand, the curvature tensor in a 3-dimensional Riemannian

manifold always satisfies

R̃(X,Y, Z,W ) = g(X, W )S(Y, Z)− g(X, Z)S(Y,W )(2.6)

+ g(Y,Z)S(X, W )− g(Y, W )S(X,Z)

− r

2
[g(X, W )g(Y,Z)− g(X, Z)g(Y, W )],

where R̃(X, Y, Z, W ) = g(R(X, Y )Z, W ) and r is the scalar curvature.
From (2.3) we can derive that

(2.7) R̃(ξ, Y, Z, ξ) = −(ξα + α2 − β2)g(φY, φZ)− (ξβ + 2αβ)g(Y, φZ).

By (2.4), (2.6) and (2.7) we obtain for α = constant and β = constant,

(2.8) S(Y, Z) =
(r

2
+ α2 − β2

)
g(φY, φZ)− 2(α2 − β2)η(Y )η(Z).

Applying (2.8) in (2.6) we get

R(X,Y )Z =
(r

2
+ 2(α2 − β2)

)
{g(Y,Z)X − g(X,Z)Y }(2.9)

+ g(X, Z)
{(r

2
+ 3(α2 − β2)

)
η(Y )ξ

}

−
{r

2
+ 3(α2 − β2)

}
η(Y )η(Z)X
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− g(Y,Z)
{(r

2
+ 3(α2 − β2)

)
η(X)ξ

}

+
(r

2
+ 3(α2 − β2)

)
η(X)η(Z)Y.

It is to be noted that the general formulas can be obtained by straightforward
calculation.

From (2.5) it follows that if α, β=constant, then the manifold is either β-
Sasakian, or α-Kenmotsu [6] or cosympletic [1].

Proposition 1. A 3-dimensional normal almost contact metric manifold with
α, β=constant is either β-Sasakian, or α-Kenmotsu or cosympletic.

Definition 1. An almost C(λ)-manifold M is an almost co-Hermitian manifold
such that the Riemannian curvature tensor satisfies the following property:
there exist λ ∈ R such that for all X, Y, Z,W ∈ χ(M):

R(X,Y, Z, W ) = R(X,Y, φZ, φW ) + λ{−g(X, Z)g(Y, W ) + g(X,W )g(Y, Z)

+ g(X, φZ)g(Y, φW )− g(X, φW )g(Y, φZ)}.
A normal almost C(λ)-manifold is a C(λ)-manifold. If we take λ = −α2 for

α > 0, then we get C(−α2)-manifold.
We note that β-Sasakian manifold are quasi-Sasakian [3]. They provide

examples of C(λ)-manifolds with λ ≥ 0.
An α-Kenmotsu manifold is a C(−α2)-manifold [6].
Cosympletic manifolds provide a natural setting for time dependent mechan-

ical systems as they are locally product of a Kaehler manifold and a real line
or a circle [4].

3. Second order parallel tensor field

Let us consider a parallel symmetric (0,2)-tensor field δ on a 3-dimensional
normal almost contact metric manifold M .

Then, by ∇δ = 0, we have

(3.1) δ(R(U, V )X,Y ) + δ(X, R(U, V )Y ) = 0,

where U, V, X and Y are arbitrary vectors fields on M .
As δ is symmetric, putting U = X = Y = ξ in (3.1), we obtain

(3.2) δ(ξ, R(ξ,X)ξ) = 0.

Let us assume that M is non-cosympletic. Take a non-empty connected
open subset U of M and restrict our considerations to this set.

Now applying (2.3) in (3.2) we have

(3.3) (α2 − β2)δ(X, ξ)− (α2 − β2)η(X)δ(ξ, ξ)− 2αβδ(φX, ξ) = 0.

Putting φX instead of X in (3.3) and using (1.1) we get

(α2 − β2)2{δ(X, ξ)− η(X)δ(ξ, ξ)} = 0.
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Since M is non-cosympletic, we have

(3.4) δ(X, ξ)− η(X)δ(ξ, ξ) = 0.

Differentiating (3.4) covariantly along Y and applying (3.4) and (2.2) we
find

(3.5) α{δ(X, Y )− δ(ξ, ξ)g(X, Y )} = β{δ(X, φY )− δ(ξ, ξ)g(X, φY )}.
Putting φY instead of Y in (3.5) and using (1.1) we have

(α2 + β2){δ(X, Y )− δ(ξ, ξ)g(X, Y )} = 0.

This implies

(3.6) δ(X,Y ) = δ(ξ, ξ)g(X, Y ), since α2 + β2 6= 0.

Hence, since δ and g are parallel tensor fields, λ = δ(ξ, ξ) is constant on U .
By the parallelity of δ and g it must be δ = λg on whole of M . Thus we have
the following:

Theorem 3.1. A parallel symmetric (0, 2) tensor field in a 3-dimensional non-
cosympletic normal almost contact metric manifold is a constant multiple of the
associated metric tensor.

As an immediate corollary of Theorem 3.1 we have the following result:

Corollary 3.1. If the Ricci tensor field in a 3-dimensional normal almost
contact metric manifold is parallel, then it is an Einstein manifold.

Let us now assume that δ is a parallel 2-form on M , that is, δ(X, Y ) =
−δ(Y, X) and ∇δ = 0.

Then

(3.7) δ(ξ, ξ) = 0.

Covariant differentiation of (3.7) implies

(3.8) δ(∇Xξ, ξ) = 0.

By (2.2) and (3.7) we obtain from (3.8)

(3.9) αδ(X, ξ)− βδ(φX, ξ) = 0.

Putting φX instead of X in (3.9) and using (1.1) we have

(3.10) (α2 + β2)δ(X, ξ) = 0.

Assume the manifold M is non-cosympletic and consider a non-empty open
subset U of M . Then on U we have

(3.11) δ(X, ξ) = 0.

Covariant differentiation of the above and using (2.2) and (3.11) gives

(3.12) αδ(X,Y )− βδ(X, φY ) = 0.
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Putting φY instead of Y in (3.12) and using (1.1) we get

(α2 + β2)δ(X, Y ) = 0.

Since α2 + β2 6= 0, this implies

(3.13) δ(X, Y ) = 0.

Hence δ = 0 on U . Since δ is parallel on U , δ = 0 on M .
Thus we have the following:

Theorem 3.2. On a 3-dimensional non-cosympletic normal almost contact
metric manifold there does not exist a non-zero parallel 2-form.

4. Ricci-semisymmetric normal almost contact metric manifold

Let us consider a 3-dimensional normal almost contact metric manifold
which satisfies the condition

R(X,Y ).S = 0

for any X, Y ∈ χ(M).
Then we have

(4.1) S(R(X,Y )U, V ) + S(U,R(X, Y )V ) = 0.

Putting X = U = ξ in (4.1), we have

(4.2) S(R(ξ, Y )ξ, V ) + S(ξ, R(ξ, Y )V ) = 0.

Using (2.3) in (4.2), we have

(4.3) (α2 − β2){S(Y, V )− η(Y )S(ξ, V ) + η(V )S(ξ, Y )− g(Y, V )S(ξ, ξ)} = 0.

Let us assume that M is non-cosympletic. Take a nonempty connected open
subset U of M and restrict our considerations to this set. Then from (4.3) we
have

(4.4) S(Y, V )− η(Y )S(ξ, V ) + η(V )S(ξ, Y )− g(Y, V )S(ξ, ξ) = 0.

Now using (2.4) in (4.4) we get

(4.5) S(Y, V )− S(ξ, ξ)g(Y, V ) + η(Y )(φV )β − η(V )φ(Y )β = 0.

Again putting U = V = ξ in (4.1) we have

(4.6) S(ξ, R(X, Y )ξ) = 0.

Applying (2.3) in (4.6) we have

(α2− β2){η(X)S(ξ, Y )− η(Y )S(ξ,X)}(4.7)

= 2αβ{η(X)S(ξ, φY )− η(Y )S(ξ, φX)}.
Using (2.4) in (4.7) we get

(4.8) (α2 − β2){η(X)(φY )β − η(Y )(φX)β} = 0
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which implies that, since α2 − β2 6= 0,

(4.9) η(X)(φY )β = η(Y )(φX)β

on M.
Now using (4.9) in (4.5) we get

(4.10) S(Y, V ) = S(ξ, ξ)g(Y, V ).

Clearly from (2.4) it follows

S(ξ, ξ) = 2(β2 − α2).

Therefore from (4.10) we obtain

(4.11) S(Y, V ) = 2(β2 − α2)g(Y, V ),

which implies that M is an Einstein manifold with constant curvature 6(β2 −
α2). So we have the following:

Theorem 4.1. Let M be a 3-dimensional non-cosympletic normal almost con-
tact metric manifold. Then the following conditions are equivalent:

(i) M is an Einstein manifold;
(ii) The Ricci tensor S of M is parallel, i.e., ∇S = 0;
(iii) M is Ricci-semisymmetric.

Remark. It is obvious that by the formula (2.6) the conditions (i), (ii), and (iii)
in Theorem 4.1 can be replaced by the following conditions:

(i) M is of constant curvature;
(ii) M is locally symmetric (∇R = 0);
(iii) M is semisymmetric (R.R = 0).

5. 3-dimensional normal almost contact metric manifold satisfying
cyclic parallel Ricci tensor

A. Gray [5] introduced two classes of Riemannian manifold determined by
covariant derivative of Ricci tensor. The class A consisting of all Riemannian
manifold whose Ricci tensor S is a Codazzi tensor, i.e.,

(∇XS)(Y,Z) = (∇Y S)(X, Z).

The class B consisting of all Riemannian manifolds whose Ricci tensor is
cyclic parallel, i.e.,

(5.1) (∇XS)(Y,Z) + (∇Y S)(X,Z) + (∇ZS)(X,Y ) = 0.

A Riemannian manifold is said to satisfy cyclic parallel Ricci tensor if the
Ricci tensor is non-zero and satisfies the condition (5.1). It is known [7] that
Cartan hypersurface are manifolds with non-parallel Ricci tensor satisfying the
condition (5.1).

From (5.1) it follows that r =constant. Hence from (2.8), using (1.5) we
have

(5.2) (∇XS)(Y,Z) = −
(r

2
+ 3(α2 − β2)

)
{η(Y )(∇Xη)Z + η(Z)(∇Xη)Y }.
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Applying (5.2) in (5.1) we have
(r

2
+ 3(α2 − β2)

)
{η(Y )(∇Xη)Z + η(Z)(∇Xη)Y(5.3)

+ η(X)(∇Y η)Z + η(Z)(∇Y η)X

+ η(X)(∇Zη)Y + η(Y )(∇Zη)X} = 0.

Using (2.2) and putting Y = Z = ei, where {ei} is an orthonormal basis of
the tangent space at each point of the manifold, in (5.3) we get

(r

2
+ 3(α2 − β2)

)
2αη(X) = 0.

This implies either
α = 0,

which gives the manifold is β-Sasakian manifold. Or,

(5.4)
(r

2
+ 3(α2 − β2)

)
η(X) = 0,

which gives
r = 6(β2 − α2).

Conversely, if r = 6(β2−α2), then from (5.2) it follows that (∇XS)(Y, Z) = 0
and hence the manifold satisfies cyclic parallel Ricci tensor.

This leads to the following lemma:

Lemma 5.1. A 3-dimensional normal almost contact metric manifold which
is not a β-Sasakian manifold satisfies cyclic parallel Ricci tensor if and only if
r = 6(β2 − α2).

From (2.8) we have

(5.5) S(Y, Z) =
(r

2
+ α2 − β2

)
g(Y,Z)−

(r

2
+ 3(α2 − β2)

)
η(Y )η(Z),

which implies that

(5.6) Q(Y ) =
(r

2
+ α2 − β2

)
Y −

(r

2
+ 3(α2 − β2)

)
η(Y )ξ,

where Q is the symmetric endomorphism of the tangent space at each point of
the manifold corresponding to the Ricci tensor S, i.e., S(X, Y ) = g(QX,Y ).

Using (5.5) and (5.6) from (2.6) we get

R(X, Y )Z =
(
3
r

2
+ 2(α2 − β2)

)
{g(Y, Z)X − g(X, Z)Y }(5.7)

−
(r

2
+ 3(α2 − β2)

)
{g(Y,Z)η(X)ξ − g(X, Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y }.
From (5.7) it is clear that if r = 6(β2−α2), then the manifold is a manifold of
constant curvature.

This leads by virtue of Lemma 5.1. to the following theorem:
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Theorem 5.1. If a 3-dimensional normal almost contact metric manifold
which is not a β-Sasakian manifold satisfying cyclic parallel Ricci tensor, then
the manifold is a manifold of constant curvature 6(β2 − α2).

6. Example of a 3-dimensional normal almost contact metric
manifold

We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3, z 6= 0}, where
(x, y, z) are standard co-ordinate of R3.

The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂z

are linearly independent at each point of M.
Let g be the Riemannian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1

that is, the form of the metric becomes

g =
dx2 + dy2 + dz2

z2
.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M).
Let φ be the (1, 1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = 1,

φ2Z = −Z + η(Z)e3,

g(φZ, φW ) = g(Z, W )− η(Z)η(W )

for any Z, W ∈ χ(M).
Then for e3 = ξ , the structure (φ, ξ, η, g) defines an almost contact metric

structure on M .
Let ∇ be the Levi-Civita connection with respect to metric g. Then we have

[e1, e3] = e1e3 − e3e1

= z
∂

∂x
(z

∂

∂z
)− z

∂

∂z
(z

∂

∂x
)

= z2 ∂2

∂x∂z
− z2 ∂2

∂z∂x
− z

∂

∂x
= −e1.

Similarly
[e1, e2] = 0 and [e2, e3] = −e2.
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The Riemannian connection ∇ of the metric g is given by

2g(∇XY,Z) = Xg(Y, Z) + Y g(Z, X)− Zg(X, Y )(6.1)

− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X, Y ]),

which known as Koszul’s formula.
Using (6.1) we have

2g(∇e1e3, e1) = −2g(e1, e1)
= 2g(−e1, e1).(6.2)

Again by (6.1)

(6.3) 2g(∇e1e3, e2) = 0 = 2g(−e1, e2)

and

(6.4) 2g(∇e1e3, e3) = 0 = 2g(−e1, e3).

From (6.2), (6.3) and (6.4) we obtain

2g(∇e1e3, X) = 2g(−e1, X)

for all X ∈ χ(M).
Thus

∇e1e3 = −e1.

Therefore, (6.1) further yields

∇e1e3 = −e1, ∇e1e2 = 0, ∇e1e1 = e3,

(6.5) ∇e2e3 = −e2, ∇e2e2 = e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

(6.5) tells us that the manifold satisfies (2.2) for α = −1 and β = 0 and
ξ = e3. Hence the manifold is a normal almost contact metric manifold with
α, β=constants.

It is known that

(6.6) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

With the help of the above results and using (6.6) it can be easily verified
that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,

R(e1, e2)e2 = −e1, R(e2, e3)e2 = e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = e3.

From the above expressions of the curvature tensor we obtain

S(e1, e1) = g(R(e1, e2)e2, e1) + g(R(e1, e3)e3, e1)
= −2.

Similarly we have
S(e2, e2) = S(e3, e3) = −2.
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Therefore,
r = S(e1, e1) + S(e2, e2) + S(e3, e3) = −6.

We note that here α, β and r are all constants.
We claim that M with the given metric g, is a Ricci-semisymmetric normal

almost contact metric manifold.
To verify the relation (4.11) it is sufficient to check

S(ei, ei) = −2 = −2(α2 − β2)g(ei, ei)

for all i = 1, 2, 3 and α = −1, β = 0. Hence M is an Einstein manifold.
Also the manifold satisfies cyclic parallel Ricci tensor. α 6= 0 implies that

the manifold is not a β-Sasakian manifold. Since r = −6 = 6(β2 − α2) for
α = −1, β = 0, therefore Theorem 5.1 holds.
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