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ON 3-DIMENSIONAL NORMAL ALMOST CONTACT
METRIC MANIFOLDS SATISFYING
CERTAIN CURVATURE CONDITIONS

UpAy CHAND DE AND ABUL KALAM MONDAL

ABSTRACT. The object of the present paper is to study 3-dimensional
normal almost contact metric manifolds satisfying certain curvature con-
ditions. Among others it is proved that a parallel symmetric (0, 2) tensor
field in a 3-dimensional non-cosympletic normal almost contact metric
manifold is a constant multiple of the associated metric tensor and there
does not exist a non-zero parallel 2-form. Also we obtain some equivalent
conditions on a 3-dimensional normal almost contact metric manifold and
we prove that if a 3-dimensional normal almost contact metric manifold
which is not a (3-Sasakian manifold satisfies cyclic parallel Ricci tensor,
then the manifold is a manifold of constant curvature. Finally we prove
the existence of such a manifold by a concrete example.

1. Introduction

Let M be an almost contact manifold and (¢, £, n) its almost contact struc-
ture. This means, M is an odd-dimensional differentiable manifold and ¢, £, n
are tensor fields on M of types (1,1), (1,0), (0, 1) respectively, such that

(1.1) ¢?=—-I+n@¢ nE) =1
Then also
PE=0, nogp=0.
Let R be the real line and ¢ a coordinate on R. Define an almost complex
structure J on M x R by

Ad d
1.2 X, —) =(¢X = X, n(X)—
(12) TS = (6X a6 () D),
where the pair (X, \d/dt) denotes a tangent vector to M x R, X and Ad/dt
being tangent to M and R respectively.

M and (¢,&,n) are said to be normal if the structure J is integrable [1], [2].
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The necessary and sufficient condition for (¢,&,n) to be normal is

(1.3) [¢, 0] +2dn ® & =0,
where the pair [¢, @] is the Nijenhuis tensor of ¢ defined by

(1.4) [0, 0)(X,Y) = [¢X,0Y] + ¢*[X, Y] — ¢[¢X, Y] — ¢[X, Y]
for any X, Y € x(M); x(M) being the Lie algebra of vector fields on M.

We say that the form 7 has rank r = 2s if (dn)® # 0, and n A (dn)® = 0, and
has rank 7 = 25+ 1 if n A (dn)® # 0 and (dn)**! = 0. We also say that r is the
rank of the structure (¢, &, 7).

A Riemannian metric g on M satisfying the condition

(1.5) 9(6X,¢Y) = g(X,Y) = n(X)n(Y)

for any X,Y € x(M), is said to be compatible with the structure (¢,&,n). If
g is such a metric, then the quadruple (¢,&,7,g) is called an almost contact
metric structure on M and M is an almost contact metric manifold. On such
a manifold we also have

n(X) = g(X,¢)
for any X € x(M) and we can always define the 2-form ® by

O(X,Y) = g(X, ¢Y),

where X,Y € x(M).

It is no hard to see that if dim M = 3, then two Riemannian metric g and
g are compatible with the same almost contact structure (¢,&,7n) on M if and
only if

g=og+(1—-onen
for a certain positive function ¢ on M.

A normal almost contact metric structure (¢, &, 7, g) satisfying additionally
the condition dn = @ is called Sasakian. Of course, any such structure on
M has rank 3. Also a normal almost contact metric structure satisfying the
condition d® = 0 is said to be quasi Sasakian [3].

In a recent paper [8], Olszak studied the curvature properties of normal
almost contact manifold of dimension three with several examples.

A Riemannian manifold is called Ricci-semisymmetric if

(1.6) R(X,Y).S =0,

where R(X,Y) is treated as a derivation of the tensor algebra for any tangent
vectors X,Y; R denotes the curvature tensor and S is the Ricci tensor of type
(0,2) of the manifold.

Throughout this paper we consider «, 8 as constants.

In the present paper after preliminaries in Section 2 we prove in Section 3
that a parallel symmetric (0, 2) tensor field in a 3-dimensional non-cosympletic
normal almost contact metric manifold is a constant multiple of the associ-
ated metric tensor and a parallel 2-form does not exist on such manifolds. In
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Section 4 for a Ricci-semisymmetric manifold we obtain some equivalent condi-
tions. In the next section we prove that a 3-dimensional normal almost contact
manifold which is not a G-Sasakian manifold satisfying cyclic parallel Ricci ten-
sor is a manifold of constant curvature. Finally we construct an example of a
3-dimensional normal almost contact metric manifold which is not a §-Sasakian
manifold.

2. Preliminaries

For a normal almost contact metric structure (¢,£,7,¢g) on M, we have [8]

(2.1) (Vxo)(Y) = g(¢Vx& Y)E = n(Y)oVxE,

(2.2) Vx&=o{X —n(X)¢} = BoX,
where 2a = div€ and 25 = tr(¢VE), dive is the divergence of & defined by
divé = trace{X — Vx¢&} and tr(¢pV¢E) = trace{X — ¢V xE}.

(23) R(X,Y)¢ = {Ya+ (o= nY)}¢*X — {Xa+ (a® - B*)n(X)}¢°Y
+{Y B+ 2a8n(Y)}oX — {X B+ 2a8n(X)}¢Y,

(2.4) S(Y,6) = ~Ya — (¢Y)5 — {€a+2(a” - 57)}n(Y),
(2.5) EB+2a8 =0,

where R denotes the curvature tensor and S is the Ricci tensor.
On the other hand, the curvature tensor in a 3-dimensional Riemannian
manifold always satisfies

(26)  R(X.Y.ZW) = g(X,W)S(Y.Z) — g(X, Z)S(Y, W)
+ g(Y7 Z)S(X7 W) - g(K W)S(X7 Z)

_ g[g(x; W)g(Y, Z) — g(X, Z)g(Y, W),

where R(X,Y,Z, W) = g(R(X,Y)Z,W) and r is the scalar curvature.
From (2.3) we can derive that

2.7)  R(EY,Z,6) = —(Sa+a® - B2)g(oY,0Z) — (€8 + 2a8)g(Y, ¢ 2).
By (2.4), (2.6) and

(2.
(28)  S(2)= (5 +a? = 8) g6V, 02) - 2 ~ B(Y)n(Z).
Applying (2.8) in (2.6) we get
(29)  RXY)Z= (5+2(a? - 5) {9(Y, 2)X - (X, Z)Y}
+9(x, 2) { (5 +3(a% = ) n(¥)¢}

—{5 +36a* =8}V m(2)X

7) we obtain for o = constant and § = constant,
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— (v, 2){ (5 +3(a* = 89)) n(x)¢}
+ (5 +3(e% = 8% n(X)m(2)Y.

It is to be noted that the general formulas can be obtained by straightforward
calculation.

From (2.5) it follows that if «, S=constant, then the manifold is either (-
Sasakian, or a-Kenmotsu [6] or cosympletic [1].

Proposition 1. A 3-dimensional normal almost contact metric manifold with
«, B=constant is either B-Sasakian, or a-Kenmotsu or cosympletic.

Definition 1. An almost C'(\)-manifold M is an almost co-Hermitian manifold
such that the Riemannian curvature tensor satisfies the following property:
there exist A € R such that for all X,Y, Z, W € x(M):

R(X,Y,Z,W) = R(X,Y,0Z, ¢W) + M—g(X, Z)g(Y, W) + g(X,W)g(Y, Z)
+ 9(X, 02)9(Y,0W) — g(X, oW)g(Y, 62)}.

A normal almost C()\)-manifold is a C(\)-manifold. If we take A = —a? for
a > 0, then we get C(—a?)-manifold.

We note that [-Sasakian manifold are quasi-Sasakian [3]. They provide
examples of C'(A)-manifolds with A > 0.

An a-Kenmotsu manifold is a C'(—a?)-manifold [6].

Cosympletic manifolds provide a natural setting for time dependent mechan-

ical systems as they are locally product of a Kaehler manifold and a real line
or a circle [4].

3. Second order parallel tensor field

Let us consider a parallel symmetric (0,2)-tensor field § on a 3-dimensional
normal almost contact metric manifold M.
Then, by V§ = 0, we have

(3.1) J(RU V)X, Y)+0(X,R(U,V)Y) =0,
where U, V, X and Y are arbitrary vectors fields on M.

As § is symmetric, putting U = X =Y = ¢ in (3.1), we obtain
(3.2) 5(6, R(E, X)E) = 0.

Let us assume that M is non-cosympletic. Take a non-empty connected
open subset U of M and restrict our considerations to this set.
Now applying (2.3) in (3.2) we have

(3.3) (@® = 2)3(X,€) — (o = B*)n(X)d(€, &) — 2a85(9 X, €) = 0.
Putting ¢X instead of X in (3.3) and using (1.1) we get
(0® = B%){8(X, ) — n(X)d(£,€)} = 0.
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Since M is non-cosympletic, we have

(3-4) 0(X, &) —n(X)4(¢, &) = 0.

Differentiating (3.4) covariantly along Y and applying (3.4) and (2.2) we
find

(3:5)  afd(X,Y) = 4(€E)g(X,Y)} = B{o(X, 9Y) = 6(¢,£)9(X, ¢Y)}.
Putting ¢Y instead of Y in (3.5) and using (1.1) we have
(a2 + 52){5()(’ Y)—6(&8g(X,Y)}=0.
This implies
(3.6) S(X,Y) =6(£,8)g(X,Y), since o+ (% #£0.

Hence, since ¢ and g are parallel tensor fields, A = §(¢, &) is constant on U.
By the parallelity of § and g it must be § = Ag on whole of M. Thus we have
the following:

Theorem 3.1. A parallel symmetric (0,2) tensor field in a 3-dimensional non-
cosympletic normal almost contact metric manifold is a constant multiple of the
associated metric tensor.

As an immediate corollary of Theorem 3.1 we have the following result:

Corollary 3.1. If the Ricci tensor field in a 3-dimensional normal almost
contact metric manifold is parallel, then it is an Einstein manifold.

Let us now assume that 0 is a parallel 2-form on M, that is, §(X,Y) =
—5(Y, X) and V& = 0.

Then
(3.7) 5(¢,€) = 0.
Covariant differentiation of (3.7) implies
(3.8) 6(Vx&,¢) =0.
By (2.2) and (3.7) we obtain from (3.8)
(3.9) ad(X,€) - A3(6X,€) = 0.
Putting ¢ X instead of X in (3.9) and using (1.1) we have
(3.10) (@ + B2)5(X, &) = 0.

Assume the manifold M is non-cosympletic and consider a non-empty open
subset U of M. Then on U we have

(3.11) 0(X, &) =0.
Covariant differentiation of the above and using (2.2) and (3.11) gives

(3.12) ad(X,Y) — B8(X,4Y) = 0.
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Putting ¢Y instead of Y in (3.12) and using (1.1) we get
(@® 4+ *)8(X,Y) = 0.
Since a? 4 32 # 0, this implies
(3.13) 5(X,Y) =0.

Hence § = 0 on U. Since ¢ is parallel on U, § =0 on M.
Thus we have the following:

Theorem 3.2. On a 3-dimensional non-cosympletic normal almost contact
metric manifold there does not exist a non-zero parallel 2-form.
4. Ricci-semisymmetric normal almost contact metric manifold

Let us consider a 3-dimensional normal almost contact metric manifold
which satisfies the condition

R(X,Y).5 =0

for any X,Y € x(M).
Then we have

(4.1) S(RX,Y)U,V)+SWU,R(X,Y)V)=0.
Putting X = U = ¢ in (4.1), we have
(4.2) S(R(EY)E V) + S(& R(EY)V) = 0.
Using (2.3) in (4.2), we have
(4.3) (o = F){S(Y,V) = n(Y)S(E V) +n(V)S(EY) — g(Y.V)S(£,€)} = 0.

Let us assume that M is non-cosympletic. Take a nonempty connected open
subset U of M and restrict our considerations to this set. Then from (4.3) we
have

44)  SEV)=n)SEV)+n(V)SEY)—g(Y,V)S(£¢) =0.
Now using (2.4) in (4.4) we get

(4.5) S, V) =589V, V) +n(Y)(oV)5 —n(V)(Y)5 = 0.
Again putting U =V = ¢ in (4.1) we have

(4.6) S, R(X,Y)E) =0.
Applying (2.3) in (4.6) we have
(4.7) (0= ) {n(X)S(6,Y) — n(Y)S(§, X)}

)
= 208{n(X)S(&, oY) —n(Y)S(S, 9 X)}.
Using (2.4) in (4.7) we get
(4.8) (@® = B){n(X)(6Y)B —n(Y)(¢X)B} =0
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which implies that, since a? — 32 # 0,

(4.9) n(X) (oY )3 =n(Y)(¢X)B
on M.

Now using (4.9) in (4.5) we get
(4'10) S(Yv V) = S({,f)g(Y, V)

Clearly from (2.4) it follows
S(§:6) = 2(8 = a?).
Therefore from (4.10) we obtain
(4.11) S(Y,V) =2(8* — a®)g(Y, V),

which implies that M is an Einstein manifold with constant curvature 6(3? —
a?). So we have the following:

Theorem 4.1. Let M be a 3-dimensional non-cosympletic normal almost con-
tact metric manifold. Then the following conditions are equivalent:

(i) M is an Einstein manifold;

(ii) The Ricci tensor S of M is parallel, i.e., V.S = 0;

(iil) M s Ricci-semisymmetric.

Remark. Tt is obvious that by the formula (2.6) the conditions (i), (ii), and (iii)
in Theorem 4.1 can be replaced by the following conditions:

(i) M is of constant curvature;

(ii) M is locally symmetric (VR = 0);

(iii) M is semisymmetric (R.R = 0).

5. 3-dimensional normal almost contact metric manifold satisfying
cyclic parallel Ricci tensor

A. Gray [5] introduced two classes of Riemannian manifold determined by
covariant derivative of Ricci tensor. The class A consisting of all Riemannian
manifold whose Ricci tensor S is a Codazzi tensor, i.e.,

(Vx9)(Y, 2) = (VyS)(X, Z).

The class B consisting of all Riemannian manifolds whose Ricci tensor is
cyclic parallel, i.e.,

(5.1) (Vx9(Y, Z2) + (VyS)(X, Z) + (V25)(X,Y) = 0.

A Riemannian manifold is said to satisfy cyclic parallel Ricci tensor if the
Ricei tensor is non-zero and satisfies the condition (5.1). It is known [7] that
Cartan hypersurface are manifolds with non-parallel Ricci tensor satisfying the
condition (5.1).

From (5.1) it follows that r =constant. Hence from (2.8), using (1.5) we
have

(5:2) (VxS)(V.2) = = (5 +3(a* = 8%)) (n(V)(Vxm)Z +n(Z)(Vxm)Y }.
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Applying (5.2) in (5.1) we have

(5:3) (5 +30% = 8) (VX Z +n(Z)(Vxn)Y
+0(X)(Vyn)Z +n(Z2)(Vyn)X
+0(X)(Vzn)Y +n(Y)(Vzn) X} = 0.

Using (2.2) and putting Y = Z = e;, where {e;} is an orthonormal basis of
the tangent space at each point of the manifold, in (5.3) we get

(g +3(a? - ﬁz)) 2an(X) =0.

This implies either

a=0,
which gives the manifold is §-Sasakian manifold. Or,
(5.4) (5 +3(a* = 8%) n(x) =0,
which gives
r=6(8% - a?).

Conversely, if r = 6(3?—a?), then from (5.2) it follows that (VxS)(Y, Z) =0
and hence the manifold satisfies cyclic parallel Ricci tensor.
This leads to the following lemma:

Lemma 5.1. A 3-dimensional normal almost contact metric manifold which
is not a B-Sasakian manifold satisfies cyclic parallel Ricci tensor if and only if

r=6(8% —a?).
From (2.8) we have
(55)  S(Y,Z)= (g +a? - 52) 9(Y,2) - (g +3(a? - 62)) n(Y)n(2),
which implies that
(5:6) QW)= (5+a2= )Y - (5 +30% - ) n(¥)e,

where @ is the symmetric endomorphism of the tangent space at each point of
the manifold corresponding to the Ricci tensor S, i.e., S(X,Y) =g(QX,Y).
Using (5.5) and (5.6) from (2.6) we get

(57  R(X,Y)Z = (3% +2(a? - ﬁQ)) {g(Y, 2)X — g(X,Z)Y}

— (5 +3(a% = 89) {9(Y, 2)n(X)¢ — g(X, Z)n(Y )¢
+0(Y)n(Z)X — n(X)n(2)Y}.

From (5.7) it is clear that if r = 6(3% — a?), then the manifold is a manifold of
constant curvature.
This leads by virtue of Lemma 5.1. to the following theorem:
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Theorem 5.1. If a 3-dimensional normal almost contact metric manifold
which is not a B-Sasakian manifold satisfying cyclic parallel Ricci tensor, then
the manifold is a manifold of constant curvature 6(3% — a?).

6. Example of a 3-dimensional normal almost contact metric
manifold

We consider the 3-dimensional manifold M = {(x,y,2) € R?, 2 # 0}, where
(x,vy, 2) are standard co-ordinate of R3.
The vector fields
0 0 0
€1 =2-—, €3=2—, €3=2—
1 ax ) 2 8y ) 3 82
are linearly independent at each point of M.
Let g be the Riemannian metric defined by
glei,e3) = gler, e2) = g(ez, e3) =0,

gler,e1) = glez, e2) = g(es, e3) =1
that is, the form of the metric becomes
dx? + dy? + dz?
g=—7%5—"
2
Let 1 be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M).
Let ¢ be the (1,1) tensor field defined by
ple1) = —e2, ¢le2) =e1, P(e3) = 0.

Then using the linearity of ¢ and g, we have
n(es) =1,
$*Z = —Z +1(Z)es,
962, oW) = g(Z, W) — n(Z)n(W)
for any Z, W € x(M).

Then for es = £ , the structure (¢, &, 7, g) defines an almost contact metric
structure on M.

Let V be the Levi-Civita connection with respect to metric g. Then we have

[61,63] = €1€3 — €361
g, 0 g, 0
o 500
o 0x0z 020x ox
= —e1.

Similarly
[e1,e2] =0 and [eq,e3] = —ea.
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The Riemannian connection V of the metric g is given by
(6.1) 29(VxY,Z) = Xg(Y,2) +Yg(Z,X) — Zg(X,Y)

which known as Koszul’s formula.
Using (6.1) we have

29(Ve,ez,e1) = —2g(er,e1)
(6.2) = 2g(—eq,eq).
Again by (6.1)
(6.3) 29(Ve,e3,e2) = 0 =2g(—e1, e2)
and
(6.4) 29(Ve,e3,e3) = 0= 2g(—e1, e3).

From (6.2), (6.3) and (6.4) we obtain
29(Ve,e3,X) =2g(—eq, X)

for all X € x(M).
Thus
Ve, €3 = —e;.
Therefore, (6.1) further yields

Vee3 = —e1, Ve ea=0, Ve =es,
(6.5) Ve,e3 = —€2, Veea =e3, Ve =0,
Veses =0, Veea=0, Ve =0.
(6.5) tells us that the manifold satisfies (2.2) for « = —1 and § = 0 and

¢ = e3. Hence the manifold is a normal almost contact metric manifold with
«, B=constants.

It is known that
(6.6) R(X,Y)Z =VxVyZ -VyVxZ - VxyZ.

With the help of the above results and using (6.6) it can be easily verified
that
R(e1,ez)es =0, R(es,es)es = —ea, R(eq,ez)es = —ey,
R(eq,e2)e2 = —ey, R(ea,e3)es =e3, R(ey,ez)es =0,
R(e1,e2)e; = ea, R(ea,ez)e; =0, R(ep,esz)er = es.
From the above expressions of the curvature tensor we obtain
S(er,e1) = g(R(e1,ez)ez,e1) + g(R(e1,e3)es, e1)
—2.

Similarly we have
5(62,62) = 5(63,63) = —2.
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Therefore,
r=S5(e1,e1) + S(ea, ea) + S(es, ez) = —6.
We note that here «, 8 and r are all constants.
We claim that M with the given metric g, is a Ricci-semisymmetric normal
almost contact metric manifold.
To verify the relation (4.11) it is sufficient to check

S(es e) =—-2= —2(a2 - /62)9(6i,€z‘)
forallt=1,2,3 and a = —1, # = 0. Hence M is an Einstein manifold.
Also the manifold satisfies cyclic parallel Ricci tensor. « # 0 implies that

the manifold is not a $-Sasakian manifold. Since r = —6 = 6(5% — o?) for
a = —1, 3 =0, therefore Theorem 5.1 holds.
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