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ABSTRACT. We consider pseudo-symmetric and Ricci generalized pseudo-symmetric N (k)-
contact metric manifolds. We also consider N (k)-contact metric manifolds satisfying the
condition S - R = 0 where R and S denote the curvature tensor and the Ricci tensor
respectively. Finally we give some examples.

1. Introduction

An n-dimensional Riemannian manifold (M, g) is called locally symmetric if the
condition VR = 0 holds on M, where V denotes the Levi-Civita connection and R
is the corresponding curvature tensor of M. The class of locally symmetric man-
ifolds is a natural generalization of the class of manifolds of constant curvature.
As a generalization of locally symmetric spaces, many geometers have considered
semi-symmetric spaces and in turn their generalizations. A Riemannian manifold
M is said to be semi-symmetric [14] if its curvature tensor R satisfies R - R = 0,
where R(X,Y) acts on R as a derivation. Several studies have been done in contact
geometry related to semi-symmetry condition and its generalizations. In [15], S.
Tanno showed that a semi-symmetric K-contact manifold M?"*! is locally isomet-
ric to the unit sphere $2"*1(1). In [13], D. Perrone studied contact metric manifolds
satisfying R(§, X ) - R = 0 and under additional assumptions, it was shown that the
manifold is either a Sasakian manifold of constant curvature 1 or R(X,£)¢ = 0. In
[10], it was proved that a Sasakian manifold M?"*! satisfying R(¢,X) - C = 0 is
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locally isometric to S?"*+1(1), where C is the Weyl conformal curvature tensor. As
a generalization of this result, in [4], it was proved that if £ belongs to the s-nullity
distribution and if R(¢, X)-C = 0, then the contact metric manifold M?" ! is locally
isometric to S?"*1(1) or to E"*! x S™(4). In [7], the concircular curvature tensor
of N(k)-contact metric manifold have been studied. These circumstances motivate
us to study some pseudo-symmetry type conditions for a contact metric manifold,
which are another generalizations of semi-symmetry type conditions. The paper is
organized as follows: In section 2, we give a brief introduction for N(x)-contact
metric manifolds. In section 3, pseudo-symmetry type manifolds are introduced. In
section 4, pseudo-symmetric and Ricci generalized pseudo-symmetric N (k)-contact
metric manifolds are studied. In section 5, we consider a N (k)-contact metric man-
ifold satisfying the condition S - R = 0. Finally we give some examples.

2. N(k)-contact metric manifolds

A (2n+1)-dimensional manifold M is said to admit an almost contact structure
if it admits a tensor field ¢ of type (1,1), a vector field £ and a 1-form 7 satisfying

P =—-T+n0¢ nE =1, ¢t=0, nop=0.

An almost contact structure is said to be normal if the induced almost complex
structure J on the product manifold M x R defined by

a1 = (% - s )

is integrable, where X is tangent to M, t is the coordinate of R and f is a smooth
function on M x R. Let g be a compatible Riemannian metric with almost contact
structure, that is,

(2.1) (X, 9Y) = g(X,Y) = n(X)n(Y),

then M becomes an almost contact metric manifold equipped with an almost contact
metric structure (¢,&,n,g). From (2.1), it can be easily seen that

9(X,pY) = —g(pX,Y)
and
9(X, &) = n(X)

for all vector fields X and Y. An almost contact metric structure becomes a contact
metric structure if

9(X,9Y) =dn(X,Y),



On N(k)-Contact Metric Manifolds Satisfying Certain Curvature Conditions 459

for vector fields X and Y. The 1-form 7 is then a contact form and £ is its char-
acteristic vector field. We call the normal contact metric manifold as a Sasakian
manifold. A contact metric manifold is Sasakian if and only if

(VXW)YZQ(XaY)f—U(Y)Xa X7Y6TM7

where V is Levi-Civita connection of the Riemannian metric g.
The k-nullity distribution N (k) of a Riemannian manifold M is defined by

N(k) :p = Ny(x) = {Z € T,M : R(X,Y)Z = r(g(Y, 2)X — g(X, Z)Y)},

Kk being a constant. If the characteristic vector field £ € N(k), then we call a contact
metric manifold an N (k)-contact metric manifold. If k = 1, then an N(k)-contact
metric manifold is Sasakian and if x = 0, then N(k)-contact metric manifold is
locally isometric to the product E"*! x S™(4) for n > 1 and flat forn = 1. If s < 1,
the scalar curvature is r = 2n(2n — 2 + &) [8].

In a N(k)-contact metric manifold,

(2.2) R(X,Y)E = k(n(Y)X —n(X)Y),
(2.3) R(§, X)Y = k(g(X,Y)§ = n(Y)X)
and

(2.4) S(X,€) =2nkn(X), Q&=2nk¢

hold [8], where @ is the Ricci operator defined by S(X,Y) = g(QX,Y).
We also recall the notion of a D-homothetic deformation. For a given contact
metric structure (¢, £,n, g), this is, the structure defined by

_ 1 ~
n=an, £=-§ ¢=¢, g=agtala-nen,

where a is a positive constant. While such a change preserves the state of being con-
tact metric K-contact, Sasakian or strongly pseudo-convex C R-manifold, it destroys
a condition like R(X,Y)¢ = 0 or R(X,Y)¢ = k(n(Y)X — n(X)Y). However the
form of the (k, u)—nullity condition is preserved under a D-homothetic deformation
with )

-k -1

porta =t

w+2a—2
2 ) :

a

a
Given a non-Sasakian (k, u)—manifold M, E.Boeckx [9] introduced an invariant
1-¢

1—-k

In =

and showed that for two non-Sasakian (k, ;)—manifolds M;(é:, &, ni,9:),% = 1,2,
we have IM; = IMs if and only if up to a D—homothetic deformation, the two
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manifolds are locally isometric as contact metric manifolds. Thus we know all non-
Sasakian (k, 1)— manifolds locally as soon as we have for every odd dimension 2n+1
and for every possible value of the invariant I, one (k,u)—manifold M(¢,&,n,g)
with Iny = I. For I > 1 such examples may be found from the standard contact
matric structure on the tangent sphere bundle of a manifold of contact curvature ¢
where we have I = &f‘é‘. Boeckx also gives a Lie algebra construction for any odd
dimension and value of I < —1.

Using this invariant, we now construct an example of a (2n + 1)-dimension
N(1 — 1)—contact metric manifold, n > 1.

Example 2.1. Since the Boeckx invariant for a (1 — L,0)—manifold is \/n >
—1, we consider the tangent sphere bundle of an (n + 1)—dimensional manifold of
constant curvature ¢ so chosen that the resulting D—homothetic deformation will
be a (1 — %, 0)—manifold. That is, for k = ¢(2 — ¢) and u = —2c we solve

1 k 21 2a — 2
1_f:+a72 O:;Hria
n a a
for a and ¢. The result is
+1)2
LGEED

n—1

1

n

and taking ¢ and a to be these values we obtain an N(1 —
manifold.

)—contact metric

The above example will be used in Theorem 5.1.

3. Pseudo-symmetry type manifolds

Let (M,g) be an n(> 3)-dimensional differentiable manifold of class C>°. We
define tensors R - R and Q(g, R) by

(R(X,Y) - R)(X1, X2, X3) = R(X,Y)R(X1, X2) X3
(3.1) —RR(X,Y)X1,X2)X5— R(X1,R(X,Y)X2) X3 — R(X:1, X2)R(X,Y)X;5

and

Q(g,R)(Xl,XQ,Xg;X7Y) = (X A Y)R(X]_,XQ)Xg
—R(X AY)X1, X2)Xs — R(X1, (X AY)X2) X5 — R(X1, Xo)(X AY) X3,

respectively, where X1, Xo, X3, XY € TM and X AY is an endomorphism [11]
defined by

(3.2) (XAY)Z =g(Y,2)X — g(X,Z)Y.
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If the tensors R- R and Q(g, R) are linearly dependent, then M is called pseudo-
symmetric which is introduced by R. Deszcz [11] as a generalization of the semi-
symmetry. This is equivalent to

R-R=LrQ(g,R)

holding on the set Ur = {z € M : Q(g,R) # 0 at =}, where Ly is some function on
Ug [11]. In particular, if Lg is constant, M is called a pseudo-symmetric manifold
of constant type [3]. A pseudo-symmetric manifold is said to be proper if it is
not semi-symmetric. Every semi-symmetric manifold is pseudo-symmetric, but the
converse statement is not true. It is trivial that if M is locally symmetric, then it
is semi-symmetric.

If the tensors R - R and Q(S, R) are linearly dependent, then M is called Ricci
generalized pseudo-symmetric [11]. This is equivalent to

R-R=LQ(S,R)

holding on the set U = {x € M : Q(S, R) # 0 at z}, where L is some function on
U. The tensors Q(S, R) and X AgY are defined [11] by

(3.3) Q(S, R)(X1, X2, X3; X,Y) = (X As Y)R(X1, X2) X3

—R((X As Y)X1,X2) X5 — R(X1, (X As Y)X2) X5 — R(X1, X2)(X As Y) X3
and
(3.4) (X As Y)Z = S(Y, 2)X — S(X, 2)Y,

respectively. Moreover for a non-flat Riemannian manifold (M, g), the tensor S - R
is defined by

(3.5) (- R)(X1, X2, X3,Xy) = —R(QX1, X2, X3, Xy) —R(X1,QX2, X3, Xy)

- R(leXQaQX37X4) _R(X17X27X37QX4)a

where X1, X0, X3, X4, X,Y,Z € TM. Semi-Riemannian manifolds satisfying the
condition S - R = 0 were investigated in [1] and [2].

4. Pseudo-symmertic and Ricci generalized pseudo-symmetric N(k)-
contact metric manifolds

We know from [6] that a contact metric manifold of constant curvature is nec-
essarily a Sasakian manifold of constant curvature +1 or is 3-dimensional and flat,
and a contact metric manifold M?" ! satisfying R(X,Y )¢ = 0 is locally isometric
to E"T! x S™(4) for n > 1 and flat in dimension 3.
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Now, we begin with the following:

Theorem 4.1. Let M be a non-flat (2n + 1)-dimensional N(k)-contact metric
mamnifold. If M is a proper pseudo-symmetric manifold, then the manifold is a
pseudosymmetric manifold of constant type.

Proof. We assume that M is a proper pseudo-symmetric N(k)—contact metric
manifold. From (2.3) and (3.2), since

R(& X)Y = k(§AX)Y,

it is easy to see that
R, X)-R=k(NX) R,

which implies that the pseudo-symmetry function Lz = . Hence the manifold is a
pseudo-symmetric manifold of constant type. This completes the proof. O

Let us suppose that the N(x)—contact metric manifold is semi-symmetric, that
is,
(R(U,X)-R)(Y,Z)W =0,
which implies
(4.1) (R(&, X) - R)(Y, Z)W = 0.

From (4.1) we can write

R, X)R(Y,Z)W — R(R( X)Y,Z)W — R(Y,R(¢,X)Z)W
(4.2) — R(Y,Z)R(&, X)W =0.

Then using (2.3), the equation (4.2) can be written as

’{[R(Y; Za Wa X)€ - U(R(K Z)W)X - g(Xa Y)R(Sv Z)W + n(Y)R(Xa Z)W
= 9(X, 2)R(Y, W +n(Z)R(Y, X)W — g(X, W)R(Y, Z)¢
(4.3) + n(W)R(Y,Z)X] =0.

Hence taking the inner product of (4.3) with £ we get

K[R(Y, Z,W,X) — n(RY,Z)W)n(X) - g(X,Y)n(R(E Z2)W) +n(Y)n(R(X, Z)W)
- 9(X, Z2)n(R(Y, W) +n(Z)n(R(Y, X)W) +n(W)n(R(Y, Z) X)]
(4.4) = 0.

So in view of (2.2) and (2.3), the equation (4.4) turns into the form

which gives either k =0, or R(Y, Z,W, X) = k(g(X,Y)g(Z, W) — g(X, Z)g(Y,W)).
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For x = 0, we get the manifold is locally isometric to E"+! x S™(4) for n > 1
[6]. On the other hand, if R(Y,Z,W,X) = r(9(X,Y)g(Z,W) — g(X, Z)g(Y,W)),
then M is a space of constant curvature k. So from [6], it is necessarily a Sasakian
manifold of constant curvature +1 for n > 1.

Thus we have the following:

Corollary 4.1. Let M be a semisymmetric N(k)—contact metric manifold, then
the manifold is either locally isometric to E"*1 x S™(4) for n > 1, or a Sasakian
manifold of constant curvature +1.

Theorem 4.2. Let M be a non-flat (2n + 1)-dimensional N(k)-contact metric
manifold. Then M satisfies the condition R(§,X) - R = L(§ As X) - R if and
only if it is a Sasakian manifold of constant curvature +1 or locally isometric to
E™L x S™(4) forn > 1.

Proof. By the use of (3.3), we can write
(45) (EAs X) R)(Y,Z,W) = Q(S,R)(Y,Z, W;¢ X)
= (ENs X)R(Y,2)W
R((EAs X)Y, Z)W — R(Y, (§ s X)Z)W
- RY,Z)(§ns X)W
So we get by using (3.4) from the above that
(16) QS BY.ZWig, X) = S(R(Y,Z)W, X)¢ — S(& R(Y, Z)W)X
S(X,Y)R(, Z)W + S(&,Y)R(X, Z)W
- SX,2)RY, O )W + S(&, 2)R(Y, X)W
- S(X,W)R(Y,Z)§+ S(E,W)R(Y, Z)X.
Taking the inner product of (4.6) with £, we have

(4.7) 9(QS, R)(Y, 2, W3¢, X),€) = S(R(Y, 2)W, X) — S(&, R(Y, Z)W)n(X)
- S(X, )n(R( Z)W ) S(EY)n(R(X, Z)W)
= S(X, Z)n(R(Y, )W) + 5(€, Z)n(R(Y, X)W)
+ SEW)n(R(Y, Z2)X).

(

Hence making use of (2.2), (2.3) and (2.4) in )
9(((E s X) - R)(Y, Z,W),€) = g(Q(S, R)(Y, Z, W€, X), €)

= S(RY,2)W,X) + 2ns2[g(X, Z)n(Y)n(W) = g(X, Y )n(Z)n(W)]
#{9(Z,W)S(X,Y) - S(X, ) ( )n(W)

in the last equation (4.7), we obtain

Also we can deduce

(4.8) 9(R(&, X).R)(Y, Z,W),§)
= Kk[R(Y, 2, W, X) + k(g9(X, Z)g(Y, W) — g(X,Y)g(Z,W))].
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Since the condition R(§,X)- R = L({ As X) - R holds on M, by (4.5) and (4.8), we

can write as

(4.9) K[R(Y,Z,W,X) + r(g(X, Z)g(Y, W) — g(X,Y)g(Z,W))]
= L{2nk*[g(X, Z)n(Y )n(W) — g(X, Y )n(Z)n(W)]

+S(R(Y, Z)W, X) — k[g(Z, W)S(X,Y) — S(X,Y)n(Z)n(W)
—g(Y,W)S(X, Z) + S(X, Z)n(Y )n(W)]}.

Taking Y = £ in (4.9) and using (2.3) and (2.4), we have
L{2nk(1 — k) g(Z, Wn(X) — S(X, Z)n(W) + 2nk?g(X, Z)n(W)} = 0.
Hence cither L = 0 or
(4.10) 2nk(1 — K)g(Z, Wn(X) — S(X, Z)n(W) + 2nk?g(X, Z)n(W) = 0.

If L =0, then R(§,X)-R =0 holds on M. Then by the proof of Corollary 4.1, it is
a Sasakian manifold of constant curvature +1 or locally isometric to E"*! x S™(4)
for n > 1.
Next, if the condition (4.10) holds on M, then contracting (4.10) over Z and
W we get
4n?k(1 — k) =0,

which gives us either K = 0 or kK = 1. Hence in the case of kK = 0, M is locally
isometric to the product E"™! x S™(4) for n > 1 and in the case of k = 1, M is a
Sasakian manifold of constant curvature 1.

The converse statement is trivial. This proves the theorem. O

5. N(k)-contact metric manifolds satisfying the condition S-R =0
In this section we prove the following:

Theorem 5.1. Let M be a (2n+ 1)-dimensional non-flat and non-Sasakian N(k)-
contact metric manifold. If M satisfies the condition S - R = 0, then M is either
locally isometric to E"Tt x S™(4) for n > 1 or the manifold is locally isometric to
the FExample 2.1.

Proof. From (3.5) we know

(5.1) (S R)(X,Y,Z,W) —R(QX,Y,Z,W) — R(X,QY, Z,W)

Now assume that the condition S - R = 0 holds on M. Then taking X = £ in
(5.1), we get

(5.2) R(QS,Y, Z,W) + R(¢,QY, Z, W)
+R(E,Y,QZ,W) + R(§,Y, Z,QW) = 0.
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So by the use of (2.4), the equation (5.2) turns into the form

(5.3) nkR(EY, Z,W) + R(§,QY, 2, W)
R(EY,QZ, W)+ R(S,Y, Z,QW) = 0.

Moreover, by the use of (2.3) in (5.3), we have

(5-4) 20k[g(Y, Z)n(W) — (Y, W)n(Z)]
+ KIS, 2)n(W) = S(Y, W)n(Z)]
+ KIS, Zn(W) —2n fig(Y Win(Z)]
+  KR2nrg(Y, Z)n(W) = S(Y, W)n(Z)] =

Then putting W = ¢ in (5.4) we have
2k[=S(Y,Z) — 2nkg(Y, Z) + 4nkn(Y)n(Z)] = 0,
which gives us either x = 0 or the condition
(5.5) S, Z) = 2nk[—g(Y, Z) + 2n(Y)n(Z)] = 0

holds on M. In the case of k = 0, M is locally isometric to E"*! x S"(4) for n > 1
[6]. If the condition (5.5) holds on M, then contracting the equation (5.5) over Y’
and Z, we get 7 = 2nk(1 — 2n). For a non-Sasakian N (x)-contact metric manifold,
since r = 2n(2n — 2+ k) [8], we obtain k = 1 — 1. In this case, if n = 1, then
k =0, hence M is flat [6]. But this case can not occur because of the non-flatness
assumption. Thus the manifold is locally isometric to the Example 2.1. o

6. Examples

Example 6.1. In [12] J. Milnor gave a complete classification of three dimensional
manifolds admitting the Lie algebra structure

(6-1) [62,63] = Ci1€1q, [63,61] = C2€2, [61,62] = C3€3.

As in the case of the given example of [7], let us consider n be the dual 1-form to
the vector field e;. Using (6.1) we get

C
dn(ez,e3) = —dn(es,e2) = 51 #0

and dn(e;,ej) = 0 for (4,7) # (2,3),(3,2). It is easy to check that n is a contact
form and e; is the characteristic vector field. Defining a Riemannian metric g by
g(ei,e;) = 4,5, then, because we must have dn(e;, e;) = g(e;, ¢e;), ¢ has the same
metric as dn with respect to the basis e;. Moreover, for g to be an associated metric,
we must have ¢? = —I +n®e;. So for (¢,e1,7,g) to be a contact metric structure
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we must have ¢; = 2. The unique Riemannian connection V coresponding to g is
given by

29(VXY7 Z) = Xg(Y7 Z) + Yg(Z,X) - Zg(X, Y) - g(X, [Y7 Z])
9g(Y,[X, Z]) + 9(Z,[X,Y]).

So using ¢; = 2 we easily get

Velel = O, VEZGQ = 07 V63€3 = 0,

1 1
Ve, €2 = *(CQ +c3 — 2)63, Ve,01 = 7(82 —C3 — 2)63,
2 2

1 1
Ve, e3 = —5(62 +c3—2)ez, Ve,e1 = 5(2 + co — c3)ea.
But we also know that

Ve,e1 = —ey — dhes.

Comparing now those two relations of V.,e; and using ¢e; = 0, pes = —ea we
conclude that
C3 — C9

2

hey = €s.

And hence
C3 — C2

h€3 = B

€3.
Thus e; are eigenvectors of h with corresponding eigenvalues (0, A, —\) where A =
52 ey, Moreover by direct calculation we have

(c3 — c2)?

R(€2,61)€1 = [1 — 1

lea + [2 — ca — c3)hea,

(c3 — c2)?

R(es,er)er = [1 — 1

]63 + [2 — Cg — 03]h63.

R(€27 63)61 = 0.

Putting k =1 — % and u = 2 — ¢y — c3 we conclude, from these relations that
e1 belongs to the (k, u)-nullity distribution, for any cg, cs.

Now putting ¢o = ¢35 = 1, we get the manifold is a N(k)—contact metric mani-
fold with x = 1. Thus the manifold is a Sasakian manifold. Also from the expres-
sions of the curvature tensor, for co = c¢3 = 1, we get that the manifold is a manifold
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of constant curvature. Thus the Theorem 4.2 is verified.

Example 6.2([5]). Every Sasakian space form M?"*1(c) is pseudo-symmetric.
Also the Sasakian space form M?"*1(—3) is pseudo-symmetric but not semi-
symmetric.

Acknowledgements The authors are thankful to the referee for his valuable com-
ments and suggestions towards the improvement of the paper.
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