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Abstract. The aim of this paper is to characterize K-contact and Sasakian manifolds

whose metrics are generalized quasi-Einstein metric. It is proven that if the metric of a

K-contact manifold is generalized quasi-Einstein metric, then the manifold is of constant

scalar curvature and in the case of a Sasakian manifold the metric becomes Einstein

under certain restriction on the potential function. Several corollaries have been provided.

Finally, we consider Sasakian 3-manifold whose metric is generalized quasi-Einstein metric.

1. Introduction

If the Ricci tensor S of a Riemannian manifold (Mn, g), n > 2, satisfies the
condition Ric = λg, λ being a constant, then the manifold is named an Einstein
manifold. According to Besse [4] this condition is called Einstein metric condi-
tion. The study of Einstein manifolds and their generalizations are very interesting
in Riemannian and semi-Riemannian geometry. There are several generalizations
of Einstein metric such as quasi-Einstein metric [8], m-quasi-Einstein metric [9],
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(m, ρ)-quasi-Einstein metric [18], generalized quasi-Einstein metric [10] and many
others.

The idea of generalized quasi-Einstein metric in a Riemannian manifold of di-
mension n is introduced by Catino [10]. A metric g of an n(> 2) dimensional
Riemannian manifold Mn is called a generalized quasi-Einstein metric (shortly,
GQE metric) if there exist three smooth functions ψ, α, β such that

(1.1) S +Hψ − αdψ ⊗ dψ = βg,

where Hψ is the Hessian of the function ψ defined by

Hψ(E,F ) = g(∇Egradψ, F )

for all vector fields E,F in Mn. Here ∇ is the Riemannian connection and grad

denotes the gradient operator. Obviously, when ψ is a constant, the metric becomes
an Einstein metric.

For individual values of α and β, we get different type of metrics. They are

i) Gradient Ricci soliton [7] for α = 0 and β ∈ R,

ii) Gradient almost Ricci soliton [1] for α = 0 and β ∈ C∞(Mn),

iii) Gradient ρ-Einstein soliton [11] for α = 0, β = ρr+λ and λ ∈ R, r being the
scalar curvature,

iv) m-quasi-Einstein metric for α = 1
m
, m ∈ N and β ∈ R,

v) gradient generalized m-quasi metric [2] for α = 1
m
, m ∈ N and β ∈ C∞(Mn),

vi) (m, ρ)-quasi-Einstein metric for α = 1
m
, m > 0, β = ρr + λ and λ ∈ R.

The idea of a gradient ρ-Einstein soliton is introduced by Catino and Mazzieri [11]
and studied in the papers ([12], [19]). In the paper [27], Venkatesha and Kumara
studied gradient ρ-Einstein solitons on almost Kenmotsu manifolds. In [13], Chen
studied m-quasi-Einstein structure in almost cosymplectic manifolds.
In the paper [10], Catino gave a local characterization of GQE metric with harmonic
Weyl tensor and C(gradψ, ·, ·) = 0, where C is the Weyl tensor. He proved that if
the metric of a manifold (Mn, g), n ≥ 3 is a GQE metric with harmonic Weyl tensor
and C(gradψ, ·, ·) = 0, then M is locally warped product with (m− 1)-dimensional
Einstein fibers around any regular point of ψ. Recently, GQE manifolds have been
studied by Mirshafeazadeh and Bidabad ([22], [23]). So far our knowledge goes,
contact or paracontact manifolds whose metrics are GQE metric have not been in-
vestigated. In the present paper we attempt to characterizeK-contact and Sasakian
manifolds whose metrics are GQE metric.

At first we obtain the expression of Riemannian curvature tensor and Ricci tensor
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in a Riemannian manifold whose metric is GQE metric. Then we provide our main
theorems. In the proof of the theorems we assume that the potential function ψ

remains invariant under the characteristic vector field ξ, that is, £ξψ = 0, which
implies that ξψ = 0, £ξ being the Lie-derivative in the direction of ξ. Precisely we
prove the following theorems:

Theorem 1.1. The scalar curvature of a K-contact manifold with GQE metric is

constant, provided the potential function ψ remains invariant under the character-

istic vector field ξ.

Theorem 1.2. A Sasakian manifold with GQE metric is an Einstein manifold,

provided the potential function ψ remains invariant under the Reeb vector field ξ.

2. Preliminaries

Let M2n+1 be a smooth manifold. Let η be a 1-form, ξ be a vector field and
ϕ be a (1, 1)-tensor field. The triple (η, ξ, ϕ) is called an almost contact structure

(acs) if

(2.1) I = −ϕ2 + η ⊗ ξ, η(ξ) = 1,

where I is the identity map. Obviously ϕξ = 0 and η ◦ ϕ = 0. The acs is called
normal if the almost complex structure J on the product manifold M2n+1 × R

defined by

J

(

E, γ
d

dt

)

=

(

ϕE − γξ, η(E)
d

dt

)

for all E ∈ χ(M2n+1) and γ ∈ C∞(M2n+1 × R), is integrable. Here χ(M2n+1)
denotes the tangent space of M2n+1. Blair [5] proved that the acs is normal if and
only if [ϕ, ϕ] + 2η ⊗ ξ = 0, where [ϕ, ϕ] denotes the Nijenhuis tensor of ϕ defined
by

[ϕ, ϕ](E,F ) = ϕ2[E,F ] + [ϕE,ϕF ]− ϕ[ϕE,F ]− ϕ[E,ϕF ], ∀E,F ∈ χ(M2n+1).

If there exists a Riemannian metric g on M2n+1 such that

(2.2) g = g(ϕ ·, ϕ ·) + η ⊗ η,

then the manifold M2n+1 together with (η, ξ, ϕ, g) is said to be an almost contact

metric manifold (shortly, acmmanifold). On acmmanifold we can define the funda-
mental 2-form Φ defined by Φ = g(·, ϕ ·). When dη = Φ, the acm manifold is called
a contact metric (cm) manifold. On a cm manifolds η ∧ (dη)n is a non-vanishing
(2n+1)-form. Contact metric manifolds have been studied by several authors such
as ([14], [15], [20], [24]-[26], [28]) and many others.

Given a cmmanifoldM2n+1 we can define a symmetric (1, 1)-tensor field h = 1
2£ξϕ,

where £ξ denotes the Lie derivative along the vector field ξ, which satisfy

(2.3) hξ = 0, hϕ+ ϕh = 0



488 G. G. Biswas, U. C. De and A. Yıldız

(2.4) ∇Eξ = −ϕE − ϕhE

(2.5) (∇Eϕ)F + (∇ϕEϕ)ϕF = 2g(E,F )ξ − η(F )(E + hE + η(E)ξ)

for all E,F ∈ χ(M2n+1). We denote R for Riemannian curvature tensor and Q for
Ricci operator defined by

(2.6) R(E,F ) = [∇E ,∇F ]−∇[E,F ],

S(E,F ) = g(QE,F ).

According to Blair [5] h = 0 if and only if the Reeb vector field ξ is Killing. If ξ is a
Killing vector field, then the cm manifold M2n+1 is called K-contact manifold [5].
On a K-contact manifold M2n+1 the following relations hold:

(2.7) ∇Eξ = −ϕE

(2.8) Qξ = 2nξ

(2.9) R(ξ, E)F = (∇Eϕ)F

(2.10) (∇Eϕ)F + (∇ϕEϕ)ϕF = 2g(E,F )ξ − η(F )(E + η(E)ξ)

for all E,F ∈ χ(M2n+1). Taking covariant derivative of (2.8) along E ∈ χ(M2n+1),
we obtain

(2.11) (∇EQ)ξ = QϕE − 2nϕE.

Since ξ is Killing, £ξQ = 0. By direct computation

(2.12) (∇ξQ)E = QϕE − ϕQE.

A normal cm manifold is said to be a Sasakian manifold. A necessary and
sufficient condition for an acm manifold M2n+1 to be Sasakian is that

(2.13) (∇Eϕ)F = g(E,F )ξ − η(F )E

for all E,F ∈ χ(M2n+1). A cm manifold is Sasakian if and only if

(2.14) R(E,F )ξ = η(F )E − η(E)F.

Every Sasakian manifold is K-contact manifold, but the converse is not true, in
general. However in 3-dimensional manifold K-contact and Sasakian manifolds are
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equivalent [21]. The relations (2.7)-(2.10) also hold in Sasakian manifolds. The
Ricci tensor in a Sasakian 3-manifold is given by [6]

(2.15) S =
r − 2

2
g +

6− r

2
η ⊗ η.

From the above we see that if r = 6 then the manifold is an Einstein manifold and
conversely. Since in a three dimensional manifold, Einstein and space of constant
sectional curvature are equivalent, a Sasakian 3-manifold is of constant sectional

curvature 1 if and only if r = 6.

3. Generalized Guasi-Einstein Metric in a Riemannian Manifold

In this section we deduce the expression of R and S on a Riemannian manifold
with GQE metric.

Proposition 3.1. In a Riemannian manifold (M2n+1, g) with GQE metric, the

tensors R and S satisfy

R(E,F )gradψ = (∇FQ)E − (∇EQ)F + (Eβ)F − (Fβ)E

+ {(Eα)(Fψ) − (Fα)(Eψ)}gradψ

− α{(Fψ)QE − (Eψ)QF}+ αβ{(Fψ)E − (Eψ)F}(3.1)

and

(1− α)S(F, gradψ) =
1

2
(Fr) − 2n(Fβ)− g(gradψ, gradψ)(Fα)

+ {g(gradα, gradψ)− αr + 2nαβ}(Fψ)(3.2)

for all E,F ∈ χ(M2n+1).

Proof. From (1.1) it follows that

(3.3) ∇F gradψ = −QF + βF + αg(gradψ, F )gradψ.

where Hψ= Hessian of the function ψ is defined by

Hψ(E,F ) = g(∇Egradψ, F )

for all vector fields E,F in M2n+1. Taking covariant derivative of (3.3) in the
direction E ∈ χ(M2n+1), we obtain

∇E∇F gradψ = −∇E(QF ) + (Eβ)F + β∇EF + (Eα)g(gradψ, F )gradψ

+ α(Eg(gradψ, F ))gradψ + αg(gradψ, F )∇Egradψ.(3.4)

Interchanging E and F in the foregoing equation, we have

∇F∇Egradψ = −∇F (QE) + (Fβ)E + β∇FE + (Fα)g(gradψ,E)gradψ

+ α(Fg(gradψ,E))gradψ + αg(gradψ,E)∇F gradψ.(3.5)
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Using (3.3)-(3.5) in (2.6), we get (3.1). Contracting the equation (3.1) and applying
the well known formulas Er = tr{F → (∇EQ)F} and 1

2Er = div Q, we get the
second result.

4. Proof of the Main Results

Proof of the Theorem 1.1. Replacing E by ξ in (3.1) and using (2.11) and
(2.12), we have

R(ξ, F )gradψ = ϕQF − 2nϕF + (ξβ)F − (Fβ)ξ

+ {(ξα)(Fψ) − (Fα)(ξψ)}gradψ

− α{2n(Fψ)ξ − (ξψ)QF} + αβ{(Fψ)ξ − (ξψ)F}.(4.1)

Taking inner product of the foregoing equation with E and using (2.9), we infer

−g((∇Fϕ)E, gradψ) = g(ϕQF,E)− 2ng(E,ϕF )

+ (ξβ)g(E,F )− (Fβ)η(E)

+ (ξα)(Eψ)(Fψ) − (ξψ)(Eψ)(Fα)

− α{2n(Fψ)η(E)− (ξψ)g(QF,E)}

+ αβ{(Fψ)η(E) − (ξψ)g(E,F )}.(4.2)

Replacing E by ϕE and F by ϕF in (4.2), entail that

−g((∇ϕFϕ)ϕE, gradψ) = g(QϕF,E)− 2ng(E,ϕF )

+ (ξβ)g(ϕE,ϕF ) + (ξα)g(ϕE, gradψ)g(ϕF, gradψ)

− (ξψ)g(ϕE, gradψ)g(ϕF, gradα)

+ α(ξψ)g(QϕF,ϕE) − αβ(ξψ)g(ϕE,ϕF ).(4.3)

Adding (4.2) and (4.3) and using (2.10), we get

−2g(E,F )(ξψ) + η(E)((Fψ) + η(F )(ξψ))

= g(ϕQF +QϕF,E)− 4ng(E,ϕF )

+ (ξβ)(g(E,F ) + g(ϕE,ϕF )) − (Fβ)η(E)

+ (ξα)((Eψ)(Fψ) + g(ϕE, gradψ)g(ϕF, gradψ))

− (ξψ)((Eψ)(Fα) + g(ϕE, gradψ)g(ϕF, gradα))

− α{2n(Fψ)η(E)− (ξψ)g(QF,E)}

+ αβ{(Fψ)η(E) − (ξψ)g(E,F )}

+ α(ξψ)g(QϕF,ϕE) − αβ(ξψ)g(ϕE,ϕF ).(4.4)

Anti-symmetrizing the above equation, it follows that

(1 + 2nα− αβ)((Fψ)η(E) − (Eψ)η(F ))

= 2g(ϕQF +QϕF,E)− 8ng(E,ϕF )

+ (Eβ)η(F ) − (Fβ)η(E) + (ξψ)((Eα)(Fψ) − (Fα)(Eψ))

+ (ξψ)(g(ϕE, gradα)g(ϕF, gradψ) − g(ϕF, gradα)g(ϕE, gradψ)).(4.5)
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Now we assume that the potential function ψ remains invariant under the charac-
teristic vector field ξ, that is, ξψ = 0. Then the equation (4.5) reduces to

(1 + 2nα− αβ)((Fψ)η(E) − (Eψ)η(F ))

= 2g(ϕQF +QϕF,E) − 8ng(E,ϕF ) + (Eβ)η(F ) − (Fβ)η(E).(4.6)

Replacing E by ϕE and F by ϕF in the equation (4.6), we infer

(4.7) ϕQF +QϕF = 4nϕF

for all vector field F on M2n+1. Suppose {e1, e2, · · · , en, ϕe1, ϕe2, · · · , ϕen, ξ} is
a ϕ-basis of (M2n+1, g). Then g(ϕQei, ϕei) = g(Qei, ei) for i = 1, 2, · · · , n. We
compute

r =

n
∑

i=1

g(Qei, ei) +

n
∑

i=1

g(Qϕei, ϕei) + g(Qξ, ξ)

=
n
∑

i=1

g(ϕQei +Qϕei, ϕei) + 2n

= 2n(2n+ 1).

This finishes the proof.

Suppose dα ∧ dψ = 0. Then

(4.8) (Eα)(Fψ) − (Fα)(Eψ) = 0

for all E,F ∈ χ(M2n+1), which implies (Eα)gradψ − (Eψ)gradα = 0, that is,
gradα and gradψ are collinear. Conversely, if gradα and gradψ are collinear then
dα ∧ dψ = 0. Using (4.8) in (4.5), we get

(1 + 2nα− αβ)((Fψ)η(E) − (Eψ)η(F ))

= 2g(ϕQF +QϕF,E)− 8ng(E,ϕF )

+ (Eβ)η(F ) − (Fβ)η(E).

Proceeding in the similar way as in the proof of Theorem 1.1, it follows that the
manifold is of constant scalar curvature. Hence, we can state the following:

Corollary 4.1. The scalar curvature of a K-contact manifold with GQE metric is

constant, provided gradα and gradψ are collinear.

Proof of the Theorem 1.2. Let (M2n+1, g) be a Sasakian manifold with GQE
metric. In a Sasakian manifold the relation ϕQ = Qϕ holds. Therefore ∇ξQ = 0.
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Using (2.13) in (4.2), we get

−g(E,F )(ξψ) + (Fψ)η(E) = g(ϕQF,E) − 2ng(E,ϕF )

+ (ξβ)g(E,F ) − (Fβ)η(E)

+ (ξα)(Eψ)(Fψ) − (ξψ)(Eψ)(Fα)

− α{2n(Fψ)η(E) − (ξψ)g(QF,E)}

+ αβ{(Fψ)η(E) − (ξψ)g(E,F )}.(4.9)

Anti-symmetrizing the equation (4.9), we infer

(1 + 2nα− αβ)((Fψ)η(E) − (Eψ)η(F ))

= 2g(ϕQF,E)− 4ng(E,ϕF )

+ (Eβ)η(F ) − (Fβ)η(E)

+ (ξψ){(Eα)(Fψ) − (Fα)(Eψ)}.(4.10)

Replacing E by ϕE and F by ϕF in (4.10), we have

0 = 2g(ϕQF,E)− 4ng(E,ϕF )

+ (ξψ){g(ϕE, gradα)g(ϕF, gradψ) − g(ϕF, gradα)g(ϕE, gradψ)}.(4.11)

Again replacing E by ϕE in (4.11) and applying (2.8), we obtain

S(E,F ) = 2ng(E,F )−
1

2
(ξψ){g(ϕ2E, gradα)g(ϕF, gradψ)

− g(ϕF, gradα)g(ϕ2E, gradψ)}(4.12)

for all vector fields E,F on M2n+1. Contracting the equation, we get

r = 2n(2n+ 1) + (ξψ)g(ϕ(gradα), gradψ).

Suppose that, the potential function ψ remains invariant under the characteristic
vector field ξ, that is, ξψ = 0. Then from (4.12), we see that S = 2ng.
This finishes the proof.

If α = 0 and β ∈ R, from (4.12) we see that S = 2ng and the manifold is an
Einstein manifold. Also the equation (4.10) reduces to (Fψ)η(E)− (Eψ)η(F ) = 0,
that is gradψ = (ξψ)ξ. Now applying g(∇ϕEgradψ, ϕF ) = g(∇ϕF gradψ, ϕE), we
obtain (ξψ)g(E,ϕF ) = 0. This implies ξψ = 0. Therefore gradψ = 0, that is, ψ is
constant. Thus, we can state that:

Corollary 4.2. A Sasakian manifold whose metric satisfies gradient Ricci soliton

equation is an Einstein manifold and the potential function is constant.

The corollary 4.2 has been proved by He and Zhu [17].
If α = 0 and β ∈ C∞(M), from the equation (4.12) we have S = 2ng. Then
the equation becomes (Fψ)η(E) − (Eψ)η(F ) = (Eβ)η(F ) − (Fβ)η(E). Thus for
any E ⊥ ξ, we have g(gradψ,E) = −(Eβ). Since β is a non-zero function, ψ is
non-constant. Also gradψ is not perpendicular to E ⊥ ξ. Thus we get the following:
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Corollary 4.3. A Sasakian manifold whose metric satisfies gradient almost Ricci

soliton equation is an Einstein manifold. Moreover, neither ψ is a constant function

nor gradψ is perpendicular to the vector field E ⊥ ξ.

The second part of the Corollary 4.3 is also proved in the paper [3].
If α = 1

m
, m ∈ N and β ∈ C∞(M), from (4.12), we see that S = 2ng. Thus, we can

state that:

Corollary 4.4. A Sasakian manifold with m-quasi-Einstein metric is an Einstein

manifold.

The above result has also been obtained in [16].
Now we consider GQE metric on Sasakian 3-manifold. Using (2.15) in (4.11), it
follows that

0 = (r − 6)g(E,ϕF ) + (ξψ){g(ϕE, gradα)g(ϕF, gradψ)

− g(ϕF, gradα)g(ϕE, gradψ)}.(4.13)

If the potential function ψ remains invariant under the characteristic vector field ξ,
from the above equation we have r = 6. Thus, we can state that

Corollary 4.5. A Sasakian 3-manifold with GQE metric is a manifold of constant

sectional curvature 1, provided the potential function ψ remains invariant under the

Reeb vector field ξ.

Remark 1. It can be easily shown that in a 3-dimensional Sasakian manifold
the ϕ-sectional curvature is equal to r−4

2 . Under the hypothesis of Corollary 4.5,
we can prove that the scalar curvature of a 3-dimensional Sasakian manifold is
constant. Therefore the ϕ-sectional curvature is constant and the manifold becomes
a 3-dimensional Sasakian space form [5], provided the potential function remains
invariant under the Reeb vector field ξ.
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[24] C. Özgür, Contact metric manifolds with cyclic-parallel Ricci tensor, Differ. Geom.
Dyn. Syst., 4(2002), 21–25.
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