References
-
Ch. Baikoussis, D. E. Blair, and Th. Koufogiorgos, A decomposition of the curvature tensor of a contact manifold satisfying
$R(X, Y){\varepsilon}={\kappa}({\eta}(Y)X-{\eta}(X)Y)$ , Mathematics Technical Report, University of Ioannina, 1992 - Ch. Baikoussis and Th. Koufogiorgos, On a type of contact manifolds, J. Geom. 46 (1993), 1-9 https://doi.org/10.1007/BF01230994
- D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhauser Boston, Inc., Boston, MA, 2002
- D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J. 29 (1977), 319-324 https://doi.org/10.2748/tmj/1178240602
- D. E. Blair, Th. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214 https://doi.org/10.1007/BF02761646
-
E. Boeckx, A full classification of contact metric
$({\kappa},{\mu})$ -spaces, Illinois J. Math. 44 (2000), 212-219 - M. C. Chaki and M. Tarafdar, On a type of Sasakian manifolds, Soochow J. Math. 16 (1990), 23-28
- S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. I, Inter- science Publishers, NY, 1963
- Z. Olszak, On contact metric manifolds, Tohoku Math. J. 31 (1979), 247-253 https://doi.org/10.2748/tmj/1178229842
-
B. J. Papantoniou, Contact Riemannian manifolds satisfying
$R({\varepsilon},X).R=0 and {\varepsilon}{\in}({\kappa},{\mu})$ -nullity distribution, Yokohama Math. J. 40 (1993), 149-161 -
D. Perrone, Contact Riemannian manifolds satisfying
$R(X,{\varepsilon}).R=0$ , Yokohama Math. J. 39 (1992), no. 2, 141-149 - S. Tanno, Isometric immersions of Sasakian manifolds in spheres, Kodai Math. Sem. Rep. 21 (1969), 448-458 https://doi.org/10.2996/kmj/1138845991
- S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40 (1988), 441-448 https://doi.org/10.2748/tmj/1178227985
- K. Yano, Concircular geometry I , Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200 https://doi.org/10.3792/pia/1195579139
- K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953
Cited by
- On η-Einstein Trans-Sasakian Manifolds vol.57, pp.2, 2011, https://doi.org/10.2478/v10157-011-0036-x
- Almost Contact Metric Structures on the Hypersurface of Almost Hermitian Manifolds vol.207, pp.4, 2015, https://doi.org/10.1007/s10958-015-2382-9
- C-Bochner curvature tensor on N(k)-contact metric manifolds vol.31, pp.3, 2010, https://doi.org/10.1134/S1995080210030029
- Conharmonic Curvature Tensor on -Contact Metric Manifolds vol.2011, 2011, https://doi.org/10.5402/2011/423798
- CERTAIN SEMISYMMETRY PROPERTIES OF (𝜅, 𝜇)-CONTACT METRIC MANIFOLDS vol.53, pp.4, 2016, https://doi.org/10.4134/BKMS.b150638
- On pseudo-Riemannian manifolds with recurrent concircular curvature tensor vol.137, pp.1-2, 2012, https://doi.org/10.1007/s10474-012-0216-5
- On a type of contact metric manifolds vol.34, pp.1, 2013, https://doi.org/10.1134/S1995080213010125
- On the M-Projective Curvature Tensor of -Contact Metric Manifolds vol.2013, 2013, https://doi.org/10.1155/2013/932564
- Concircular Curvature Tensor and Fluid Spacetimes vol.48, pp.11, 2009, https://doi.org/10.1007/s10773-009-0121-z
- On a Class of α-Para Kenmotsu Manifolds vol.13, pp.1, 2016, https://doi.org/10.1007/s00009-014-0496-9
- On N(κ)-Contact Metric Manifolds Satisfying Certain Curvature Conditions vol.51, pp.4, 2011, https://doi.org/10.5666/KMJ.2011.51.4.457
- On Concircular Curvature Tensor with respect to the Semi-symmetric Non-metric Connection in a Kenmotsu Manifold vol.56, pp.3, 2016, https://doi.org/10.5666/KMJ.2016.56.3.951
- On the concircular curvature of a (κ,μ,ν)-manifold vol.269, pp.1, 2014, https://doi.org/10.2140/pjm.2014.269.113
- )′-almost Kenmotsu manifolds vol.41, pp.4, 2018, https://doi.org/10.2989/16073606.2017.1391347