DOI QR코드

DOI QR Code

ON THE CONCIRCULAR CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD

  • BLAIR, D. E. (Department of Mathematics, Michigan State University) ;
  • KIM, JEONG-SIK (Department of Mathematic and Mathematical Information Yosu National University) ;
  • TRIPATHI, MUKUT MANI (Department of Mathematics and Astronomy)
  • Published : 2005.09.01

Abstract

We classify N($\kappa$)-contact metric manifolds which satisfy $Z(\xi,\;X)\cdotZ\;=\;0,\;Z(\xi,\;X)\cdotR\;=\;0\;or\;R(\xi,\;X)\cdotZ\;=\;0$.

Keywords

References

  1. Ch. Baikoussis, D. E. Blair, and Th. Koufogiorgos, A decomposition of the curvature tensor of a contact manifold satisfying $R(X, Y){\varepsilon}={\kappa}({\eta}(Y)X-{\eta}(X)Y)$, Mathematics Technical Report, University of Ioannina, 1992
  2. Ch. Baikoussis and Th. Koufogiorgos, On a type of contact manifolds, J. Geom. 46 (1993), 1-9 https://doi.org/10.1007/BF01230994
  3. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhauser Boston, Inc., Boston, MA, 2002
  4. D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J. 29 (1977), 319-324 https://doi.org/10.2748/tmj/1178240602
  5. D. E. Blair, Th. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214 https://doi.org/10.1007/BF02761646
  6. E. Boeckx, A full classification of contact metric $({\kappa},{\mu})$-spaces, Illinois J. Math. 44 (2000), 212-219
  7. M. C. Chaki and M. Tarafdar, On a type of Sasakian manifolds, Soochow J. Math. 16 (1990), 23-28
  8. S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. I, Inter- science Publishers, NY, 1963
  9. Z. Olszak, On contact metric manifolds, Tohoku Math. J. 31 (1979), 247-253 https://doi.org/10.2748/tmj/1178229842
  10. B. J. Papantoniou, Contact Riemannian manifolds satisfying $R({\varepsilon},X).R=0 and {\varepsilon}{\in}({\kappa},{\mu})$-nullity distribution, Yokohama Math. J. 40 (1993), 149-161
  11. D. Perrone, Contact Riemannian manifolds satisfying $R(X,{\varepsilon}).R=0$, Yokohama Math. J. 39 (1992), no. 2, 141-149
  12. S. Tanno, Isometric immersions of Sasakian manifolds in spheres, Kodai Math. Sem. Rep. 21 (1969), 448-458 https://doi.org/10.2996/kmj/1138845991
  13. S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40 (1988), 441-448 https://doi.org/10.2748/tmj/1178227985
  14. K. Yano, Concircular geometry I , Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200 https://doi.org/10.3792/pia/1195579139
  15. K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953

Cited by

  1. On η-Einstein Trans-Sasakian Manifolds vol.57, pp.2, 2011, https://doi.org/10.2478/v10157-011-0036-x
  2. Almost Contact Metric Structures on the Hypersurface of Almost Hermitian Manifolds vol.207, pp.4, 2015, https://doi.org/10.1007/s10958-015-2382-9
  3. C-Bochner curvature tensor on N(k)-contact metric manifolds vol.31, pp.3, 2010, https://doi.org/10.1134/S1995080210030029
  4. Conharmonic Curvature Tensor on -Contact Metric Manifolds vol.2011, 2011, https://doi.org/10.5402/2011/423798
  5. CERTAIN SEMISYMMETRY PROPERTIES OF (𝜅, 𝜇)-CONTACT METRIC MANIFOLDS vol.53, pp.4, 2016, https://doi.org/10.4134/BKMS.b150638
  6. On pseudo-Riemannian manifolds with recurrent concircular curvature tensor vol.137, pp.1-2, 2012, https://doi.org/10.1007/s10474-012-0216-5
  7. On a type of contact metric manifolds vol.34, pp.1, 2013, https://doi.org/10.1134/S1995080213010125
  8. On the M-Projective Curvature Tensor of -Contact Metric Manifolds vol.2013, 2013, https://doi.org/10.1155/2013/932564
  9. Concircular Curvature Tensor and Fluid Spacetimes vol.48, pp.11, 2009, https://doi.org/10.1007/s10773-009-0121-z
  10. On a Class of α-Para Kenmotsu Manifolds vol.13, pp.1, 2016, https://doi.org/10.1007/s00009-014-0496-9
  11. On N(κ)-Contact Metric Manifolds Satisfying Certain Curvature Conditions vol.51, pp.4, 2011, https://doi.org/10.5666/KMJ.2011.51.4.457
  12. On Concircular Curvature Tensor with respect to the Semi-symmetric Non-metric Connection in a Kenmotsu Manifold vol.56, pp.3, 2016, https://doi.org/10.5666/KMJ.2016.56.3.951
  13. On the concircular curvature of a (κ,μ,ν)-manifold vol.269, pp.1, 2014, https://doi.org/10.2140/pjm.2014.269.113
  14. )′-almost Kenmotsu manifolds vol.41, pp.4, 2018, https://doi.org/10.2989/16073606.2017.1391347