• Title/Summary/Keyword: concave penalties

Search Result 7, Processing Time 0.017 seconds

Concave penalized linear discriminant analysis on high dimensions

  • Sunghoon Kwon;Hyebin Kim;Dongha Kim;Sangin Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.393-408
    • /
    • 2024
  • The sparse linear discriminant analysis can be incorporated into the penalized linear regression framework, but most studies have been limited to specific convex penalties, including the least absolute selection and shrinkage operator and its variants. Within this framework, concave penalties can serve as natural counterparts of the convex penalties. Implementing the concave penalized direction vector of discrimination appears to be straightforward, but developing its theoretical properties remains challenging. In this paper, we explore a class of concave penalties that covers the smoothly clipped absolute deviation and minimax concave penalties as examples. We prove that employing concave penalties guarantees an oracle property uniformly within this penalty class, even for high-dimensional samples. Here, the oracle property implies that an ideal direction vector of discrimination can be exactly recovered through concave penalized least squares estimation. Numerical studies confirm that the theoretical results hold with finite samples.

An efficient algorithm for the non-convex penalized multinomial logistic regression

  • Kwon, Sunghoon;Kim, Dongshin;Lee, Sangin
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.129-140
    • /
    • 2020
  • In this paper, we introduce an efficient algorithm for the non-convex penalized multinomial logistic regression that can be uniformly applied to a class of non-convex penalties. The class includes most non-convex penalties such as the smoothly clipped absolute deviation, minimax concave and bridge penalties. The algorithm is developed based on the concave-convex procedure and modified local quadratic approximation algorithm. However, usual quadratic approximation may slow down computational speed since the dimension of the Hessian matrix depends on the number of categories of the output variable. For this issue, we use a uniform bound of the Hessian matrix in the quadratic approximation. The algorithm is available from the R package ncpen developed by the authors. Numerical studies via simulations and real data sets are provided for illustration.

An Additive Sparse Penalty for Variable Selection in High-Dimensional Linear Regression Model

  • Lee, Sangin
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.147-157
    • /
    • 2015
  • We consider a sparse high-dimensional linear regression model. Penalized methods using LASSO or non-convex penalties have been widely used for variable selection and estimation in high-dimensional regression models. In penalized regression, the selection and prediction performances depend on which penalty function is used. For example, it is known that LASSO has a good prediction performance but tends to select more variables than necessary. In this paper, we propose an additive sparse penalty for variable selection using a combination of LASSO and minimax concave penalties (MCP). The proposed penalty is designed for good properties of both LASSO and MCP.We develop an efficient algorithm to compute the proposed estimator by combining a concave convex procedure and coordinate descent algorithm. Numerical studies show that the proposed method has better selection and prediction performances compared to other penalized methods.

Sparse vector heterogeneous autoregressive model with nonconvex penalties

  • Shin, Andrew Jaeho;Park, Minsu;Baek, Changryong
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.53-64
    • /
    • 2022
  • High dimensional time series is gaining considerable attention in recent years. The sparse vector heterogeneous autoregressive (VHAR) model proposed by Baek and Park (2020) uses adaptive lasso and debiasing procedure in estimation, and showed superb forecasting performance in realized volatilities. This paper extends the sparse VHAR model by considering non-convex penalties such as SCAD and MCP for possible bias reduction from their penalty design. Finite sample performances of three estimation methods are compared through Monte Carlo simulation. Our study shows first that taking into cross-sectional correlations reduces bias. Second, nonconvex penalties performs better when the sample size is small. On the other hand, the adaptive lasso with debiasing performs well as sample size increases. Also, empirical analysis based on 20 multinational realized volatilities is provided.

Non-convex penalized estimation for the AR process

  • Na, Okyoung;Kwon, Sunghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.453-470
    • /
    • 2018
  • We study how to distinguish the parameters of the sparse autoregressive (AR) process from zero using a non-convex penalized estimation. A class of non-convex penalties are considered that include the smoothly clipped absolute deviation and minimax concave penalties as special examples. We prove that the penalized estimators achieve some standard theoretical properties such as weak and strong oracle properties which have been proved in sparse linear regression framework. The results hold when the maximal order of the AR process increases to infinity and the minimal size of true non-zero parameters decreases toward zero as the sample size increases. Further, we construct a practical method to select tuning parameters using generalized information criterion, of which the minimizer asymptotically recovers the best theoretical non-penalized estimator of the sparse AR process. Simulation studies are given to confirm the theoretical results.

Comparison of covariance thresholding methods in gene set analysis

  • Park, Sora;Kim, Kipoong;Sun, Hokeun
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.591-601
    • /
    • 2022
  • In gene set analysis with microarray expression data, a group of genes such as a gene regulatory pathway and a signaling pathway is often tested if there exists either differentially expressed (DE) or differentially co-expressed (DC) genes between two biological conditions. Recently, a statistical test based on covariance estimation have been proposed in order to identify DC genes. In particular, covariance regularization by hard thresholding indeed improved the power of the test when the proportion of DC genes within a biological pathway is relatively small. In this article, we compare covariance thresholding methods using four different regularization penalties such as lasso, hard, smoothly clipped absolute deviation (SCAD), and minimax concave plus (MCP) penalties. In our extensive simulation studies, we found that both SCAD and MCP thresholding methods can outperform the hard thresholding method when the proportion of DC genes is extremely small and the number of genes in a biological pathway is much greater than a sample size. We also applied four thresholding methods to 3 different microarray gene expression data sets related with mutant p53 transcriptional activity, and epithelium and stroma breast cancer to compare genetic pathways identified by each method.

High-dimensional linear discriminant analysis with moderately clipped LASSO

  • Chang, Jaeho;Moon, Haeseong;Kwon, Sunghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.21-37
    • /
    • 2021
  • There is a direct connection between linear discriminant analysis (LDA) and linear regression since the direction vector of the LDA can be obtained by the least square estimation. The connection motivates the penalized LDA when the model is high-dimensional where the number of predictive variables is larger than the sample size. In this paper, we study the penalized LDA for a class of penalties, called the moderately clipped LASSO (MCL), which interpolates between the least absolute shrinkage and selection operator (LASSO) and minimax concave penalty. We prove that the MCL penalized LDA correctly identifies the sparsity of the Bayes direction vector with probability tending to one, which is supported by better finite sample performance than LASSO based on concrete numerical studies.