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Abstract
We study how to distinguish the parameters of the sparse autoregressive (AR) process from zero using a non-

convex penalized estimation. A class of non-convex penalties are considered that include the smoothly clipped
absolute deviation and minimax concave penalties as special examples. We prove that the penalized estimators
achieve some standard theoretical properties such as weak and strong oracle properties which have been proved
in sparse linear regression framework. The results hold when the maximal order of the AR process increases
to infinity and the minimal size of true non-zero parameters decreases toward zero as the sample size increases.
Further, we construct a practical method to select tuning parameters using generalized information criterion,
of which the minimizer asymptotically recovers the best theoretical non-penalized estimator of the sparse AR
process. Simulation studies are given to confirm the theoretical results.

Keywords: autoregressive process, subset selection, non-convex penalty, oracle property, tuning
parameter selection

1. Introduction

The autoregressive (AR) process is a basic and important processes for time series data analysis.
The usual least square estimation may yield severe modeling biases when the AR model is sparse
including zero parameters. Various information criteria (Akaike, 1969, 1973, 1979; Schwarz, 1978;
Hannan and Quinn, 1979; Claeskens and Hjort, 2003) have been proposed to identify true non-zero
parameters of the AR process, which we call subset selection problem in this paper. Theoretical
properties such as asymptotic efficiency and selection consistency of the final sub-process from these
information criteria have also been investigated (Shibata, 1976; Hannan and Quinn, 1979; Tsay, 1984;
Claeskens and Hjort, 2003; Claeskens et al., 2007). Recently, Na (2017) introduced the generalized
information criterion (GIC) (Kim et al., 2012) for the AR process that includes most of information
criteria such as Akaike information criterion (AIC) (Akaike, 1973), Hannan-Quinn criterion (HQC)
(Hannan, 1980) and Bayesian information criterion (BIC) (Schwarz, 1978). Na (2017) proved that
there is a large class of GICs that is selection consistent, including the BIC as an example. However,
these approaches suffer from computational complexity since it is almost impossible to compare all the
candidate sub-processes when the maximal order is very large (McClave, 1975; Sarkar and Kanjilal,
1995; Chen, 1999; McLeod and Zhang, 2006).

For years, penalized estimation has been studied as an alternative for the subset selection problem
(Nardi and Rinaldo, 2011; Schmidt and Makalic, 2013; Sang and Sun, 2015; Kwon et al., 2017).
The penalized estimation has nice asymptotic properties such as selection consistency and minimax
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optimality for various statistical models that include the generalized linear regression model (Fan and
Peng, 2004; Zou, 2006; Ye and Zhang, 2010; Kwon and Kim, 2012). However, the advantage of the
penalized estimation comes from the efficiency of the computation since there exist many fast and
efficient algorithms (Friedman et al., 2007; Kim et al., 2008; Lee et al., 2016). Hence we need not to
exhaustively search all the possible candidate sub-models when the AR process has very large model
order.

There are many possible penalty functions for the penalized estimation such as the least absolute
selection and shrinkage operator (LASSO) (Tibshirani, 1996) and smoothly clipped absolute deviation
(SCAD) (Fan and Li, 2001). There are some non-convex penalties including the SCAD that have very
distinct advantages against others such as the bridge (Huang et al., 2008; Kim et al., 2016) and log
(Zou and Li, 2008; Kwon et al., 2016). First, they produce unbiased estimators of the parameters
that help us understand the final model without considering the penalty effect. Second, they exactly
select the non-zero parameters with probability tending to one which is impossible for other penalty
functions such as the LASSO (Zhang, 2010b; Kim and Kwon, 2012; Zhang and Zhang, 2012) and
ridge.

In this paper, we study the subset selection problem by using the non-convex penalized estimation
used to identify non-zero parameters in various statistical models (Fan and Li, 2001; Zhang, 2010a;
Kwon and Kim, 2012; Shen et al., 2013). A large class of non-convex penalties is considered that
includes the SCAD and minimax concave penalties (MCP) (Zhang, 2010a) as examples (Kim and
Kwon, 2012; Zhang and Zhang, 2012). We first prove several asymptotic properties of the non-
convex penalized estimators such as the weak and strong oracle properties that are standard in sparse
linear regression framework (Kim et al., 2016). Second, we prove that optimal tuning parameters in
the penalty can be chosen by using an information criterion of which the minimizer exactly identifies
true zero and non-zero parameters asymptotically.

The results hold when the candidate maximal order of the AR process increases to infinity and the
minimal size of the true non-zero parameters decreases toward zero as the sample size increases. Fur-
ther, we consider a class of error processes for the AR process that includes independently and iden-
tically distributed (iid), autoregressive conditional heteroscedastic (ARCH) and generalized ARCH
(GARCH) processes, which is large enough to cover most of the recent and related literature (Nardi
and Rinaldo, 2011; Schmidt and Makalic, 2013; Sang and Sun, 2015; Kwon et al., 2017).

We introduce the non-convex penalized estimation for the AR process in Section 2. Asymptotic
properties of the penalized estimator are presented in Section 3, introducing an information criterion
for the tuning parameter selection. Simulation studies and proofs are given in Section 4 and Appendix,
respectively.

2. Non-convex penalized estimation for the AR process

Consider the AR process {yt, t ∈ Z},

yt − µ =
p∑

j=1

β j(yt− j − µ) + εt, t ∈ Z, (2.1)

where p is a positive integer, µ ∈ R and β = (β1, . . . , βp)T ∈ Rp are parameters of interest, {εt, t ∈ Z}
is an error process and R and Z are the set of real numbers and integers, respectively. We assume
that the process is sparse, that is, β j = 0 for some j ∈ SF , where SF = {1, 2, . . . , p} denotes the
full index set of regression parameters. In this case, we can estimate the true non-zero index set
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ST = { j : β j , 0} ⊂ SF by minimizing the penalized sum of squared residuals

Lλ(u,b) =
n∑

t=p+1

(yt − u) −
p∑

j=1

b j(yt− j − u)


2

+ 2(n − p)
p∑

j=1

Jλ(|b j|) (2.2)

with respect to u ∈ R and b = (b1, . . . , bp)T ∈ Rp. Here, Jλ is a non-convex penalty with tuning
parameter λ > 0 that is included in the penalty class defined in the next section.

Let ȳ j =
∑n

t=p+1 yt− j/(n − p) then Lλ(u,b) can be decomposed as:

Lλ(u,b) = LA
λ (u,b) + LB

λ (b),

where LA
λ (u,b) = (n − p){ȳ0 −

∑p
j=1 b jȳ j − (1 −∑p

j=1 b j)u}2 and

LB
λ (b) =

n∑
t=p+1

(yt − ȳ0) −
p∑

j=1

b j(yt− j − ȳ j)


2

+ 2(n − p)
p∑

j=1

Jλ(|b j|).

Let (µ̂λ,A, β̂
λ,B

) be the minimizer of Lλ(u,b) then it is easy to see that

β̂
λ,B
=

(
β̂λ,B1 , . . . , β̂λ,Bp

)T
= arg min

b∈Rp
LB
λ (b) (2.3)

and µ̂λ,A = (ȳ0−
∑p

j=1 β̂
λ,B
j ȳ j)/(1−

∑p
j=1 β̂

λ,B
j ). Once β̂

λ,B
is obtained, we can estimate the true index set

ST by using the set { j : β̂λ,Bj , 0}. We often estimate µ by using the sample mean ȳ =
∑n

t=1 yt/n before
estimating β, which is the same as estimating β based on the centered samples yt − ȳ, t = 1, . . . , n. In
this case, the penalized estimator, β̂

λ,C
, can be defined as

β̂
λ,C
=

(
β̂λ,C1 , . . . , β̂λ,Cp

)T
= arg min

b∈Rp
LC
λ (b), (2.4)

where LC
λ (b) = Lλ(ȳ,b).

In this paper, we define the penalized estimator of the regression parameter β as

β̂
λ
=

(
β̂λ1, . . . , β̂

λ
p

)T
= arg min

b∈Rp
LG
λ (b; m), (2.5)

where

LG
λ (b; m) = Q(b; m) + 2(n − p)

p∑
j=1

Jλ(|b j|), (2.6)

m = (m0,m1, . . . ,mp)T ∈ Rp+1 and

Q(b; m) =
n∑

t=p+1

(yt − m0) −
p∑

j=1

b j

(
yt− j − m j

)
2

.

The definition is general enough to include above two special cases. If we set m = (ȳ0, . . . , ȳp)T and
m = (ȳ, . . . , ȳ)T , then LG

λ (b; m) becomes LB
λ (b) and LC

λ (b), respectively.
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3. Asymptotic properties

In this section, we investigate some asymptotic properties such as weak and strong oracle properties
that have been proved in sparse linear regression framework. The results hold when p → ∞ and
min j∈ST |β j| → 0 as n → ∞. Further, we propose the GIC that asymptotically recovers the best
theoretical non-penalized estimator of the AR process.

3.1. Model assumptions and penalty class

We assume the following conditions (E1)–(E5):

(E1) {yt, t ∈ Z} is stationary and there exists an absolutely summable sequence {ψi, i ∈ N} such that

yt − µ = εt +

∞∑
i=1

ψiεt−i, t ∈ Z, (3.1)

where N is the set of natural numbers.

(E2) {εt, t ∈ Z} is a white noise with mean 0 and positive variance σ2
ε.

(E3) {εt, t ∈ Z} is a sequence of martingale differences with respect to a filtration {Ft, t ∈ Z}.

(E4) {εt, t ∈ Z} takes the form

εt = g(ηt, ηt−1, . . .),

where ηt, t ∈ Z, are iid random variables and g is a measurable function.

(E5) E(|ε1|ν) < ∞ and {εt, t ∈ Z} is ν-strong stable with ν ≥ 2 (Wu, 2005). Here, ν-strong stability
means that

∆εν =

∞∑
i=0

δεν(i) < ∞, (3.2)

where δεν(i) = {E(|εi − g(ηi, . . . , η1, η
∗
0, η−1, . . .)|ν)}1/ν and {η∗t , t ∈ Z} is an iid copy of {ηt, t ∈ Z}.

The error process satisfying conditions (E2)–(E5) includes iid, ARCH and GARCH processes. For
example, if the errors are are iid with E(|ε1|ν) < ∞, then ∆εν = δεν(0) ≤ 2{E(|ε1|ν)}1/ν < ∞ and
E(εt |εt−1, εt−2, . . .) = 0, and consequently (E2)–(E5) hold. From Bollerslev (1986) and Wu (2011),
GARCH processes satisfy conditions (E2)–(E5) also. Let γ : Z → R be the autocovariance function
of the process {yt, t ∈ Z}. From (E1)–(E3), γ(0) =

∑∞
i=0 ψ

2
i σ

2
ε ∈ (0,∞) and γ(h) =

∑∞
i=0 ψiψi+hσ

2
ε

converges to 0 as h increases to ∞, where ψ0 = 1. Therefore, the autocovariance matrix Γp =(
γ(i − j)

)
1≤i, j≤p is positive definite by Proposition 5.1.1 of Brockwell and Davis (2006). Also, γ is

an absolutely summable autocovariance function because of the absolute summability of {ψi, i ∈ N}.
We consider a class of non-convex penalties where the penalty Jλ satisfies (P1)–(P3):

(P1) There exists a decreasing function ∇Jλ : [0,∞) → [0,∞) such that Jλ(x) =
∫ x

0 ∇Jλ(t)dt for all
x ≥ 0.

(P2) There exists a positive constant a such that ∇Jλ(x) = 0 for all x > aλ.
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(P3) λ − x/a ≤ ∇Jλ(x) ≤ λ for all 0 ≤ x < aλ.

The penalty class has been studied in high dimensional linear regression model (Kim and Kwon,
2012; Zhang and Zhang, 2012; Kim et al., 2016). The class includes the MC and capped ℓ1 penalties
(Zhang and Zhang, 2012; Shen et al., 2013) as special examples that are upper and lower bounds of
the class that also include the SCAD penalty. (P1) implies Jλ is a continuous, increasing and concave
function defined on [0,∞) and Jλ(0) = 0. If Jλ is differentiable, then ∇Jλ is merely the derivative
function of Jλ. From conditions (P1)–(P3), we can see that Jλ has locally sub-differentiable at a point
x0 ∈ (−∞,−aλ) ∪ {0} ∪ (aλ,∞) although it is not convex. By (P2), 0 is the unique local subgradient
of Jλ at a point x0 when |x0| > aλ, which makes the non-zero elements of the penalized estimator to
be unbiased with finite samples. It is easy to see that ∇Jλ(x) ≥ λ/2 for 0 ≤ x ≤ aλ/2 from (P3) so
that the set of local subgradients of Jλ at the origin includes [−λ/2, λ/2], which makes the penalized
estimator to be sparse. These properties of the subgradients play an important role in constructing the
oracle properties.

3.2. Oracle properties

Theorem 1. (Weak oracle property) Assume that (E1)–(E5) with ν ≥ 4 and (P1)–(P3) hold. Let
κ = ∥Γp(ST )−1∥∞, where Γp(ST ) = (γ(i− j))i, j∈ST is a q× q submatrix of Γp and ∥A∥∞ is the maximum
absolute row sum of a matrix A. If

lim
n→∞

(
1 + κ2

)
p2

n
= 0, lim

n→∞

log p + κ2 log q
nλ2 = 0, lim

n→∞

λ

min j∈ST |β j|
= 0 (3.3)

and m satisfies

max
0≤ j≤p

|m j − µ| = OP

(
1
√

n

)
, (3.4)

then the oracle least squares estimator (LSE)

β̂
o
=

(
β̂o

1, . . . , β̂
o
p

)T
= arg min

b∈Rp
o

Q(b; m) (3.5)

is a local minimizer of LG
λ (b; m) with probability tending to 1, where Rp

o = {(x1, . . . , xp)T ∈ Rp : x j =

0, j < ST }.

Theorem 1 shows that the oracle LSE in (3.5) becomes one of local minimizers of (2.6), which
often referred as the weak oracle property (Fan and Li, 2001; Kim et al., 2016) in linear regression
model. Note that the result holds for any m j, j ∈ SF that is

√
n-consistent estimator of µ. For example,

we may use the trimmed mean instead of the sample mean when there are some outliers.
The objective function (2.6) is non-convex so that we need a stronger result than the weak oracle

property to avoid bad local minimizers (Zhang, 2010a; Kim and Kwon, 2012). The next theorem
shows that the oracle LSE is unique so that it becomes unique global minimizer of (2.6).

Theorem 2. (Strong oracle property) Assume that the assumptions of Theorem 1 hold. Let ρ =
λmin(Γp) where λmin(A) is the smallest eigenvalue of a matrix A. If

lim
n→∞

p2

nρ2 = 0, lim
n→∞

log p + κ2 log q
nρ2λ2 = 0, lim

n→∞

λ

ρmin j∈ST |β j|
= 0, (3.6)
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then β̂
o

is the unique local minimizer of LG
λ (b; m) with probability tending to 1.

Remark 1. Note that κ and ρ often assumed to be fixed positive constants. In this case, the results
in Theorems 1 and 2 hold when

min
j∈ST

|β j| ≫ λ ≫
√

log
p
n

and n ≫ p2,

which are exactly the same as the results in linear regression model. Here, a ≫ b implies b/a = o(1)
as n→ ∞.

Remark 2. In the linear regression ρ = λmin(XT X/n) determines the size of possible minimum
non-zero regression coefficient, where X is the design matrix since we need min j |β j| ≥ λ ≥

√
log p/n

and min j |β j| ≥ λ/ρ ≥
√

log p/nρ4 for the weak and strong oracle properties, respectively. This
implies that the smaller ρ is the larger min j∈ST β j is required. In the AR process ρ = λmin(Γp) and κ =
∥Γp(S T )−1∥∞ take the same role since we need min j |β j| ≥ λ ≥

√
(log p + κ2 log q)/n and min j |β j| ≥

λ/ρ ≥
√

(log p + κ2 log q)/nρ4.

Let β̂
o,B

and β̂
o,C

be the oracle LSEs that correspond to m = (ȳ0, . . . , ȳp)T and m = (ȳ, . . . , ȳ)T ,
respectively. By the functional central limit theorem,

max
0≤ j≤p

|ȳ j − µ| ≤
2

n − p
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

t=1

(yt − µ)

∣∣∣∣∣∣∣ = OP

(
1
√

n

)

and |ȳ−µ| = OP(1/
√

n). Hence, from Theorem 2, we can see that two penalized estimators are exactly
the same as the oracle LSEs, respectively, which is summarized in the next corollary.

Corollary 1. Assume that the assumptions of Theorem 2 hold then

lim
n→∞

P
(
β̂
λ,B
= β̂

o,B
)
= 1 and lim

n→∞
P

(
β̂
λ,C
= β̂

o,C
)
= 1. (3.7)

Remark 3. From Lemma 2 in Appendix,

max
j∈SF

∣∣∣∣β̂o,B
j − β j

∣∣∣∣ = OP

κ
√

log q
n

 and max
j∈SF

∣∣∣∣β̂o,C
j − β j

∣∣∣∣ = OP

κ
√

log q
n

 ,
which implies

max
j∈SF

∣∣∣∣β̂λ,Bj − β̂
λ,C
j

∣∣∣∣ = OP

κ
√

log q
n

 .
Hence two oracle LSEs are asymptotically equivalent so that centering the samples does not affect
regression parameter estimation.
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3.3. Tuning parameter selection

The most practical and important issue for the penalized estimation is how to select tuning parameters
(Nardi and Rinaldo, 2011; Kwon et al., 2017). Some conventional ways can be applied by minimizing
validation or cross-validation errors. However, selecting tuning parameters based on prediction errors
may produce over-fitted sub-models (Wang et al., 2007, 2009). We propose to use the GIC, which is
easy to calculate without using extra independent samples, in order to select the tuning parameters.
Given λ > 0, define the GIC as

GIC(λ) = log Q
(
β̂
λ
; m

)
+ α

∥∥∥∥β̂λ∥∥∥∥
0
, (3.8)

where ∥β̂λ∥0 is the number of non-zero entries of β̂
λ
. The next theorem proves that we can select

optimal tuning parameter by minimizing the GIC.

Theorem 3. Assume that (E1)–(E5) with ν ≥ 4, and (P1)–(P3) hold. If

lim
n→∞

(
1 + κ2 + ρ−2

)
p2

n
= 0, (3.9)

lim
n→∞

√
log p + κ

√
log q + ρ

√
p

ρ2
√

n min j∈ST |β j|
= 0, (3.10)

lim
n→∞

pα = 0, lim
n→∞

pα
ρmin j∈ST β

2
j

= 0, lim
n→∞

log p + κ2 log q
ραn

= 0, (3.11)

then there exists λ0 such that

lim
n→∞

P
(

inf
λ∈Λ+∪Λ−

GIC(λ) > GIC(λ0)
)
= 1,

where Λ+ = {λ > 0 : Sλ ) ST }, Λ− = {λ > 0 : Sλ 2 ST } and Sλ = { j ∈ SF : β̂λj , 0} for λ > 0.

Remark 4. When κ and ρ are positive constants the result in Theorem 3 holds when

min
j∈ST

|β j| ≫
√

pα ≫
√

p log p
n

and n ≫ p2.

For example, α = log(log p) log n/n satisfies the condition as suggested in Kwon et al. (2017) and Na
(2017) for the adaptive LASSO and GIC, respectively.

4. Numerical studies

We consider two examples to show that the theoretical results hold with finite samples:

Example 1. ST = {1, 2, . . . , q}, β∗j = (c0/
√

j)I( j ∈ ST ), µ = 0 and εt is iid samples from standard
normal distribution, where c0 = 0.9/(

∑q
j=1 1/

√
j).

Example 2. ST = { j1, j2, . . . , jq} is a random subset of SF and β∗j =
∑q

k=1(c0/
√

k)I( j = jk).
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Table 1: Simulation results from Example 1

n p AIC HQC BIC GIC6 ALASSO SCAD MCP

SEN

100 50 0.850 0.770 0.700 0.630 0.650 0.650 0.650
200 60 0.898 0.805 0.715 0.655 0.670 0.668 0.668
400 70 0.978 0.952 0.898 0.850 0.868 0.878 0.860
800 90 0.994 0.972 0.934 0.872 0.908 0.908 0.908
1600 120 0.998 0.992 0.973 0.925 0.955 0.955 0.955
3200 150 1.000 0.995 0.974 0.925 0.971 0.971 0.970
6400 190 1.000 1.000 0.996 0.971 0.993 0.993 0.993

12800 230 1.000 1.000 1.000 0.992 0.997 0.997 0.997

SPC

100 50 0.784 0.909 0.968 0.986 0.982 0.982 0.982
200 60 0.819 0.941 0.983 0.995 0.990 0.990 0.990
400 70 0.837 0.947 0.992 0.998 0.996 0.996 0.996
800 90 0.838 0.955 0.994 0.999 0.997 0.996 0.997

1600 120 0.828 0.959 0.997 0.999 0.998 0.998 0.998
3200 150 0.844 0.967 0.998 1.000 0.999 0.999 0.999
6400 190 0.840 0.967 0.998 1.000 1.000 1.000 0.999

12800 230 0.869 0.972 0.998 1.000 1.000 1.000 1.000

SA

100 50 0.000 0.040 0.070 0.050 0.080 0.080 0.080
200 60 0.000 0.030 0.070 0.070 0.060 0.060 0.060
400 70 0.000 0.120 0.400 0.370 0.420 0.430 0.410
800 90 0.000 0.110 0.510 0.390 0.460 0.470 0.470

1600 120 0.000 0.060 0.620 0.490 0.620 0.620 0.630
3200 150 0.000 0.080 0.600 0.390 0.690 0.700 0.690
6400 190 0.000 0.050 0.660 0.740 0.860 0.860 0.850

12800 230 0.000 0.020 0.730 0.890 0.900 0.900 0.900

PE

100 50 1.591 1.388 1.312 1.201 1.260 1.265 1.267
200 60 1.198 1.126 1.098 1.093 1.122 1.123 1.120
400 70 1.116 1.074 1.047 1.044 1.056 1.054 1.056
800 90 1.067 1.034 1.018 1.020 1.026 1.027 1.026

1600 120 1.038 1.015 1.002 1.004 1.007 1.007 1.007
3200 150 1.024 1.009 1.002 1.004 1.005 1.005 1.005
6400 190 1.018 1.008 1.003 1.004 1.004 1.004 1.004

12800 230 1.009 1.003 1.000 1.000 1.001 1.001 1.001

AIC = Akaike information criterion; HQC = Hannan-Quinn criterion; BIC = Bayesian information criterion; GIC = gener-
alized information criterion; ALASSO = adaptive least absolute selection and shrinkage operator; SCAD = smoothly clipped
absolute deviation MCP = minimax concave penalty; SEN = sensitivity; SPC = specificity; SA = selection accuracy; PE =
prediction error.

In each example, we set n = 100 × 2k, k ∈ {0, 1, . . . , 7}, p = 10[n1/3] and q = [n1/4], where [x] is the
closest integer from x.

We consider two non-convex penalties for the centered samples, the SCAD and MCP, and compare
finite sample performance to some reference methods: four GICs (AIC, HQC, BIC, and GIC6) in Na
(2017) and the adaptive LASSO (ALASSO) in Kwon et al. (2017). Tuning parameters are selected
by the GIC in (3.8) with α = log(log p) log n/n for all the penalized estimators. We report four
measures: sensitivity (SEN), specificity (SPC), selection accuracy (SA), and prediction error (PE)
from independent test samples yt

i, i ≤ n. The measures are defined as |ŜT ∩ ST |/|ST |, |Ŝc
T ∩ Sc

T |/|Sc
T |,

I(ŜT = ST ), and
∑n

i=1(yt
i − ŷt

i)/n respectively, where ŜT is the index set of non-zero parameters
estimated from the methods. We repeat each simulation 200 times and summarize the results in
Tables 1, 2 and Figure 1, where all the standard errors are less than 0.03 and omitted.

The PEs are quite similar for all the methods but selection performance are significantly different.
The AIC and HQC have better SEN but worse SPC than the others, which result in a very low SA.
This shows that the AIC and HQC are not selection consistent (Na, 2017) but over-fit. The SEN, SPC,
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Table 2: Simulation results from Example 2

n p AIC HQC BIC GIC6 ALASSO SCAD MCP

SEN

100 50 0.877 0.830 0.747 0.663 0.577 0.563 0.563
200 60 0.910 0.835 0.718 0.655 0.602 0.598 0.598
400 70 0.982 0.970 0.940 0.902 0.862 0.865 0.865
800 90 0.996 0.986 0.966 0.920 0.928 0.924 0.918

1600 120 0.998 0.993 0.978 0.948 0.967 0.968 0.967
3200 150 1.000 1.000 0.991 0.958 0.976 0.978 0.976
6400 190 1.000 1.000 1.000 0.990 0.997 0.997 0.997

12800 230 1.000 1.000 1.000 0.993 0.998 0.998 0.998

SPC

100 50 0.800 0.897 0.961 0.980 0.985 0.986 0.985
200 60 0.831 0.943 0.976 0.990 0.989 0.989 0.989
400 70 0.850 0.946 0.984 0.997 0.993 0.992 0.992
800 90 0.844 0.960 0.993 0.998 0.995 0.995 0.995

1600 120 0.834 0.957 0.996 1.000 0.998 0.998 0.998
3200 150 0.848 0.967 0.996 1.000 0.998 0.998 0.998
6400 190 0.843 0.964 0.997 1.000 0.999 0.999 0.999

12800 230 0.853 0.969 0.998 1.000 0.999 0.999 0.999

SA

100 50 0.000 0.010 0.070 0.130 0.130 0.130 0.130
200 60 0.000 0.060 0.080 0.060 0.070 0.070 0.070
400 70 0.000 0.070 0.310 0.550 0.330 0.310 0.310
800 90 0.000 0.070 0.540 0.560 0.520 0.510 0.490

1600 120 0.000 0.020 0.560 0.650 0.610 0.620 0.620
3200 150 0.000 0.010 0.590 0.680 0.600 0.610 0.600
6400 190 0.000 0.020 0.560 0.880 0.780 0.780 0.780

12800 230 0.000 0.000 0.690 0.910 0.820 0.800 0.830

PE

100 50 1.402 1.282 1.210 1.191 1.210 1.218 1.214
200 60 1.211 1.128 1.110 1.106 1.133 1.134 1.132
400 70 1.096 1.055 1.034 1.026 1.050 1.048 1.047
800 90 1.070 1.034 1.019 1.021 1.032 1.033 1.032

1600 120 1.045 1.020 1.007 1.006 1.013 1.013 1.012
3200 150 1.028 1.013 1.006 1.006 1.010 1.010 1.010
6400 190 1.019 1.010 1.004 1.004 1.006 1.006 1.006

12800 230 1.010 1.004 1.001 1.001 1.002 1.002 1.002

AIC = Akaike information criterion; HQC = Hannan-Quinn criterion; BIC = Bayesian information criterion; GIC = gener-
alized information criterion; ALASSO = adaptive least absolute selection and shrinkage operator; SCAD = smoothly clipped
absolute deviation MCP = minimax concave penalty; SEN = sensitivity; SPC = specificity; SA = selection accuracy; PE =
prediction error.

and SA are increasing to 1 as the sample sizes increases for all the penalized estimators as well as the
BIC and GIC6. The simulation results confirm that the theoretical properties provided hold for finite
samples.

5. Concluding remarks

We present some asymptotic properties of the non-convex penalized estimators for the AR process,
when the maximal order is large and minimal signal size is small. The results show that the non-
convex penalized estimation can be used for parameter estimation and model identification simultane-
ously. This paper is intended to provide a theoretical starting point for future studies on other complex
time series analysis.

A referee pointed out that assuming increasing p is unusual in real practice because the AR order
does not necessarily increase with the sample size. First of all, we completely agree that many or
almost all the AR process may have fixed or finite model orders so that p may not be assumed to be
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Figure 1: Sensitivity, specificity, selection accuracy and prediction error in Example 1 (upper) and 2 (lower).
AIC = Akaike information criterion; HQC = Hannan-Quinn criterion; BIC = Bayesian information criterion;
GIC = generalized information criterion; ALASSO = adaptive least absolute selection and shrinkage operator;

SCAD = smoothly clipped absolute deviation MCP = minimax concave penalty.

increasing or varying, being independent of the sample size. However we think that the larger the
sample size the more parameters become statistically significant, which implies that a fixed choice of
small p may prevent us from finding important lags. In this sense, the expression “p→ ∞ as n→ ∞”
does not imply the existence of such an order-increasing model but implies that we must try an order
as large as possible, considering the sample size. Besides p→ ∞, the expression “min j |β j| → 0” can
be understood in a similar way.

Acknowledgements

This work was supported by a Kyonggi University Research Grant 2015-099.

Appendix:

Let xi j = yi− j+p −m j and zi j = yi− j+p − µ for i = 1, . . . , n− p and j = 1, . . . , p. Let X = (xi j), Z = (zi j),
y = (yp+1, . . . , yn)T , and ε = (εp+1, . . . , εn)T . For j = 1, . . . , p, let X j and Z j be the jth column vectors
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of X and Z, respectively. For a set S = {i1, i2, . . . , ik} with 1 ≤ i1 < i2 < · · · < ik ≤ p, XS denotes
the (n − p) × k matrix with jth column vector Xi j and ZS is defined similarly. Given a p-dimensional
vector v = (v1, . . . , vp)T and a set S = {i1, . . . , ik}, vS denotes a k-dimensional subvector (vi1 , . . . , vik )

T

of v. For a matrix A, ∥A∥2 and ∥A∥∞ are the induced matrix norms using the Euclidean and maximum
norms for vectors, respectively. And for a set S, |S| means the cardinality of S.

Lemma 1. Assume that (2.1), (3.1), (E1)–(E5) with ν ≥ 4, and (3.4) hold. If limn→∞ p2/n = 0, then

max
j∈ST

∣∣∣XT
j ε

∣∣∣ = OP

( √
n log q

)
, (A.1)

max
j∈SF

∣∣∣XT
j ε

∣∣∣ = OP

( √
n log p

)
, (A.2)

max
j∈SF

∣∣∣XT
j u

∣∣∣ = OP

(√
n
)
, (A.3)∥∥∥∥∥∥ XT X

n − p
− Γp

∥∥∥∥∥∥∞ = OP

(
p
√

n

)
, (A.4)

where u is a (n − p)-dimensional vector with all entries 1.

Proof: First, we can show that there exists a positive constant M such that

lim
n→∞

P
(
max

j∈S

∣∣∣Z jε
∣∣∣ > M

√
n log |S|

)
= 0

for all non-empty subset S ⊂ SF in a similar method to the proof of Lemma 1 in Kwon et al. (2017),
because {zi j} is a stationary predictable process and {εi} is a sequence of stationary martingale differ-
ences with respect to {Fi}. Since X j −Z j = (µ−m j)u for all j ∈ SF and uTε = OP(

√
n), (3.4) implies

that

sup
∅,S⊂SF

∣∣∣∣∣∣max
j∈S

∣∣∣XT
j ε

∣∣∣ −max
j∈S

∣∣∣ZT
j ε

∣∣∣∣∣∣∣∣∣ ≤ max
j∈SF

∣∣∣∣(X j − Z j

)T
ε
∣∣∣∣ ≤ max

j∈SF

∣∣∣m j − µ
∣∣∣ × ∣∣∣uTε

∣∣∣ = OP(1).

Therefore, for a non-empty subset S ⊂ SF

max
j∈S

∣∣∣XT
j ε

∣∣∣ = max
j∈S

∣∣∣ZT
j ε

∣∣∣ + OP(1) = OP

( √
n log |S|

)
and hence (A.1) and (A.2) hold.

Next, note that {yt, t ∈ Z} is ν-strong stable under assumptions (E1)–(E5). Applying the functional
central limit theorem to {yt, t ∈ Z} yields

max
j∈SF

∣∣∣ZT
j u

∣∣∣ = OP

(√
n
)

(A.5)

and hence

max
j∈SF

∣∣∣XT
j u

∣∣∣ = max
j∈SF

∣∣∣∣ZT
j u −

(
m j − µ

)
uT u

∣∣∣∣ ≤ max
j∈SF

∣∣∣ZT
j u

∣∣∣ + (n − p) ×max
j∈SF

∣∣∣m j − µ
∣∣∣ = OP

(√
n
)

(A.6)

by (3.4).
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Lastly, we can extend Lemma 1 in Kwon et al. (2017) to the case of Z and obtain∥∥∥∥∥∥ ZT Z
n − p

− Γp

∥∥∥∥∥∥∞ = OP

(
p
√

n

)
(A.7)

due to the ν-strong stability of {yt, t ∈ Z}. Also, for any i, j ∈ SF∣∣∣XT
i X j − ZT

i Z j

∣∣∣ = ∣∣∣(µ − mi)(µ − m j)uT u + (µ − mi)uT Z j + (µ − m j)uT Zi

∣∣∣
≤ (n − p) ×

(
max
j∈SF

∣∣∣m j − µ
∣∣∣)2

+ 2 max
j∈SF

∣∣∣m j − µ
∣∣∣ ×max

j∈SF

∣∣∣uT Z j

∣∣∣ . (A.8)

Therefore, from (A.5)–(A.8) and (3.4), we can deduce that∥∥∥∥∥∥ XT X
n − p

− Γp

∥∥∥∥∥∥∞ ≤
∥∥∥∥∥∥ ZT Z

n − p
− Γp

∥∥∥∥∥∥∞ + max
1≤i≤p

p∑
j=1

∣∣∣XT
i X j − ZT

i Z j

∣∣∣
n − p

= OP

(
p
√

n

)
.

�
Lemma 2. Assume that the assumptions of Lemma 1 hold and that limn→∞ κ

2 p2/n = 0. Then,

max
j∈SF

∣∣∣β̂o
j − β j

∣∣∣ = OP

κ√log q
√

n

 . (A.9)

Proof: First, β̂
o
ST

can be written as follows

β̂
o
ST
=

(
XT
ST

XST

)−1
XT
ST

(y − m0u)

= βST
+

(
XT
ST

XST

)−1
XT
ST
ε +

(
XT
ST

XST

)−1
XT
ST

u ×

∑
j∈ST

(m j − µ)β j − (m0 − µ)

 ,
provided that XT

ST
XST is non-singular. Therefore,

max
j∈SF

∣∣∣β̂o
j − β j

∣∣∣ = max
j∈ST

∣∣∣β̂o
j − β j

∣∣∣
≤

∥∥∥∥(XT
ST

XST

)−1∥∥∥∥∞ ×
max

j∈ST

∣∣∣XT
j ε

∣∣∣ +max
j∈SF

∣∣∣XT
j u

∣∣∣ × max
0≤ j≤p

∣∣∣m j − µ
∣∣∣ × 1 +∑

j∈ST

∣∣∣β j

∣∣∣
 .

If XST satisfies that ∥∥∥∥∥∥∥XT
ST

XST

n − p
− Γp(ST )

∥∥∥∥∥∥∥∞ ×
∥∥∥Γp(ST )−1

∥∥∥∞ < 1
2
, (A.10)

then XT
ST

XST /(n − p) is non-singular and∥∥∥∥∥∥∥∥
XT
ST

XST

n − p

−1
∥∥∥∥∥∥∥∥∞ ≤

∥∥∥Γp(ST )−1
∥∥∥∞ +

∥∥∥∥∥∥∥∥
XT
ST

XST

n − p

−1

− Γp(ST )−1

∥∥∥∥∥∥∥∥∞
≤

∥∥∥Γp(ST )−1
∥∥∥∞ +

∥∥∥∥XT
ST

XST /(n − p) − Γp(ST )
∥∥∥∥∞ ∥∥∥Γp(ST )−1

∥∥∥2
∞

1 −
∥∥∥∥XT
ST

XST /(n − p) − Γp(ST )
∥∥∥∥∞ × ∥∥∥Γp(ST )−1

∥∥∥∞
≤ 2

∥∥∥Γp(ST )−1
∥∥∥∞ .
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Since limn→∞ κ
2 p2/n = 0, the probability that (A.10) holds tends to 1 as n → ∞ by (A.4). Conse-

quently, ∥∥∥∥(XT
ST

XST

)−1∥∥∥∥∞ = OP

(
κ

n

)
.

According to (A.1), (A.3), and (3.4),

max
j∈ST

∣∣∣XT
j ε

∣∣∣ +max
j∈SF

∣∣∣XT
j u

∣∣∣ × max
0≤ j≤p

∣∣∣m j − µ
∣∣∣ × 1 +∑

j∈ST

|β j|

 = OP

( √
n log q

)
+ OP(q)

and this completes the proof. �

Now, let us prove the main theorems in Section 3.

Proof of Theorem 1: Since β̂
o
ST

satisfies the normal equations XT
ST

XST β̂
o
ST
= XT

ST
(y − m0u) and

β̂SF∩Sc
T
= 0, we have

XST

(
y − m0u − Xβ̂o)

= 0.

Therefore, if min j∈ST |β̂o
j | > aλ and max j<ST |XT

j (y − m0u − Xβ̂o
)| ≤ nλ/2, then β̂

o
becomes a local

minimizer of LG
λ (b; m) by the KKT conditions and (P1)–(P3).

From (3.3) and Lemma 2, we have

lim
n→∞

P
(
min
j∈ST

∣∣∣β̂o
j

∣∣∣ > aλ
)
≥ lim

n→∞
P

(
min
j∈ST

∣∣∣β j

∣∣∣ −max
j∈SF

∣∣∣β̂o
j − β j

∣∣∣ > aλ
)
= 1.

By using the results of Lemmas 1 and 2 and the boundedness of ∥Γp∥∞, we obtain that

max
j<ST

∣∣∣∣XT
j

(
y − m0u − Xβ̂o)∣∣∣∣

≤ max
j<ST

∣∣∣∣XT
j X

(
β − β̂o)∣∣∣∣ +max

j<ST

∣∣∣XT
j ε

∣∣∣ +max
j<ST

∣∣∣XT
j {(Z − X)β + (µ − m0)u}

∣∣∣
≤

∥∥∥XT X
∥∥∥∞max

j∈SF

∣∣∣β̂o
j − β j

∣∣∣ +max
j∈SF

∣∣∣XT
j ε

∣∣∣ +max
j∈SF

∣∣∣XT
j u

∣∣∣ max
0≤ j≤p

∣∣∣m j − µ
∣∣∣ 1 +∑

j∈ST

|β j|


= OP

(
κ
√

n log q
)
+ OP

( √
n log p

)
+ OP(q) (A.11)

and hence (3.3) implies that

lim
n→∞

P
(
max
j<ST

∣∣∣∣XT
j

(
y − m0 − Xβ̂o)∣∣∣∣ ≤ nλ

2

)
= 1.

Therefore

lim
n→∞

P
(
β̂

o ∈ Aλ

)
≥ lim

n→∞
P

(
min
j∈ST

∣∣∣β̂o
j

∣∣∣ > aλ
)
+ lim

n→∞
P

(
max
j<ST

∣∣∣∣XT
j

(
y − m0 − Xβ̂o)∣∣∣∣ ≤ nλ

2

)
− 1 = 1,

whereAλ is the set of all local minimizers of LG
λ (b; m). �
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Proof of Theorem 2: For given λ > 0 and c > 0, letUc be the set of b ∈ Rp such that

maxb j=0

∣∣∣∣XT
j (y − m0u − Xb)

∣∣∣∣
n − p

< inf
0<x<aλ

(cx + ∇Jλ(x)) ≤ sup
0<x<aλ

(cx + ∇Jλ(x)) < c min
b j,0

∣∣∣b j

∣∣∣ .
Let ρ̂ be the smallest eigenvalue of XT X/(n − p). By Theorem 1 of Kim and Kwon (2012), β̂o ∈
Aλ ∩Uρ̂ with ρ̂ > 0 is a sufficient condition to be a unique local minimizer of LG

λ (b; m). Also, since
limn→∞ P(β̂

o ∈ Aλ) = 1 by Theorem 1, it is enough to show

lim
n→∞

P
(
β̂

o ∈ Uρ̂, ρ̂ > 0
)
= 1 (A.12)

in order to obtain the result of Theorem 2.
Using the condition limn→∞ p2/(nρ2) = 1, (A.4) and the symmetry of XT X/(n − p) − Γp,

lim
n→∞

P
(∥∥∥∥∥∥ XT X

n − p
− Γp

∥∥∥∥∥∥
2
>
ρ

2

)
≤ lim

n→∞
P

(∥∥∥∥∥∥ XT X
n − p

− Γp

∥∥∥∥∥∥∞ > ρ

2

)
= 0. (A.13)

And if ∥XT X/(n − p) − Γp∥2 ≤ ρ/2, then ρ̂ ≥ ρ/2 > 0 and henceUρ/2 ⊂ Uρ̂. Therefore, we have

lim
n→∞

P
(
β̂

o ∈ Uρ̂, ρ̂ > 0
)
≥ lim

n→∞
P

(
β̂

o ∈ Uρ̂, ρ̂ > 0,

∥∥∥∥∥∥ XT X
n − p

− Γp

∥∥∥∥∥∥
2
≤ ρ

2

)
≥ lim

n→∞
P

(
β̂

o ∈ U ρ
2
,

∥∥∥∥∥∥ XT X
n − p

− Γp

∥∥∥∥∥∥
2
≤ ρ

2

)
≥ lim

n→∞
P

(
β̂

o ∈ U ρ
2

)
.

Note that limn→∞ P(min j∈ST |β j| > 2 max j∈SF |β̂o
j − β j|) = 1 by (3.3) and Lemma 2. In this case,

min j∈ST |β̂ j| > min j∈ST |β j|/2 and hence { j ∈ SF : β̂o
j , 0} = ST . Since inf0<x<aλ(ρx/2 + ∇Jλ(x)) ≥

min(λ, aρλ/2) and sup0<x<aλ(x + 2∇Jλ(x)/ρ) ≤ aλ + 2λ/ρ by (P3), we have

lim
n→∞

P
(
β̂

o ∈ U ρ
2

)
≥ lim

n→∞
P

max j<ST

∣∣∣∣XT
j

(
y − m0u − Xβ̂o)∣∣∣∣

n − p
< min

(
λ,

aρλ
2

)
+ lim

n→∞
P

(
min
j∈ST

∣∣∣β̂o
j

∣∣∣ > aλ +
2λ
ρ
,min

j∈ST

∣∣∣β j

∣∣∣ > 2 max
j∈SF

∣∣∣β̂o
j − β j

∣∣∣) − 1

= 1

by (3.6) and (A.11). Hence, (A.12) holds. �

Lemma 3. For a given S ⊂ SF , let β̃
S
= arg minb∈Rp

S
Q(b; m) and define

G̃IC(S) = log Q
(
β̃
S; m

)
+ α|S|,

where Rp
S = {(x1, . . . , xp)T ∈ Rp : x j = 0, j < S}. Under the assumptions of Theorem 3,

lim
n→∞

P
(

inf
S,ST

G̃IC(S) > G̃IC(ST )
)
= 1. (A.14)
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Proof: First, note that ρ is positive, ∥Γp∥2 is bounded, and

lim
n→∞

P
(
ρ

2
≤ ρ̂ ≤

∥∥∥∥∥∥ XT X
n − p

∥∥∥∥∥∥
2
≤ 2

∥∥∥Γp

∥∥∥
2

)
≥ lim

n→∞
P

(∥∥∥∥∥∥ XT X
n − p

− Γp

∥∥∥∥∥∥ ≤ ρ

2

)
= 1 (A.15)

by (A.13). Given a set S ⊂ SF , we can show that ∥ZT
Sε∥2 = OP(

√
n|S|) by extending Lemma 1 of Na

(2017). Since max j∈SF |XT
j ε − ZT

j ε| = max j∈SF |m j − µ||uTε| = OP(1),∥∥∥XT
Sε

∥∥∥
2 ≤

∥∥∥ZT
Sε

∥∥∥
2 +

√
|S|max

j∈SF

∣∣∣XT
j ε − ZT

j ε
∣∣∣ = OP

( √
n|S|

)
. (A.16)

From (A.6), we have ∥∥∥XT
Su

∥∥∥
2 ≤

√
|S|max

j∈SF

∣∣∣XT
j u

∣∣∣ = OP

( √
n|S|

)
. (A.17)

Therefore, combining (A.15)–(A.17) and (3.4) gives that∥∥∥∥β̃SF − β
∥∥∥∥

2
I
(
ρ̂ ≥ ρ

2

)
≤

∥∥∥∥(XT X
)−1∥∥∥∥

2

∥∥∥XTε
∥∥∥

2 +
∥∥∥XT u

∥∥∥
2 max

0≤ j≤p
|m j − µ|

1 +∑
j∈ST

|β j|




= OP

 √p√
nρ2


and consequently, we have

∥∥∥∥β̃SF − β
∥∥∥∥

2
= OP

 √p√
nρ2

 and
Q

(
β̃
SF ; m

)
n − p

= σ2
ϵ + oP(1). (A.18)

For a while, we assume that min j∈ST |β j| ≥ 2∥β̃SF − β∥2, ρ̂ ≥ ρ/2, and Q(β̃SF ; m) ≥ (n − p)σ2
ϵ/2.

Then for any S ) ST ,

log Q
(
β̃
S; m

)
− log Q

(
β̃
SF ; m

)
≥ min


(
Q

(
β̃
S; m

)
− Q

(
β̃
SF ; m

))
(
2Q

(
β̃
SF ; m

)) ,
1
2


≥ min


ρ̂
∥∥∥∥β̃SF − β̃S

∥∥∥∥2

2

σ2
ϵ

,
1
2


≥ min


ρ̂min j∈ST

∣∣∣∣β̃SF
j

∣∣∣∣2
σ2
ϵ

,
1
2


≥ min

{
ρmin j∈SF |β j|2

4σ2
ϵ

,
1
2

}
,

because log(1 + x) ≥ min(x/2, 1/2) for all x > 0. Therefore, we obtain that

lim
n→∞

P
(

inf
S)ST

G̃IC(S) > G̃IC(SF)
)
≥ lim

n→∞
P

(
min

{
ρmin j∈SF |β j|2

4σ2
ϵ

,
1
2

}
> pα

)
= 1 (A.19)
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by using (3.10), (3.11), (A.15), and (A.18).
Since log(1 + x) ≤ x for all x > −1 and Q(β̃S; m) ≥ Q(β̃SF ; m) for all S ⊂ SF , we have

log Q
(
β̃
ST ; m

)
− log Q

(
β̃
S; m

)
≤

(
Q

(
β̃
ST ; m

)
− Q

(
β̃
S; m

))
Q

(
β̃
S; m

)

≤

∥∥∥∥(XT X
)−1∥∥∥∥

2

∥∥∥∥∥XT
S∩Sc

T

(
In−p − XST

(
XT
ST

XST

)−1
XT
ST

)
(y − m0u)

∥∥∥∥∥2

2

Q
(
β̃
ST ; m

)
for all set S ) ST , where In−p is a (n − p)-dimensional identity matrix. Also,

sup
S)ST

∥∥∥∥∥XT
S∩Sc

T

(
In−p − XST

(
XT
ST

XST

)−1
XT
ST

)
(y − m0u)

∥∥∥∥∥
2

/√∣∣∣S ∩ Sc
T

∣∣∣
≤ sup
S)ST

∥∥∥∥∥XT
S∩Sc

T

(
In−p − XST

(
XT
ST

XST

)−1
XT
ST

) (
y − m0u − XSTβST

)∥∥∥∥∥∞
≤

∥∥∥XTε
∥∥∥∞ + ∥∥∥XT XST

∥∥∥∞ ∥∥∥∥(XT
ST

XST

)−1∥∥∥∥∞ ∥∥∥XT
ST
ε
∥∥∥
∞

+

(∥∥∥XT u
∥∥∥∞ + ∥∥∥XT XST

∥∥∥∞ ∥∥∥∥(XT
ST

XST

)−1∥∥∥∥∞ ∥∥∥XT
ST

u
∥∥∥
∞

)
max
0≤ j≤p

|m j − µ|

1 +∑
j∈ST

|β j|


= OP

( √
n log p

)
+ OP

(
κ
√

n log q
)
+ OP(qκ).

Hence, (3.11), (A.15), and (A.18) imply that

lim
n→∞

P
 inf
S)ST

G̃IC(S) − G̃IC(ST )∣∣∣S ∩ Sc
T

∣∣∣ > 0

 = 1. (A.20)

Therefore, we obtain the result (A.14) by (A.19) and (A.20). �

Proof of Theorem 3: By Theorems 1 and 2, there exists a sequence λ0 such that

lim
n→∞

P
(
β̂
λ0
= β̂

o
,Sλ0 = ST

)
= 1.

Since GIC(λ) ≥ G̃IC(Sλ) for all λ > 0 and GIC(λ0) = G̃IC(ST ) when β̂
λ0
= β̂

o
and Sλ0 = ST ,

lim
n→∞

P
(

inf
λ∈Λ+∪Λ−

GIC(λ) > GIC(λ0)
)
≥ lim

n→∞
P

(
inf

λ∈Λ+∪Λ−
GIC(λ) > GIC(λ0), β̂

λ0
= β̂

o
,Sλ0 = ST

)
≥ lim

n→∞
P

(
inf

λ∈Λ+∪Λ−
G̃IC(Sλ) > G̃IC(ST ), β̂

λ0
= β̂

o
,Sλ0 = ST

)
≥ lim

n→∞
P

(
inf
S,ST

G̃IC(S)> G̃IC(ST )
)
− lim

n→∞
P
(
β̂
λ0 , β̂

o
or Sλ0 ,ST

)
= 1

by Lemma 3. �
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