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Abstract
In gene set analysis with microarray expression data, a group of genes such as a gene regulatory pathway and

a signaling pathway is often tested if there exists either differentially expressed (DE) or differentially co-expressed
(DC) genes between two biological conditions. Recently, a statistical test based on covariance estimation have
been proposed in order to identify DC genes. In particular, covariance regularization by hard thresholding indeed
improved the power of the test when the proportion of DC genes within a biological pathway is relatively small.
In this article, we compare covariance thresholding methods using four different regularization penalties such
as lasso, hard, smoothly clipped absolute deviation (SCAD), and minimax concave plus (MCP) penalties. In
our extensive simulation studies, we found that both SCAD and MCP thresholding methods can outperform the
hard thresholding method when the proportion of DC genes is extremely small and the number of genes in a
biological pathway is much greater than a sample size. We also applied four thresholding methods to 3 different
microarray gene expression data sets related with mutant p53 transcriptional activity, and epithelium and stroma
breast cancer to compare genetic pathways identified by each method.
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1. Introduction

Gene set analysis with microarray expression data aims to identify a group of genes such as a gene
regulatory pathway and a signaling pathway that has either differentially expressed (DE) or differ-
entially co-expressed (DC) genes between two biological conditions. In the past, statistical methods
for gene set analysis mainly focused on detecting DE genes (Subramanian et al., 2005; Goeman and
Bühlmann, 2007; Dinu et al., 2007; Wu et al., 2010). Recently, identification of DC genes has been
receiving increasing attention so statistical methods using covariance estimation for a set of genes
have been proposed (Choi and Kendziorski, 2009; Rahmatallah et al., 2014; Oh et al., 2020). For
example, Oh et al. (2020) proposed covariance thresholding for gene set analysis (CTGSA), which
is a statistical test based on estimation of co-expression levels of paired genes using covariance regu-
larization by hard thresholding. They demonstrated that CTGSA substantially improves the detection
power of DC genes when the proportion of DC genes within a biological pathway is relatively small.

In statistics, thresholding a sample covariance matrix is a natural approach to estimate a sparse
covariance matrix. Bickel and Levina (2008) studied the theoretical properties of hard-thresholded
covariance. Since covariance thresholding requires essentially no computational burden, the imple-
mentation of covariance estimation for high-dimensional gene expression data is simple. Rothman
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et al. (2009) applied generalized thresholding of the sample covariance matrix, where they defined
a generalized thresholding operator to conduct elementwise shrinkage and thresholding for the sam-
ple covariance matrix. Their thresholding operator includes hard thresholding, soft thresholding, and
smoothly clipped absolute deviation (SCAD). In their simulation, the SCAD thresholding of the sam-
ple covariance had the best performance to estimate high-dimensional covariance.

The SCAD penalty function is non-convex unlike the lasso penalty, so it essentially compromises
the shrinkage lasso estimates and discontinuity of hard thresholding (Fan and Li, 2001). Due to its
optimal theoretical properties, the SCAD penalty has been widely used in variables selection prob-
lems with high-dimensional data (Zou and Li, 2008; Fan et al., 2009). Similar to the SCAD penlty,
Zhang (2010) has proposed a minimax concave plus (MCP) penalty, which is known as the most accu-
rate method among penalized variable selection methods in linear regression framework. Both MCP
and SCAD asymptotically achieve the oracle properties in terms of consistent estimation and fully
recovery of sparsity patterns. But, Zhang (2010) has demonstrated that MCP has superior selection
accuracy over SCAD through his simulation studies with high-dimensional data.

In this article, we extend the generalized thresholding operator to the MCP penalty and compare
four different covariance thresholding methods to identify DC genes in gene set analysis. Specifically,
we first applied lasso, hard, SCAD and MCP thresholding to estimate co-expression levels of paired
genes between two biological conditions. Next, significance of difference in covariance estimation
between two conditions is evaluated through a permutation test. Finally, the empirical powers of the
statistical test using four different thresholding methods are then compared with each other. We also
applied them to 3 different microarray gene expression data sets to compare gene sets and genetic
pathways identified by each method.

2. Method

2.1. Covariance thresholding for gene set analysis

Let us denote the gene expression values of the jth gene for the condition l ∈ {1, 2} by (x(l)
1 j, x

(l)
2 j, . . . ,

x(l)
nl j), where j = 1, 2, . . . , p, and nl is the sample size of condition l. Without loss of generality, we

assume that
nl∑

k=1

x(l)
k j = 0 and

nl∑
k=1

(
x(l)

k j

)2
= nl − 1

for all j. Then, the sample covariance of the ith gene and the jth gene is

σ̂(l)
i j =

1
nl − 1

nl∑
k=1

x(l)
ki x(l)

k j

for the condition l. Also, the sample covariance matrix of the condition l is Σ̂(l) = {σ̂(l)
i j } for 1 ≤ i, j ≤ p.

Next, we define a hard thresholding operator for the sample covariance as

sH

(
Σ̂, τ

)
=

{
σ̂i jI

(
|σ̂i j| > τ

)}
,

where I(·) is an indicator function and τ > 0 is a tuning parameter to control the sparsity of the
covariance matrix. Finally, the test statistic of CTGSA based on the hard thresholding is

TH = λmax

(
sH

(
Σ̂(1), τ1

))
− λmax

(
sH

(
Σ̂(2), τ2

))
, (2.1)



Covariance thresholding 593

where λmax (M) is the largest eigenvalue of a matrix M, and τ1 > 0 and τ2 > 0 are the tuning
parameters for conditions 1 and 2, respectively. It essentially tests

H0 : There are no differentially co-expressed genes in a gene set

against the existence of DC genes. If the numerical value of the test statistic is relatively large, we can
reject H0 and conclude that the gene set contains DC genes.

According to Oh et al. (2020), their test statistic can capture the largest variation of weighted linear
combinations of correlations among genes using a sparse covariance matrix, which can drastically
reduce down the computational cost. CTGSA employed a permutation test to evaluate the significance
of the test statistic. The permutation test has been popularly used by statistical methods to detect DC
genes such as gene set co-expression analysis (GSCA) and gene sets net correlation analysis (GSNCA)
(Choi and Kendziorski, 2009; Rahmatallah et al., 2014). The test statistics of GSCA and GSNCA
are based on computation of a sample covariance or correlation matrix. Therefore, the permutation
of GSCA and GSNCA requires much greater computational burden than that of CTGSA based on
a sparse covariance when the permutation is applied to a gene set with a large number of genes.
Moreover, Oh et al. (2020) demonstrated that the power of CTGSA is greater than the powers of
GSCA and GSNCA when the proportion of DC genes within a gene set is relatively small.

2.2. Generalized covariance thresholding

In covariance estimation with a high-dimensional data, Rothman et al. (2009) investigated that SCAD
thresholding can outperform hard thresholding when a true covariance is sparse. They also pointed out
that hard thresholding tended to threshold too many entries, especially in high-dimensional data. In
practice, many biological pathways consist of high-dimensional genes, where the number of genes is
much greater the sample size. Additionally, the number of correlated genes within a genetic pathway
is limited so true covariance of gene expression is expected to be very sparse. Consequently, we
considered to replace hard thresholding of CTGSA by other covariance thresholding methods such as
lasso, SCAD and MCP.

Rothman et al. (2009) defined a generalized thresholding operator as

s(x, τ) = arg min
θ

{
1
2

(θ − x)2 + pτ(θ)
}
,

where pτ(·) is a penalty function of regularization methods with a tuning parameter τ > 0. For
example, we can define a lasso thresholding operator for the sample covariance Σ̂ as

sL

(
Σ̂, τ

)
=

{
sign

(
σ̂i j

) (∣∣∣σ̂i j

∣∣∣ − τ)
+

}
=


σ̂i j − τ, if σ̂i j > τ,

σ̂i j + τ, if σ̂i j < −τ,

0, otherwise.

if we use a l1-norm penalty pτ(θ) = τ|θ|. The lasso thresholding is equivalent to a soft thresolding
function.

Similarly, the SCAD penalty is written as

pτ(θ) = τI (|θ| ≤ τ) +
(a0τ − |θ|)+

a0 − 1
I (|θ| > τ)
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Figure 1: Regularization paths of four thresholding operators including hard, lasso, SCAD and MCP are dis-
played along with a tuning parameter τ.

for some a0 > 2. Subsequently, the SCAD thresholding operator for the sample covariance is then

sC

(
Σ̂, τ

)
=


sign

(
σ̂i j

) (∣∣∣σ̂i j

∣∣∣ − τ)
+
, if

∣∣∣σ̂i j

∣∣∣ ≤ 2τ,

(a0 − 1)σ̂i j − sign
(
σ̂i j

)
a0τ

a0 − 2
, if 2τ <

∣∣∣σ̂i j

∣∣∣ ≤ a0τ,

σ̂i j, otherwise.

The value a0 = 3.7 was recommended by Fan and Li (2001), so we use it throughout the article.
Finally, we apply the MCP penalty to the generalized thresholding operator. Zhang (2010) defined

the MCP penalty function as

pτ(θ) = τ

(
|θ| −

θ2

2τγ

)
I (|θ| < τγ) +

τ2γ

2
I (|θ| ≥ τγ) ,

where γ > 1 is another tuning parameter for the MCP penalty. Correspondingly, the MCP thresholding
operator for the sample covariance can be expressed as

sM

(
Σ̂, τ

)
=


0, if

∣∣∣σ̂i j

∣∣∣ ≤ τ,
γ

γ − 1
sign

(
σ̂i j

) (∣∣∣σ̂i j

∣∣∣ − τ) , if τ <
∣∣∣σ̂i j

∣∣∣ ≤ τγ,∣∣∣σ̂i j

∣∣∣ , otherwise.

Note that MCP thresholding is simply reduced to lasso thresholding as γ → ∞, and hard threshold as
γ → 1+. Therefore, MCP thresholding can be viewed as the optimized thresholding method combined
lasso thresholding and hard thresholding with an intermediate point of τγ, where γ controls concavity
of the penalty function. For the equivalent computational cost of four thresholding methods, we just
fixed γ = 3 like the value a0 of SCAD thresholding. For illustration, Figure 1 shows the behaviors
of four thresholding operators through the regularization path in a simple simulation example. We
considered three different values of covariance such as 1.0, 0.6 and −0.9. The numerical values of
four thresholding operators for these three values are present in the y-axis while the tuning parameter
τ is shown in the x-axis. Note that the numerical values of four thresholding operators are the same as
1.0, 0.6 and −0.9 when τ = 0. But, these values are eventually shrinkaged toward 0 as τ is increasing.



Covariance thresholding 595

It appears that the regularization paths of four thresholding methods are clearly different with each
other. So, each covariance thresholding method produces a different estimation result even though
zero entries of the covariance matrix can be identical with the same value of τ.

2.3. Tuning parameter and permutation

We have defined four different thresholding operators so far. They are hard, lasso, SCAD and MCP
thresholding denoted by sH , sL, sC and sM , respectively. These thresholding methods require to select
the optimal tuning parameter τ. Cross-validation is one of the most popular way to choose the optimal
tuning parameter, where samples are randomly split into training sets and validation sets in order to
measure an estimation error for each of candidate values of the tuning parameter (Bickel and Levina,
2008; Rothman et al., 2009). However, cross-validation often results in unstable and inconsistent
estimation of the tuning parameter due to random split unless there are extremely large samples. In
contrast, Oh et al. (2020) proposed to use the quantile estimate of the absolute values of sample
covariances without random sampling. Specifically, they estimated the proportion of the genes that
are not differentially co-expressed, using the largest eigenvalue of the sample covariance matrix.

Let us denote the δth largest absolute value of the sample covariance among N = p(p−1)/2 entries
by r[δ]. For example, r[1] = maxi, j |σ̂i j| and r[N] = mini, j |σ̂i j|. Since the sample covariance matrix is
symmetric, only half of off-diagonal entries of the covariance matrix was considered. The proportion
of variance accounted by the first principal component can be computed by q = λmax(|Σ̂|)/p. The
optimal tuning parameter is then

τ̂ = r[δ̂] and δ̂ = dqNe,

where the ceiling function dxe means the smallest integer value greater than or equal to x. Oh et al.
(2020) demonstrated that CTGSA with the optimal tuning parameter based on the quantile estimate is
very robust, regardless of the proportion of DC genes and the numerical value of inter-gene correlation
coefficient. Therefore, we also adopt these quantile estimate for the optimal tuning parameter τ̂ of four
thresholding methods.

The test statistic of CTGSA, TH in (2.1) depends on the hard thresholding operator sH and the
tuning parameters τ1 and τ2. We consider three additional versions of CTGSA, namely, TL, TC and
TM , where sH of the test statistic TH is replaced by sL, sC and sM , respectively. We also assume
that each threholding method employs the optimal tuning parameters τ̂1 and τ̂2 based on the quantile
estimates of the sample covariance of the conditions 1 and 2, respectively. Significance of each test
statistic is then evaluated by a permutation test. For notational simplicity, we drop the subscript of the
test statistic indicating the type of the thresholding method. Let us denote the test statistic based on
the lth permuted sample by T ∗l . Then, the empirical p-value for the permutation test can be computed
by

1
K + 1

1 +

K∑
l=1

I
(
T ∗l ≥ T

) ,
where K is the total number of permutation. We fixed K = 1,000 for both simulation study and real
data analysis.

3. Simulation studies

In simulation, the powers of four versions of CTGSA are compared with each other when there are
different proportions of DC genes, different inter-correlation coefficients between two genes, and
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Table 1: Type I error rates of four thresholding methods at 5% significance level

Method n = 20 n = 40
p = 20 p = 50 p = 100 p = 20 p = 50 p = 100

Hard 0.0452 0.0491 0.0543 0.0491 0.0476 0.0505
Lasso 0.0504 0.0507 0.0551 0.0481 0.0480 0.0507
SCAD 0.0484 0.0508 0.0510 0.0501 0.0519 0.0488
MCP 0.0510 0.0490 0.0493 0.0493 0.0471 0.0505

Method n = 60 n = 100
p = 20 p = 50 p = 100 p = 20 p = 50 p = 100

Hard 0.0499 0.0533 0.0470 0.0512 0.0473 0.0494
Lasso 0.0464 0.0551 0.0505 0.0504 0.0480 0.0482
SCAD 0.0516 0.0499 0.0494 0.0477 0.0502 0.0493
MCP 0.0504 0.0503 0.0502 0.0493 0.0517 0.0505

different number of genes within a gene set. Oh et al. (2020) have already demonstrated that CT-
GSA based on the hard thresholding operator outperforms other mainstream methods such as GSCA
(Choi and Kendziorski, 2009), GSNCA (Rahmatallah et al., 2014), and sufficient dimension reduc-
tion method (Hsueh and Tsai, 2016). Therefore, we did not consider to compare these methods in our
simulation study.

We just followed the simulation settings of Oh et al. (2020), which is also based on the simulation
studies of Rahmatallah et al. (2014) and Hsueh and Tsai (2016). In their simulation, gene expression
data was first generated from a multivariate normal distribution,

xi ∼

 N
(
0,Σ(1)

)
, for condition 1,

N
(
0,Σ(2)

)
, for condition 2,

where xi = (xi1, xi2, . . . , xip) is the p-dimensional vector for i = 1, . . . , n. The sample size was fixed
as n = 20, 40, 60 or 100, while the number of genes in a gene set was fixed as p = 20, 50 or 100.
In order to compute type I error rates of the permutation test, we first put an identity matrix into both
covariance matrices Σ(1) and Σ(2). For each combination between n and p, we then calculated the
proportion of rejections where the permutation p-value is less than 0.05 among 10,000 simulation
replications. Table 1 shows the type I error rates of four thresholding methods. It seems that there is
no serious inflation of type I errors in all different n and p.

Next, we conducted the power comparison of four methods, where Σ(1) and Σ(2) are indeed different
with each other. Specifically, Σ(1) is still an identity matrix, but

Σ(2) = {σ(2)
i j } =


1, 1 ≤ i = j ≤ p,
ρ, 1 ≤ i , j ≤ gp,
0, gp + 1 ≤ i , j ≤ p,

where the inter-gene correlation coefficient ρ = 0.1, 0.3, 0.5, 0.7 and 0.9, and the proportion of
DC genes g = 0.1, 0.2, 0.3, 0.4 and 0.5. Note that both ρ and g practically represent the strength
of signals for DC genes. Consequently, the detection power of the permutation test is expected to
increase as either ρ or g is increasing. Computation of power is the same as that of type I error rates,
where the proportion of rejections was calculated for each different combination of n, p, ρ and g. Since
we considered too many different simulation settings, including 4 different sample size n, 3 different
number of genes p, 5 different inter-gene correlation coefficients ρ and 5 different proportions of DC
genes g for each thresholding method, we reduced down the number of simulation replications to 100
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Figure 2: In a gene set with p = 20, power curves of 4 thresholding methods are displayed along with 5 different
inter-gene correlation coefficients, 4 different sample sizes (n), and 5 different proportions of DC genes (g).
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Figure 3: In a gene set with p = 50, power curves of 4 thresholding methods are displayed along with 5 different
inter-gene correlation coefficients, 4 different sample sizes (n), and 5 different proportions of DC genes (g).

for power computation. The power curves of four thresholding methods are shown in Figures 2, 3 and
4 when the number of genes within a gene set is p = 20, 50 and 100, respectively.

In Figures 2 and 3, it seems that the powers of four thresholding methods are quite different with
each other, specially when either ρ or g is relatively small. In contrast, the powers of four thresholding
methods are almost identical except g = 0.1 in Figure 4. So, if we focus on the case of very sparse DC
genes in a gene set, both SCAD and MCP outperforms hard and lasso in all simulation settings with
g = 0.1. It is noticeable that the power of lasso is not even comparable with the powers of the other
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Figure 4: In a gene set with p = 100, power curves of 4 thresholding methods are displayed along with 5 different
inter-gene correlation coefficients, 4 different sample sizes (n), and 5 different proportions of DC genes (g).

Table 2: Power of four thresholding methods when the number of differentially co-expressed genes is 10

Method
ρ = 0.7, n = 20 ρ = 0.3, n = 40

p = 20 p = 50 p = 100 p = 20 p = 50 p = 100
g = 0.5 g = 0.2 g = 0.1 g = 0.5 g = 0.2 g = 0.1

Hard 0.91 0.77 0.47 0.51 0.34 0.14
Lasso 0.84 0.56 0.40 0.46 0.23 0.16
SCAD 0.80 0.80 0.70 0.24 0.21 0.19
MCP 0.87 0.87 0.71 0.41 0.29 0.21

thresholding methods in this setting. Hard thresholding is slightly better than both SCAD and MCP
when g = 0.4 or g = 0.5. In comparison between SCAD and MCP, SCAD seems to be slightly better
than MCP when g = 0.1 or 0.2 and p = 20, while MCP is better than SCAD for a relatively large
value of g. Particularly. SCAD has the worst performance for g = 0.3, 0.4 and 0.5, n = 20, 40, 60
and 100, and p = 50. Considering all different simulation settings, we can select MCP thresodling as
the most recommended thresholdimg method to maximize the power of CTGSA.

Next, we additionally explored the change of CTGSA power as the number of genes is increasing
while the number of DC genes is fixed. We considered two different scenarios where the first scenario
is relatively large inter-gene correlation with the small sample size (ρ = 0.7, n = 20) and the second
is small inter-gene correlation with the moderate sample size (ρ = 0.3, n = 40). For each scenario, we
investigated three different cases such as (p = 20, g = 0.5), (p = 50, g = 0.2) and (p = 100, g = 0.1).
Note that the number of DC genes is the same as 10 for all cases, although the number of genes in a
gene set is different from each other. Table 2 summarizes the power of four thresholding methods for
two scenarios including three cases.

In Table 2, it is clear that the power of all thresholding methods is decreased as the number of
genes is increasing, which is an expected result due to a high-dimensional problem, i.e., p > n. When
we compare two scenarios, the power of the first scenario is almost two times greater than that of
the second scenario. This indicates that CTGSA is likely to detect DC genes that has relatively large
inter-gene correlation coefficient, even if the sample size is not enough. However, if the inter-gene
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Table 3: The number of (uniquely) identified gene sets by each thresholding method that have differentially
co-expressed genes for 3 different microarray gene expression data sets at a significance level of 0.05

Method p53 Epithelium Stroma
mutant breast cancer breast cancer

Hard 112 (29) 64 (28) 54 (20)
Lasso 106 (57) 65 (49) 54 (32)
SCAD 113 (42) 46 (13) 67 (16)
MCP 112 (15) 52 (4) 67 (10)
Total 2442 2190 2190

correlation coefficient is relatively small, CTGSA can fail to detect DC genes even though the sample
size is increased. In comparison of four thresholding methods, MCP thresholding has the greatest
power when the number of genes is large, while hard thresholding shows the best performance when
the number of genes is small. Similarly, SCAD thresholding has the lowest power when the number
of genes is small, but it has higher power than both hard and lasso thresholding when the number of
genes is large.

4. Real data analysis

For further comparison of four thresholding methods, we applied them to microarray gene expression
data such as the p53 mutant and GSE10797 (epithelium and stroma breast cancer) data. The p53
mutant data has been already studied by many researchers (Subramanian et al., 2005; Dinu et al.,
2007; Hsueh and Tsai, 2016; Oh et al., 2020). In the dataset, 2,442 genes sets contain 10,100 gene
expression profiles for 50 samples, which have 33 cases and 17 controls. 894 gene sets consist of
more than 50 genes, so these gene sets have a high-dimensional problem, i.e., p > n. Epithelium and
stroma breast cancer data was extracted from National Center for Biotechnology Information Gene
Expression Omnibus (NCBI GEO). The data set has a total of 2,190 genetic pathways for 22,277
genes, while 33 samples consist of 28 epithelial samples, 5 normal epithelial samples, 28 stromal
samples of breast cancer, and 5 normal stromal samples. Also, 900 genetic pathways have more than
33 genes. That is to say, 41.1% of gene sets also has a high-dimensional problem.

For each of gene expression data sets, CTGSA with four thresolding methods identified statisti-
cally significant gene sets based on their permutation tests. Specifically, hard, lasso, SCAD and MCP
thresholding methods in the p53 mutant data set identified 112, 106, 113 and 112 significant gene
sets among 2,442 sets, respectively. For epithelium breast cancer data set, they detected 64, 65, 46
and 52 significant pathways among 2,190 pathways, respectively. For stroma breast cancer data set,
four thresholding methods identified 54, 54, 67 and 67 significant pathways among 2,190 pathways,
respectively. These results are summarized in Table 3.

We also investigated the number of gene sets that each thresholding method uniquely identified,
and they are also included in Table 3. We found that relatively many number of gene sets is not
overlapped by four thresholding methods even if the same CTGSA method was applied to the same
data. For example, lasso thresholding method uniquely identified more than half of gene sets, which
are 57 gene sets among 106 for the p53 mutant data, 49 pathways among 65 for the epithelium
breast cancer data, and 32 pathways among 54 for the stroma breast cancer data. It means that the
other three thresholding methods failed to detect these gene sets. The number of gene sets uniquely
identified by MCP thresholding method is the smallest for all of three data sets. It might seems
that MCP thresholding method is relatively stable, compared with other three thresholding methods.
However, there is no guarantee that the gene sets MCP thresholding uniquely identified contain truly
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differentially co-expressed genes. In other words, they can be either false positives or true positives.
In this analysis, we can see that the CTGSA method can produce very different results, depending on
which covariance thresholding method is used.

For the power comparison of four thresholding methods, we investigated the permutation p-values
of gene sets that all of four methods commonly identified. There are a total of 30 gene sets that the
permutation p-values of four methods are all less than 0.05 in three data sets. Hard thresholding has
the smallest p-value for 5 gene sets, lasso for 6 gene sets, SCAD for 9 gene sets and MCP for 10 gene
sets. We found that both SCAD and MCP methods have relatively small p-values for gene sets which
are commonly identified by four methods. Consequently, we can conclude that MCP thresholding has
the greatest power in this analysis, followed by SCAD thresholding.

5. Conclusion

In this article, we compared four different covariance thresholding methods such as hard, lasso, SCAD
and MCP thresholding when each thresholding method is applied to the test statistic of CTGSA. For
detection of DC genes in gene set analysis, CTGSA with the hard thresholding is known to have
the greatest power, compared with other mainstream methods such as GSCA (Choi and Kendziorski,
2009), GSNCA (Rahmatallah et al., 2014), and sufficient dimension reduction method (Hsueh and
Tsai, 2016). However, in our extensive simulation studies we found that CTGSA using SCAD and
MCP thresholding methods can significantly improve the detection power especially when the number
of gene is large or the proportion of DC genes is relatively small. Although hard thresholding is
better than both SCAD and MCP thresholding when the proportion of weakly correlated DC genes is
relatively large, we recommend to use MCP thresholding in order to maximize the power of CTGSA
if we have to pick one among four thresholding methods. But, hard thresholding method can be a
good alternative particularly when DC genes are weakly correlated with each other. In analysis of
real microarray expression data, we also found that CTGSA can identify very different gene sets,
depending on the types of the covariance thresholding method.

In recent studies on genetics, statistical methods for RNA-seq data have been developed to identify
DE or DC genes since next-generation sequencing technology has facilitated to generate sequencing
data rather than microarray data. RNA-seq data can estimate gene expression levels from many se-
quenced reads, so pairwise correlations of gene expression can be computed. Since it can also quan-
tify the expression levels of the non-coding RNAs, RNA-seq data has generally a higher dimension
than microarray data does. CTGSA based on a sparse covariance matrix can take an advantage of
the computation of high-dimensional data. Since significance of test statistics for gene set analysis
is mostly evaluated by permutation, and there exist many gene sets that contain a large number of
genes, computational feasibility and efficiency as well as statistical power is a critical issue for gene
set analysis.
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