DOI QR코드

DOI QR Code

Non-convex penalized estimation for the AR process

  • Na, Okyoung (Department of Applied Statistics, Kyonggi University) ;
  • Kwon, Sunghoon (Department of Applied Statistics, Konkuk University)
  • Received : 2018.01.22
  • Accepted : 2018.04.04
  • Published : 2018.09.30

Abstract

We study how to distinguish the parameters of the sparse autoregressive (AR) process from zero using a non-convex penalized estimation. A class of non-convex penalties are considered that include the smoothly clipped absolute deviation and minimax concave penalties as special examples. We prove that the penalized estimators achieve some standard theoretical properties such as weak and strong oracle properties which have been proved in sparse linear regression framework. The results hold when the maximal order of the AR process increases to infinity and the minimal size of true non-zero parameters decreases toward zero as the sample size increases. Further, we construct a practical method to select tuning parameters using generalized information criterion, of which the minimizer asymptotically recovers the best theoretical non-penalized estimator of the sparse AR process. Simulation studies are given to confirm the theoretical results.

Keywords

References

  1. Akaike H (1969). Fitting autoregressive models for prediction, Annals of the Institute of Statistical Mathematics, 21, 243-247. https://doi.org/10.1007/BF02532251
  2. Akaike H (1973). Information theory and an extension of the maximum likelihood principle. In Proceeding 2nd International Symposium on Information Theory, 267-281.
  3. Akaike H (1979). A Bayesian extension of the minimum AIC procedure of autoregressive model fitting, Biometrika, 66, 237-242. https://doi.org/10.1093/biomet/66.2.237
  4. Bollerslev T (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  5. Brockwell PJ and Davis RA (2006). Time Series: Theory and Methods (2nd ed), Springer, New York.
  6. Chen C (1999). Subset selection of autoregressive time series models, Journal of Forecasting, 18 505-516. https://doi.org/10.1002/(SICI)1099-131X(199912)18:7<505::AID-FOR728>3.0.CO;2-U
  7. Claeskens G, Croux C, and Van Kerckhoven J (2007). Prediction focused model selection for autoregressive models, The Australian and New Zealand Journal of Statistics, 49, 359-379. https://doi.org/10.1111/j.1467-842X.2007.00487.x
  8. Claeskens G and Hjort NL (2003). The focussed information criterion, Journal of the American Statistical Association, 98, 900-916. https://doi.org/10.1198/016214503000000819
  9. Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
  10. Fan J and Peng H (2004). Nonconcave penalized likelihood with a diverging number of parameters, The Annals of Statistics, 32, 928-961. https://doi.org/10.1214/009053604000000256
  11. Friedman J, Hastie T, Hofling H, and Tibshirani R (2007). Pathwise coordinate optimization, The Annals of Applied Statistics, 1, 302-332. https://doi.org/10.1214/07-AOAS131
  12. Hannan EJ (1980). The estimation of the order of an ARMA process, The Annals of Statistics, 8, 1071-1081. https://doi.org/10.1214/aos/1176345144
  13. Hannan EJ and Quinn BG (1979). The determination of the order of an autoregression, Journal of Royal Statistical Society, 41, 190-195.
  14. Huang J, Horowitz JL, and Ma S (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models, The Annals of Statistics, 36, 587-613. https://doi.org/10.1214/009053607000000875
  15. Kim Y, Choi H, and Oh H (2008). Smoothly clipped absolute deviation on high dimensions, Journal of the American Statistical Association, 103, 1656-1673.
  16. Kim Y, Jeon JJ, and Han S (2016). A necessary condition for the strong oracle property, Scandinavian Journal of Statistics, 43, 610-624. https://doi.org/10.1111/sjos.12195
  17. Kim Y and Kwon S (2012). Global optimality of nonconvex penalized estimators, Biometrika, 99, 315-325. https://doi.org/10.1093/biomet/asr084
  18. Kim Y, Kwon S, and Choi H (2012). Consistent model selection criteria on high dimensions, Journal of Machine Learning Research, 13, 1037-1057.
  19. Kwon S and Kim Y (2012). Large sample properties of the SCAD-penalized maximum likelihood estimation on high dimensions, Statistica Sinica, 22, 629-653.
  20. Kwon S, Lee S, and Na O (2017). Tuning parameter selection for the adaptive lasso in the autoregressive model, Journal of the Korean Statistical Society, 46, 285-297. https://doi.org/10.1016/j.jkss.2016.10.005
  21. Kwon S, Oh S, and Lee Y (2016). The use of random-effect models for high-dimensional variable selection problems, Computational Statistics & Data Analysis, 103, 401-412. https://doi.org/10.1016/j.csda.2016.05.016
  22. Lee S, Kwon S, and Kim Y (2016). A modified local quadratic approximation algorithm for penalized optimization problems, Computational Statistics & Data Analysis, 94, 275-286. https://doi.org/10.1016/j.csda.2015.08.019
  23. McClave J (1975). Subset autoregression, Technometrics, 17, 213-220. https://doi.org/10.2307/1268353
  24. McLeod AI and Zhang Y (2006). Partial autocorrelation parametrization for subset autoregression, Journal of Time Series Analysis, 27, 599-612. https://doi.org/10.1111/j.1467-9892.2006.00481.x
  25. Na O (2017). Generalized information criterion for the ar model, Journal of the Korean Statistical Society, 46, 146-160. https://doi.org/10.1016/j.jkss.2016.12.002
  26. Nardi Y and Rinaldo A (2011). Autoregressive process modeling via the lasso procedure, Journal of Multivariate Analysis, 102, 528-549. https://doi.org/10.1016/j.jmva.2010.10.012
  27. Sang H and Sun Y (2015). Simultaneous sparse model selection and coefficient estimation for heavy-tailed autoregressive processes, Statistics, 49, 187-208. https://doi.org/10.1080/02331888.2013.848865
  28. Sarkar A and Kanjilal PP (1995). On a method of identification of best subset model from full ar-model, Communications in Statistics-Theory and Methods, 24, 1551-1567. https://doi.org/10.1080/03610929508831571
  29. Schmidt DF and Makalic E (2013). Estimation of stationary autoregressive models with the Bayesian LASSO, Journal of Time Series Analysis, 34, 517-531. https://doi.org/10.1111/jtsa.12027
  30. Schwarz G (1978). Estimating the dimension of a model, The Annals of Statistics, 6, 461-464. https://doi.org/10.1214/aos/1176344136
  31. Shen X, Pan W, Zhu Y, and Zhou H (2013). On constrained and regularized high-dimensional regression, Annals of the Institute of Statistical Mathematics, 1, 1-26.
  32. Shibata R (1976). Selection of the order of an autoregressive model by Akaike's information criterion, Biometrika, 63, 117-126. https://doi.org/10.1093/biomet/63.1.117
  33. Tibshirani RJ (1996). Regression shrinkage and selection via the LASSO, Journal of the Royal Statistical Society, Series B, 58, 267-288.
  34. Tsay RS (1984). Order selection in nonstationary autoregressive models, The Annals of Statistics, 12, 1425-1433. https://doi.org/10.1214/aos/1176346801
  35. Wang H, Li B, and Leng C (2009). Shrinkage tuning parameter selection with a diverging number of parameters, Journal of Royal Statistical Society, Series B, 71, 671-683. https://doi.org/10.1111/j.1467-9868.2008.00693.x
  36. Wang H, Li R, and Tsai C (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method, Biometrika, 94, 553-568. https://doi.org/10.1093/biomet/asm053
  37. Wu WB (2005). Nonlinear system theory: another look at dependence, Proceedings of the National Academy of Sciences of the United States of America, 102, 14150-14154. https://doi.org/10.1073/pnas.0506715102
  38. Wu WB (2011). Asymptotic theory for stationary processes, Statistics and Its Interface, 4, 207-226. https://doi.org/10.4310/SII.2011.v4.n2.a15
  39. Ye F and Zhang CH (2010). Rate Minimaxity of the Lasso and Dantzig selector for the lq loss in lr balls, Journal of Machine Learning Research, 11, 3519-3540.
  40. Zhang CH (2010a). Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-AOS729
  41. Zhang CH and Zhang T (2012). A general theory of concave regularization for high-dimensional sparse estimation problems, Statistical Science, 27, 576-593. https://doi.org/10.1214/12-STS399
  42. Zhang T (2010b). Analysis of multi-stage convex relaxation for sparse regularization, Journal of Machine Learning Research, 11, 1081-1107.
  43. Zou H (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735
  44. Zou H and Li R (2008). One-step sparse estimates in nonconcave penalized likelihood models, The Annals of Statistics, 36, 1509-1533. https://doi.org/10.1214/009053607000000802