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Abstract

We consider a sparse high-dimensional linear regression model. Penalized methods using LASSO or non-
convex penalties have been widely used for variable selection and estimation in high-dimensional regression
models. In penalized regression, the selection and prediction performances depend on which penalty function is
used. For example, it is known that LASSO has a good prediction performance but tends to select more variables
than necessary. In this paper, we propose an additive sparse penalty for variable selection using a combination
of LASSO and minimax concave penalties (MCP). The proposed penalty is designed for good properties of both
LASSO and MCP. We develop an efficient algorithm to compute the proposed estimator by combining a concave
convex procedure and coordinate descent algorithm. Numerical studies show that the proposed method has better
selection and prediction performances compared to other penalized methods.

Keywords: Additive sparse penalty, concave convex procedure, coordinate descent algorithm,
LASSO, minimax concave penalty, variable selection.

1. Introduction

Variable selection is a fundamental issue for high-dimensional statistical modeling; consequently,
many penalized regressions have been proposed as effective methods for variable selection and es-
timation. Tibshirani (1996) introduced the least absolute shrinkage and selection operator (LASSO)
that performs a subset selection in continuous fashion and satisfies good prediction performance. The
LASSO has many attractive properties, however, it is also known that the LASSO tends to select many
more variables than necessary.

There has been much work on various other penalized methods to overcome the variable selection
deficiencies of the LASSO. These include nonconvex penalties such as smoothly clipped absolute
deviation (SCAD) penalty (Fan and Li, 2001) and minimax concave penalty (MCP) (Zhang, 2010).
Their authors showed that the SCAD and MCP methods have better selection performance than the
LASSO in terms of the selection consistency in the asymptotic sense. Furthermore, many authors
established the SCAD and MCP estimators satisfy the so-called oracle property, which means that
they achieve the asymptotic equivalence to the ideal non-penalized estimator (oracle estimator) whose
coefficients of irrelevant variables were zero in advance (Kim ez al., 2008; Zhang, 2010). Although
the SCAD and MCP satisfy good asymptotic properties, it has been empirically observed that their
prediction performances are not superior to the LASSO in many cases.
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Table 1: Simulation results in the motivated examples.

SNR = 1 SNR = 3
Method PE SIG NOI PE SIG NOI
LASSO 47457 7.69 10.81 47771 5.00 11.44
MCP 4.9753 3.36 5.48 4.3935 5.00 3.82
SCAD 4.9592 3.97 7.97 4.3950 5.00 6.30

Motivated Example Here we briefly investigate selection and prediction performances of LASSO,
SCAD and MCP through simple simulations. This is a motivation of the paper. We generate 100
simulated data sets that consist of n = 100 observations and p = 100 explanatory variables from the
linear model,

y=xif++xpp, te, (1.1)

where € ~ N(0,4). All explanatory variables marginally follow standard Gaussian distribution and the
correlation between x; and x; is 0.5, The first 5 true coefficients ﬁj- are set to be ¢ and the remaining
95 coefficients equal to zero. The values of the nonzero true coefficients ¢ are chosen at two different
signal levels so that the signal to noise ratios (SNR) are 1 and 3. For each data set, we record the
prediction error (PE) based on 1,000 independent test data sets and the number of selected nonzero
coefficients among the 5 true signal variables (SIG) and 95 noisy variables (NOI), respectively.

Table 1 presents the results of this simulation, averaged over the 100 replications. When the SNR
is low, the LASSO outperforms both MCP and SCAD in terms of prediction and selection accuracy,
whereas both MCP and SCAD show better prediction performance and selectivity than the LASSO
under SNR = 3. Based on these results, we can show that the selection and prediction performances
for each method depend on the true underlying model. The detailed descriptions and more simulations
with the proposed method are presented in Section 4.

The goal of this paper is to develop a new additive penalty that works like an intermediate penalty
between LASSO and MCP as well as LASSO or MCP according to a given data set. In Section 2, we
propose the additive sparse penalty (ASP) by combining the LASSO and MCP functions. The ASP is
designed to have good properties of both LASSO and MCP regardless of the true underlying model.
In Section 3, we present the optimization algorithm for computing the ASP estimator, and in Section
4, we compare the performance of the proposed method with LASSO and MCP by simulation studies
and real data analysis. Concluding remarks are provided in Section 5.

2. Additive Sparse Penalty

Consider the linear regression model

y=XB+e¢, 2.1
wherey = (vy, ... ,y,,)T is the vector of n response variables, X = (X, ..., X,) is the nX p design matrix
with the j’h column x; = (xyj,..., x,lj)T, B=0,... ,ﬁp)T is the vector of regression coefficients and
&= (gy,...,&,)" is the vector of random errors.

2.1. Definition

We propose the additive sparse penalized estimator defined as

. ) 1 p p
B =argmin ——lly = XBI3+ 3 18D+ ) Bl (2.2)
Jj=1 Jj=1



Additive Sparse Penalty 149

where Jj, (+) is the MCP function of Zhang (2010) defined as

ﬂZ
_Z + 415, if B <ady,

1
Ea,ﬁ, if B> ady,

Ju(B) =

for >0, 4;,4; > 0and a > 1. Here 4, and A, are the regularization parameters for the MCP and
LASSO, respectively. This penalty is designed by combining the MCP and LASSO, and hence it is
expected to satisfy good properties of both MCP and LASSO. Note that the MCP function could be
replaced by other nonconvex penalty such as the SCAD penalty of Fan and Li (2001) defined as

B, it <A,
aly(B— ) — (B - 1)/2 .

I, (B) = 7 s if 1<B<ad,
1
S+ 1A, if B> ad,,

for3>0,4; >0anda > 2.

Consider the following parametrization: 4 = A; + A», @ = 4;/A. Then the additive sparse penalty
(ASP) can be expressed as

p
{TaaBjD + (1 = )11}, 2.3)
=1

J

Using this parametrization, we can show that the ASP is an intermediate penalty between the LASSO
(@ = 0) and the MCP (@ = 1). The regularization parameter A controls the overall sparsity of the
estimator, and a represents the fraction of each shrinkage amount from two penalties. Figure 1 shows
the ASP penalty with various values of @ compared to the MCP and LASSO. When « is small, the ASP
is close to the LASSO penalty. When « is large, the ASP becomes similar to the MCP. By controlling
value of @, we can obtain a good estimator for a given data. For example, when the signal to noise
ratio is low as in the motivated example, we can obtain an estimator with good prediction performance
by selecting a small value of @. A true signal level for a given data is unknown in practice, however,
an appropriate value of @ can be chosen by a model selection criterion such as BIC or cross-validation
methods (Wang et al., 2009; Zou and Hastie, 2005).

2.2. Orthogonal design study

To gain more insight of the ASP, we consider the orthogonal case where the design matrix is or-
thogonal, i.e. X”X/n = 1,. In this case, the problem in (2.2) becomes the problem of estimating
coefficients separately in each variable. LetZ = (2,...,2,)" be the ordinary least square estimator,
where Z; = ijy/n. Then the ASP estimator can be obtained by component-wise solutions of

%(2,—,8,»)2”}, (B)+ gl j=1....p. (2.4)
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Figure 1: Plot of the penalty functions with A = 1. The dotted and dashed lines are the LASSO and MCP
function, respectively. The solid line is the ASP functions with various values of a.

It is easy to show that the minimizers of component-wise objective function (2.4) are

0, if |ZJ| < A + Ay,

A a

Bj=

lsign (21) (|2]| - (/11 + ﬂz)), if A+ < |2]| <ad; + Ay,

sign (2,) (2] - 42). if [z > adi + 4

for a > 1. This expression illustrates the feature of the ASP estimator. The 4 = A4; + A, controls
the overall sparsity of the ASP estimator by thresholding small coefficients less than A, while A,
represents the amount of shrinkages over nonzero large coefficients as in the LASSO. Figure 2 shows
the corresponding solutions according to Z for the ASP with various values of @. When « is small,
the ASP solutions are very similar to ones of LASSO. When « is large, the ASP solutions become
similar to ones of MCP. The thresholding rules for small values of Z are the same as A, but the amount
of shrinkages for large values of Z depends on «. Note that the amount of shrinkages for large values
of Z in the LASSO and MCP are A and zero, respectively, A(1 — @) in the ASP.

3. Computation

In this section, we develop an optimization algorithm to compute the ASP estimate. We adopt the idea
of CCCP-SCAD algorithm proposed by Kim et al. (2008). The main idea of the proposed algorithm
is to convert the ASP problem to the standard LASSO problem via concave convex procedure (CCCP)
of Yuille and Rangarajan (2003), and then apply the coordinate descent (CD) algorithm of Friedman
et al. (2010) to solve the LASSO problem.

3.1. Concave convex procedure

The ASP function can be decomposed by the sum of concave and convex functions,

(1B + 0Bl = T, (18D + (41 + )18,



Additive Sparse Penalty 151

< o -

Figure 2: Plot of the solution paths according to the least square estimator Z for each method with A = 1 in

orthogonal design study. The dotted and dashed lines are the solution paths of the LASSO and MCP estimators,

respectively. The solid line represents the ASP estimator with various values of «, and the dot-dashed line
represents the least square estimator .

where J 10BN = Ja, (1B]) — 4118 is a continuously differentiable concave function, and || is a convex
function. Hence, the objective function with the ASP in (2.2) can be rewritten as

1 -
0B) = 5-lly - XBI5 + I, (B) + AllBIl. 3.1)

where J,, (B) = I,‘)=1 (T, (Bj) = lBjl}, A = A1 + A2 and || - ||; is the £;-norm operator. Note that
J 1,(B) is a differentiable concave function with respect to 8, and hence the objective function in (3.1)
consists of the sum of convex and concave functions. Thus, we can apply the CCCP algorithm. Since
J.,(B) is a concave function, for a given solution B we have J,,(8) < J1,(B) + VI, (B (B - B,
where VJ,,(B) = 0J4,(B)/0B. Given a current solution [?C, the tight convex upper bound of Q(B) in
(3.1) becomes

1 = [acC
U = 5y - XBIE + VI, (B) B+ B, (32)

which is a standard LASSO problem with the quadratic loss function. We then update the current
solution with the minimizer of U(B) by applying an efficient LASSO algorithm. The ASP estimator
can be obtained by iterating these two steps until convergence. By the descent property of CCCP
algorithm, the objective function Q(B) always decreases after each iteration and hence the sequence
of solution vectors converges to a local minimum (Yuille and Rangarajan, 2003).

3.2. Coordinate descent algorithm

We now investigate details of the CD algorithm to optimize the tight convex upper bound U(f) in
(3.2). To explain the CD algorithm, we consider the j”* coordinate descent step. For a given fixed
values of parameters (B, k # j) at their current estimates 3, we wish to partially minimize the convex
upper bound U(B) with respect to ;. Let g; is the j™ diagonal entry of X" X/n, a; and b; are the j™
element of X”y/n and J,, (B), respectively, and ¢ ; and n; are (p — 1)-dimensional vectors obtained
by deleting the j* element from B and the j row vector of X”X/n, respectively. Then using some
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algebra, it can be easily shown that this problem is equivalent to minimizing R(83 jIB) defined as

R(BIB) = %q,ﬁ§+ljﬁ,+/1wj|+c(ﬁ), (3.3)

where g; and [; = { ]TJ] ;= aj + bj are the coeflicients for the quadratic and linear terms, respectively.
Here C(B) is the constant terms free of 8 ;. It can be shown that the minimizer of R(3 jIB) in (3.3) is
R 1.
ﬂj = ——ggn (lj) (|lj| — /l)+ .
qj
where the subscript ‘+° stands for the positive part. This explicit form of solutions facilitates the
implementation of the proposed algorithm which is summarized in Algorithm 1.

Algorithm 1 The proposed algorithm for minimizing Q(8)

Set an initial estimator Bc e R?
Compute X" X/n and X"y/n
repeat
Calculate VJ 21, (B) at BC and set B = ,Z?C
repeat
for j=1,2,...,pdo
Calculate g; and /; in (3.3)
Update 3; with 3; = —sign(Z))(1;| — 1)+/q;
end for
until convergence
Update ,BL by B
until convergence

4. Numerical lllustrations

In this section, we investigate the finite sample performance of the ASP estimator through simulation
experiments and real data analysis. We compare the ASP estimator with the LASSO, MCP and SCAD
estimators in terms of prediction accuracy and variable selectivity.

4.1. Simulation studies
We consider the linear regression model
y=x'B"+¢,

where x ~ N,(0,X) with covariance structure X;; = Cov(x;, x;) = 0.5/ and £ ~ N(0,0?) with
o = 2 that of independent x. For each independently generated data set, we set n = 100,200 and
p = 100, 1000, with the first 5 nonzero coefficients are set to be ¢ and the remaining coefficients equal
to zero. The values of the nonzero true coefficients ¢ are chosen to two different signal levels so that
the signal to noise ratios (SNR) are 1 and 3. The SNR is defined as

" T *
SNR = | YA (B |BTIB
Var(g) o2
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We use ¢ = 0.599 for weak signal scenarios while we set ¢ = 1.798 for strong signal scenarios. In
summary, we have 8 simulation scenarios, where each scenario is replicated 100 times.

We consider the LASSO, MCP with a = 3 and SCAD with a = 3.7, roughly in line with recom-
mendations suggested in Zhang (2010) and Fan and Li (2001). For ASP, we consider the ASP with
various values of « in the set {0.1,0.3,0.5,0.7,0.9} (ASP,) and the ASP with optimal & (ASP,-). For
all methods, regularization parameters are selected by external validation on an independent data set
with size of n/2. Note that all methods except ASP,- have only one regularization parameter A, while
ASP,- has two regularization parameters A and @. For prediction accuracy, we compute the prediction
error (PE) based on the independent test data set with size N = 1,000, and the model error (ME) which
are defined by

1 & 5
PE:N;(%‘_YL‘),
ME=(B-g) (B-8).

respectively. For variable selectivity, we compute the number of selected nonzero coefficients among
the true nonzero coeflicients (SIG) and the true zero coefficients (NOI), respectively, as well as the
number of selected variables (NUM). The average values of each measure based on 100 replications
are summarized in Table 2 and Table 3.

Table 2 presents the weak signal scenario where SNR = 1. The LASSO outperforms the MCP and
SCAD in terms of prediction accuracy and variable selectivity. When # is small or p is large, the MCP
overall fails to detect the true signal variables compared to other methods. The LASSO successfully
selects the true signal variables but it also selects more noisy variables than other methods. The SCAD
shows intermediate selection performances between the LASSO and MCP, but its prediction perfor-
mances are similar to the MCP. The ASP with various values of @ shows intermediate performances
between the LASSO and MCP. Furthermore, the ASP with a small value of « has better performances
than others, which means the LASSO might be a more appropriate method than MCP and SCAD in
the weak signal scenario. The ASP,- has better prediction performances than the LASSO and also
deletes noisy variables without much missing of true signal variables.

Table 3 shows the strong signal scenario where SNR = 3. The MCP and SCAD has better PE and
ME as well as variable selectivity regardless of n and p. While the LASSO shows poor prediction
performances and also selects more noisy variables. Contrast to the weak signal scenario, the MCP
and SCAD might be more appropriate method than the LASSO in the strong signal scenario. However,
we can obtain the ASP estimator with good selection and prediction performances by choosing a large
value of @. Itis interesting to notice that the LASSO has similar selection and prediction performances
in both strong and weak signal scenarios, whereas we can show that performances of the MCP and
SCAD depend much on the signal levels and sample sizes. In this sense, the LASSO might be more
robust than nonconvex penalized methods regardless of a feature of data.

Table 4 displays the frequency of each value of @ being selected in the ASP,- among 100 random
partitions. In weak signal scenarios, small values of @ are selected so that the ASP performs similar
to the LASSO, whereas large values of « are selected in strong signal scenarios in which the MCP
performs well. Based on these simulation studies, we conclude that the ASP method has better per-
formances than the LASSO and MCP by selecting an appropriate value of @ depending on a given
data.



154 Sangin Lee

Table 2: Simulation results for LASSO, MCP and ASP with various values of @, where the signal to noise ratio
was set to 1. The corresponding standard errors are in parentheses.

np Method PE ME SIG NOI NUM
LASSO 4.746 (0.030) 0.712 (0.027) 477 (0.046) 11.1 (0.838) 15.8 (0.842)
ASPg | 4763 (0.033) 0.729 (0.030) 4.5 (0.059) 9.1 (0.794) 13.6 (0.810)
ASPj3 4.742 (0.031) 0.705 (0.029) 4.2 (0.074) 7.0 (0.570) 11.2 (0.598)
0= 100 ASP s 4.808 (0.033) 0.768 (0.031) 3.9 (0.082) 6.4 (0.544) 10.3 (0.588)
— 100 ASPg 7 4.901 (0.046) 0.862 (0.045) 3.7 (0.082) 6.4 (0.605) 10.0 (0.648)
p ASPyo 4.939 (0.038) 0.903 (0.038) 3.3 (0.086) 5.8 (0.523) 9.2 (0.560)
MCP 4.972 (0.040) 0.936 (0.040) 3.3 (0.084) 5.5 (0.505) 8.7 (0.540)
SCAD 4.965 (0.040) 0.930 (0.040) 3.9 (0.081) 8.4 (0.755) 12.3 (0.756)
ASP,- 4.739 (0.033) 0.703 (0.031) 4.2 (0.089) 7.2 (0.605) 11.4 (0.638)
LASSO 5.072 (0.039) 1.025 (0.038) 4.4 (0.065) 20.2 (1.476) 24.6 (1.490)
ASPy 5.062 (0.040) 1.015 (0.039) 4.2 (0.071) 13.3 (1.110) 17.5 (1.117)
ASPj3 5.075 (0.045) 1.027 (0.044) 3.6 (0.079) 9.4 (0.811) 13.0 (0.830)
= 100 ASPy s 5.123 (0.046) 1.067 (0.043) 3.2 (0.076) 7.9 (0.653) 11.0 (0.667)
1,000 ASPy7 5.188 (0.041) 1.133 (0.039) 2.9 (0.074) 7.0 (0.646) 9.9 (0.659)
L ASPgo 5.241 (0.042) 1.186 (0.040) 2.8 (0.072) 6.3 (0.584) 9.1 (0.594)
MCP 5.265 (0.044) 1.210 (0.042) 2.7 (0.072) 5.8 (0.563) 8.6 (0.567)
SCAD 5.232 (0.042) 1.178 (0.040) 3.5 (0.097) 14.2 (1.245) 17.6 (1.203)
ASP,- 5.067 (0.042) 1.019 (0.041) 3.9 (0.089) 13.1 (1.160) 17.0 (1.182)
LASSO 4347 (0.018) 0.319 (0.015) 5.0 (0.000) 12.3(0.881) 17.3 (0.881)
ASPy 4.346 (0.017) 0.318 (0.015) 5.0 (0.010) 10.1 (0.836) 15.1 (0.837)
ASPy3 4.304 (0.019) 0.277 (0.015) 4.9 (0.028) 6.8 (0.593) 11.8 (0.594)
=200 ASPg 5 4310 (0.018) 0.284 (0.015) 4.8 (0.041) 6.5 (0.463) 11.3 (0.471)
b= 100 ASPg 7 4361 (0.019) 0.334 (0.016) 4.7 (0.048) 6.9 (0.502) 11.7 (0.519)
ASPyo 4.432 (0.020) 0.404 (0.016) 4.5 (0.064) 7.6 (0.562) 12.1 (0.592)
MCP 4.474 (0.021) 0.444 (0.018) 4.5 (0.067) 7.9 (0.568) 12.3 (0.600)
SCAD 4.491 (0.023) 0.462 (0.019) 4.7 (0.058) 12.1 (0.846) 16.8 (0.862)
ASP,- 4.306 (0.018) 0.281 (0.015) 4.9 (0.036) 7.3 (0.664) 12.2 (0.670)
LASSO 4.567 (0.018) 0.529 (0.017) 4.9 (0.026) 19.5 (1.576) 24.5 (1.581)
ASPy 4.562 (0.019) 0.523 (0.019) 4.9 (0.036) 13.1 (1.296) 18.0 (1.305)
ASPj3 4.512 (0.021) 0.473 (0.020) 4.6 (0.059) 9.7 (0.913) 14.3 (0.934)
= 200 ASPy s 4.546 (0.020) 0.507 (0.019) 4.2 (0.075) 9.1 (0.776) 13.3 (0.810)
= 1000 ASPy 7 4.624 (0.021) 0.581 (0.018) 3.8 (0.082) 9.5 (0.833) 13.3 (0.875)
’ ASPgo 4.682 (0.021) 0.641 (0.018) 3.6 (0.076) 9.4 (0.844) 13.1 (0.870)
MCP 4703 (0.022) 0.664 (0.020) 3.5 (0.080) 8.5 (0.844) 12.1 (0.865)
SCAD 4.754 (0.022) 0.717 (0.020) 4.1 (0.076) 20.8 (2.032) 24.9 (2.026)
ASP,- 4.511 (0.020) 0.472 (0.019) 4.5 (0.063) 11.8 (1.289) 16.3 (1.305)

4.2. Real data analysis

We analyze the data set used by Scheetz et al. (2000) to illustrate the application of the proposed
method as well as the LASSO and MCP. This data set consists of the gene expression levels of 18,976
genes obtained from 120 twelve-week-old male rats. This data set is available from the R package
picasso. The main goal of the analysis is to identify genes whose expressions are most correlated
with that of gene TRIM32, which has been found to cause Bardet-Biedl syndrome (Chiang et al.,
2006). We first select 3,000 genes with the largest variances in expression and then select top p genes
that have the largest absolute correlations with gene TRIM32. We apply penalized linear regressions
using the LASSO, MCP and the proposed method, with TRIM32 expression as the response variable
and the selected top p = 100, 1000 genes as the covariates.

We compare the prediction accuracy and selectivity of ASP with various values of @ and the
optimal value of @, LASSO and MCP as in the simulation studies. The results are obtained by 100
random partitions of data set divided into two parts, training (70%) and test (30%) data sets. For each
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Table 3: Simulation results for LASSO, MCP and ASP with various values of @, where the signal to noise ratio
was set to 3. The corresponding standard errors are in parentheses.

np Method PE ME SIG NOI NUM
LASSO 4.779 (0.032) 0.745 (0.029) 5.0 (0.000) 11.7 (0.843) 16.7 (0.843)
ASPg | 4782 (0.034) 0.750 (0.032) 5.0 (0.000) 9.4 (0.798) 14.4 (0.798)
ASPj3 4.658 (0.032) 0.624 (0.030) 5.0 (0.000) 5.9 (0.532) 10.9 (0.532)
0= 100 ASP s 4.504 (0.029) 0.472 (0.027) 5.0 (0.000) 4.0 (0.422) 9.0 (0.422)
— 100 ASPg 7 4.379 (0.027) 0.346 (0.024) 5.0 (0.000) 3.1 (0.370) 8.1 (0.370)
p= ASPyo 4.357 (0.029) 0.325 (0.026) 5.0 (0.000) 3.1 (0.365) 8.1 (0.365)
MCP 4.366 (0.028) 0.336 (0.026) 5.0 (0.000) 3.3 (0.352) 8.3 (0.352)
SCAD 4.371 (0.034) 0.340 (0.032) 5.0 (0.000) 5.8 (0.553) 10.8 (0.553)
ASP,- 4.360 (0.027) 0.328 (0.024) 5.0 (0.000) 3.3 (0.387) 8.3 (0.387)
LASSO 5.183 (0.046) 1.134 (0.045) 5.0 (0.000) 21.4 (1.432) 26.4 (1.432)
ASPy 5.140 (0.044) 1.092 (0.043) 5.0 (0.000) 12.3 (1.023) 17.3 (1.023)
ASPg3 4.870 (0.040) 0.824 (0.039) 5.0 (0.000) 7.3 (0.736) 12.3 (0.736)
w100 ASPy s 4.607 (0.033) 0.564 (0.032) 5.0 (0.000) 4.7 (0.534) 9.7 (0.534)
= 1.000 ASPy7 4.445 (0.029) 0.407 (0.028) 5.0 (0.000) 4.2 (0.403) 9.2 (0.403)
L ASPgo 4.519 (0.046) 0.481 (0.045) 4.9 (0.010) 6.4 (0.532) 11.4 (0.532)
MCP 4.600 (0.050) 0.561 (0.049) 4.9 (0.017) 8.4 (0.559) 13.4 (0.558)
SCAD 4.651 (0.055) 0.606 (0.053) 5.0 (0.010) 18.7 (1.111) 23.7 (1.111)
ASP,- 4.470 (0.033) 0.434 (0.032) 5.0 (0.000) 6.0 (0.652) 11.0 (0.652)
LASSO 4347 (0.018) 0.319 (0.015) 5.0 (0.000) 12.3(0.881) 17.3 (0.881)
ASPy 4.346 (0.018) 0.319 (0.015) 5.0 (0.000) 10.1 (0.839) 15.1 (0.839)
ASPy3 4.294 (0.017) 0.268 (0.014) 5.0 (0.000) 6.5 (0.606) 11.5 (0.606)
=200 ASP 5 4.225 (0.015) 0.199 (0.012) 5.0 (0.000) 4.3 (0.458) 9.3 (0.458)
= 100 ASPg 7 4.189 (0.015) 0.162 (0.011) 5.0 (0.000) 3.7 (0.490) 8.7 (0.490)
ASPyo 4.169 (0.015) 0.141 (0.011) 5.0 (0.000) 3.0 (0.488) 8.0 (0.488)
MCP 4.173 (0.015) 0.145 (0.011) 5.0 (0.000) 2.9 (0.483) 7.9 (0.483)
SCAD 4.164 (0.017) 0.136 (0.013) 5.0 (0.000) 4.6 (0.719) 9.6 (0.719)
ASP,- 4.167 (0.014) 0.139 (0.010) 5.0 (0.000) 3.1 (0.506) 8.1 (0.506)
LASSO 4.570 (0.019) 0.532 (0.018) 5.0 (0.000) 19.9 (1.572) 24.9 (1.572)
ASPy 4.560 (0.020) 0.521 (0.019) 5.0 (0.000) 13.1 (1.275) 18.1 (1.275)
ASPg3 4.435 (0.022) 0.397 (0.020) 5.0 (0.000) 8.9 (1.022) 13.9 (1.022)
= 200 ASPy s 4.304 (0.015) 0.267 (0.013) 5.0 (0.000) 5.5 (0.692) 10.5 (0.692)
= 1000 ASPy 7 4.224 (0.014) 0.186 (0.011) 5.0 (0.000) 4.1 (0.668) 9.1 (0.668)
’ ASPgo 4.192 (0.014) 0.154 (0.011) 5.0 (0.000) 3.8 (0.695) 8.8 (0.695)
MCP 4.184 (0.013) 0.145 (0.010) 5.0 (0.000) 3.3 (0.560) 8.3 (0.560)
SCAD 4.197 (0.015) 0.158 (0.012) 5.0 (0.000) 9.5 (1.440) 14.5 (1.440)
ASP,- 4.197 (0.015) 0.158 (0.012) 5.0 (0.000) 4.2 (1.023) 9.2 (1.023)

Table 4: The frequency of each value of a being selected in the ASP,- methods based on 100 random partitions

when p = 1,000.

n SNR a=0 a=0.1 a=03 a=0.5 a=0.7 a=09 a=1
100 1 16 32 25 13 5 7 2
3 0 3 4 18 33 15 27
1 6 18 40 18 8 4 6
200 3 2 0 3 3 15 24 53

training data, the optimal values of regularization parameters are chosen by ten-fold cross-validation
method, and then we compute the prediction error and the number of the selected nonzero variables
based on each test data set. Table 5 summarizes the results based on 100 random partitions.

Table 5 shows the prediction error and the number of selected variables averaged over 100 random
partitions. The LASSO performs better in terms of the prediction accuracy, but selects more variables
than other methods. The MCP always performs worst in terms of the prediction accuracy, but it
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Table 5: Average prediction errors and the number of selected variables based on 100 random partitions. The
corresponding standard errors are in parentheses.
P Measure LASSO ASPo,l ASPQS ASP().S ASP()] ASPO'Q MCP ASPQ*

0.468 0.476 0.489 0.489 0.506 0.536 0.553 0.475
(0.030) (0.032) (0.033) (0.031) (0.032) (0.044) (0.046) (0.030)

Prediction error

100 No. of variables 19.5 16.1 12.2 10.3 8.7 8.1 7.4 13.8
(0.948) (0.976) (0.786) (0.607) (0.494) (0503)  (0472)  (0.712)

Prediction error 0.495 0.494 0.479 0.543 0.614 0.648 0.667 0.478
1,000 (0.055) (0.053) (0.038) (0.046) (0.063) 0.068)  (0.071)  (0.039)

435 36.7 29.0 21.9 20.1 14.1 12.3 32.9

No.ofvariables | oc (13500 (1319) (1209  (LI85)  (0962)  (0.898)  (1.524)

produces the most sparse model. Even though the ASP has slightly larger prediction accuracy than
the LASSO when p = 100, it produces more sparse model. When p = 1,000, the ASP outperforms
the LASSO and it also selects less variables than the LASSO. These results illustrate that the proposed
method has better selection and prediction performances by choosing an appropriate value of « for a
given data set.

5. Concluding Remarks

In this paper, we have proposed an additive sparse penalty for variable selection by combining the
LASSO and MCP functions. We also have developed an optimization algorithm of a hybrid of the
concave convex procedure and coordinate descent algorithm. The numerical results given in Sec-
tion 4 show that the ASP estimator has both advantages of the LASSO and MCP by selecting an
appropriate value of @. Furthermore, we provide the implementation of the proposed algorithm at
https://sites.google.com/site/sanginlee0404/.

We only have focused on the linear regression model, however, the ASP method could be extended
in a straightforward manner to various regression problems such as generalized linear models and
Cox’s regressions. Such extensions can be conducted by replacing the sum of squared residuals with
the corresponding loss functions for various models. For examples, the corresponding loss functions
are taken to the negative log-likelihood for a generalized linear model and negative partial likelihood
for Cox’s regression. We leave these problems as future works.
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