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Abstract
High dimensional time series is gaining considerable attention in recent years. The sparse vector hetero-

geneous autoregressive (VHAR) model proposed by Baek and Park (2020) uses adaptive lasso and debiasing
procedure in estimation, and showed superb forecasting performance in realized volatilities. This paper extends
the sparse VHAR model by considering non-convex penalties such as SCAD and MCP for possible bias reduc-
tion from their penalty design. Finite sample performances of three estimation methods are compared through
Monte Carlo simulation. Our study shows first that taking into cross-sectional correlations reduces bias. Second,
nonconvex penalties performs better when the sample size is small. On the other hand, the adaptive lasso with
debiasing performs well as sample size increases. Also, empirical analysis based on 20 multinational realized
volatilities is provided.

Keywords: sparse vector heterogeneous autoregressive (VHAR) model, nonconvex penalty, adap-
tive lasso, smoothly clipped absolute deviations (SCAD), minimax concave penalty (MCP), real-
ized volatility

1. Introduction

The importance of modeling and forecasting multivariate realized volatility is increasing rapidly. It
is due to its deep relationship with financial domain. For example, forecasting co-movements of
multinational stock markets, investment management, and risk management are deeply related with
multivariate volatility. A groundbreaking study by Andersen et al. (2003) showed that the realized
volatility (RV), defined as 5-minutes-low-frequency sum of intraday squared returns, provides the
best approximation of volatility. In this study, we are interested in the high-dimensional modeling of
volatility dynamics in RVs such as slow decaying autocorrelations known as long memory.

The heterogeneous autoregressive model (HAR) model first proposed by Corsi (2009) became
very popular due to its simple structure but outstanding forecasting performance. The HAR model
has been extended by incorporating jumps, leverage effects, GARCH-type errors etc. Kim and Baek
(2020) proposed factor augmented HAR model by incorporating multinational RVs by factors. Later,
Baek and Park (2020) considered direct modeling of high-dimensional RVs by considering lasso type
of penalization based on the vector heterogeneous autoregressive model (VHAR) model given by

Yt
(d) = Φ(d)Yt−1

(d) + Φ(w)Yt−1
(w) + Φ(m)Yt−1

(m) + εt, εt ∼ WN(0,Σ), t = 23, . . . ,T, (1.1)
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where Yt
(d) is k-dimensional RV time series at time t, Φ(d),Φ(w), and Φ(m) are k×k coefficient matrices,

Σ is k × k covariance matrix and

Yt−1
(w) =

1
5

5∑
j=1

Yt− j
(d), Yt−1

(m) =
1

22

22∑
j=1

Yt− j
(d)

are respectively the component-wise weekly and monthly RV averages. They showed that the sparse
VHAR model improves forecasting and provides insight on the connectedness of multinational RVs.

This paper studies further on the sparse modeling in VHAR. Baek and Park (2020) uses adaptive
lasso penalty of Zou (2006) due to its convexity, fastness, and continuity. Despite its advantages,
however, lasso is not free from bias, so they proposed debiasing procedure after sparse estimation
using adaptive lasso. On the other hand, Fan et al. (2001) raised the concern of the effect of the
bias, which increases the possibility of incorrect selection of non-zero coefficients, in more general
penalized estimators. They proposed the so-called smoothly clipped absolute deviations (SCAD)
method by carefully designing the non-convex penalty function and showed that it achieves oracle
property under certain conditions. However, due to non-convexity, SCAD has computational and
analytical difficulties. Later, Zhang (2010) proposed and studied nearly unbiased penalization method
called the minimax concave penalty (MCP), which has fast algorithm in finding solution.

In high-dimensional time series modeling perspective, recently, Zhu (2020) carried out a research
concerning sparse vector autoregressive model estimation with nonconvex penalties. Zhu (2020) es-
tablished some oracle properties of the penalized VAR model estimation with temporal and cross-
sectional dependence. However, Zhu (2020) cannot accommodate long memory feature in the model
and ignores cross-sectional dependence structure in the estimation, so may not suitable for high di-
mensional financial time series. This study fills above mentioned gap by considering sparse VHAR
modeling with non-convex penalties such as SCAD and MCP for possible bias reduction and con-
sistency. In particular, we consider loss function based on likelihood following the idea of Baek and
Park (2020) also inspired by Davis et al. (2016).

This paper is organized as follows. Section 2 introduces sparse estimation of VHAR model by
applying adaptive lasso, SCAD and MCP penalties. We also provide data adaptive penalty parameter
selection method tailored to VHAR. Section 3 is devoted to Monte Carlo simulations to evaluate
finite sample performances of the proposed methods. In Section 4, our methods are applied to 20
multinational RVs. We conclude in Section 5 with discussions.

2. Model and methods

2.1. VHAR model

The VHAR model (1.1) can be compactly written as

Y = AX + Z, (2.1)

where Y = (Y (d)
23 , . . . ,Y

(d)
T ), A = (Φ(d),Φ(w),Φ(m)), and X = (X22, . . . , XT−1), with

Xt =


Y (d)

t

Y (w)
t

Y (m)
t
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and Z = (ε23, . . . , εT ). Then, vectorization further reduce it as

vec(Y) = (X′ ⊗ Ik)vec(A) + vec(Z).

Define the design matrix X = (X′ ⊗ Ik) which is the kronecker product of transpose of matrix X and
the k × k identity matrix. Then, the VHAR model (1.1) is represented as

Y = Xα + z, (2.2)

where the response vector is Y = vec(Y), the parameter vector α = vec(A), and the error vector
z = vec(Z).

Now, the penalization method can be represented as

α̂ = arg min
α∈Rq

1
N

∥∥∥Y − Xα
∥∥∥2

2 +

q∑
j=1

pλ(|α j|), (2.3)

where q = 3k2 is the number of parameters, pλ(·) is the penalty function and λ ≥ 0 is the tuning
parameter. We consider three penalization methods, adaptive lasso proposed by Zou (2006), SCAD
studied by Fan et al. (2001) and MCP of Zhu (2020) as detailed in the below.

2.2. Adaptive Lasso penalty

First, note that the `1 penalty, pλ(|α j|) = λ|α j|, is the original lasso estimator. The adaptive lasso
proposed by Zou (2006) improves original lasso estimation by considering weight in the penalty
given as

pλ(|α j|) = λw j|α j|.

Zou (2006) showed that the weight vector is a key factor for its oracle properties and consistency. The
weight w j is proposed as

w j =
1∣∣∣α̂ j

∣∣∣γ , (2.4)

where α̂ j is jthcomponent parameter estimates for some γ > 0. It is important to note that the adaptive
lasso estimation function (2.4) is a convex optimization problem. Thus, it does not have multiple local
minimum issue and shows advantage in computation.

In practice, to derive the weights (2.4), we can use the standard lasso estimator or least squares
estimator (OLS),

α̂OLS = arg min
α

∥∥∥Y − Xα
∥∥∥2

2 = (X′X)−1X′Y (2.5)

as an initial estimator to calculate the weights. However, this procedure assumes the innovation co-
variance matrix as an identity matrix rather than Σ, thus neglects the cross-sectional dependence. To
incorporate the cross-sectional dependence, Davis et al. (2016) modified the adaptive lasso estimation
function as

α̂AL = arg min
α

∥∥∥ (
IT ⊗ Σ−

1
2
)

Y −
(
X′ ⊗ Σ−

1
2
)
α
∥∥∥2

2 + λ

q∑
j=1

w j|α j|. (2.6)
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In fact, the loss function of (2.6) is derived from the negative Gaussian likelihood, so it extends usual
adaptive lasso to likelihood-based time series setting. The solution is found by applying iterative
procedure between Σ and α. For instance, we can use a function of OLS estimator,

Σ̂ =
1

T − 22

(
Y − ÂX

) (
Y − ÂX

)′
(2.7)

for innovation covariance matrix Σ, and find α by applying standard adaptive lasso algorithm. Then,
the covariance matrix (2.7) is updated with new estimator and so on. The detailed derivation of (2.6)
and algorithm can be found in the Appendix of Davis et al. (2016).

However, Fan et al. (2001) asserted that l1 penalty gives larger bias for larger non-zero coefficients.
Thus, in this paper, in order to reduce the bias which comes from the penalization, we adopt the two-
stage estimation procedure of Baek and Park (2020) , originally proposed in Baek et al. (2018). First,
sparse locations are estimated via adaptive lasso estimator α̂AL. Then we derive the final estimates of
parameters by constrained generalized least squares (GLS) estimation. By following the derivation in
Lütkepohl (2005) , final generalized least squares (GLS) estimator is given as

α̂GLS = R
(
(XR)′

(
IT−22 ⊗ Σ̂−1

)
(XR)

)−1
(XR)′

(
IT−22 ⊗ Σ̂−1

)
Y, (2.8)

where the sparsity constraint is α = Rγ. For example,

α :=


α1
α2
0
α3

 =


1 0 0
0 1 0
0 0 0
0 0 1


α1
α2
α3

 =: Rγ.

This shows that γ carries only the non-zero coefficients of the VHAR model.

2.3. Smoothly clipped absolute deviations (SCAD) estimation

For the SCAD estimation for VHAR, the squared error loss is given by∥∥∥ (
IT ⊗ Σ−

1
2
)

Y −
(
X′ ⊗ Σ−

1
2
)
α
∥∥∥2

2, (2.9)

to incorporate spatial dependence. The penalty function pλ(·) proposed by Fan et al. (2001), can be
written as

d
dθ

pSCAD
λ (θ) = λ

{
I(θ ≤ λ) +

(γλ − θ)+

(γ − 1)λ
I(θ > λ)

}
=


λ, |θ| ≤ λ,

γλ−|θ|
γ−1 , λ < |θ| < γλ,

0, γλ ≤ |θ|,

(2.10)

for some γ > 2 and θ > 0. This term can be rewritten as quadratic spline function with knots at λ and
γλ

pSCAD
λ (θ) =


λ|θ|, |θ| ≤ λ,

2γλ|θ|−θ2−λ2

2(γ−1) , λ < |θ| < γλ,
λ2(γ+1)

2 , γλ ≤ |θ|,

(2.11)

where λ is the tuning parameter and γ is convexity parameter which controls the convexity of the
penalty. In this study, we set γ = 3.7 following the nonconvex estimation on sparse VAR model by
Zhu (2020).
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It is notable that SCAD penalty is identical with the lasso until |θ| = λ, then it transforms smoothly
to a quadratic function until |θ| = γλ, after which it gives a constant value for all |θ| > γλ. Also, the
derivative of the SCAD penalty (2.10) gives more intuitive explanation. The SCAD penalty maintains
the penalization rate and bias same as lasso for small coefficients (θ| < λ), then steadily relaxes the
penalization rate and bias as the absolute value of the coefficient increases.

2.4. Minimax concave penalty (MCP) estimation

For the MCP method for VHAR, the same squared error loss with spatial dependence

∥∥∥ (
IT ⊗ Σ−

1
2
)

Y −
(
X′ ⊗ Σ−

1
2
)
α
∥∥∥2

2 (2.12)

is used but the penalty function pλ(·) is given as

d
dθ

pMCP
λ (θ) =

{
sign(θ)

(
λ − |θ|

γ

)
, |θ| ≤ γλ,

0, |θ| > γλ,
(2.13)

where γ is usually set greater than 1. The penalty function (2.13) can be rewritten explicitly as

pMCP
λ (θ) =

 λ|θ| − θ2

2γ , |θ| ≤ γλ,
γλ2

2 , |θ| > γλ.
(2.14)

The MCP penalty is similar to SCAD in the sense that it begins by applying the same rate and bias of
lasso penalty. And it also relaxes the rate and bias down to zero as the absolute value of coefficient
increases. It is notable that while SCAD reduces the penalization rate and bias smoothly, MCP relaxes
them more rapidly (Breheny and Huang, 2011).

In this study, we set γ = 3 following the default value of the R package ncvreg by Breheny and
Huang (2011). Many values were tested as γ for both SCAD and MCP to find optimal value in our
framework. Values such as γ = 1.5 (Zhu, 2020) and some other values randomly chosen, but in our
setting, γ = 3.7 for SCAD and γ = 3 for MCP showed slightly better performance in terms of RMSE
and ME, so these values are chosen in this paper.

2.5. Tuning parameter selection

The tuning parameter λ plays a central role in finite sample performances. Two data adaptive methods
are used in the study. First, extended bayesian information criterion (eBIC) of Chen and Chen (2008) ,
which performs better than basic BIC in high dimensional modeling, is adopted. The weight vector for
eBIC is given by log(log(p)) log(n), where p is dimension and n is sample size. We also adopt block
n-fold cross-validation (Block CV) of Baek and Park (2020) to find optimal λ for the sparse VHAR
model. The block n-fold cross-validation is a variant of n-fold cross-validation in order to maintain the
temporal and spatial dependence structure of time series data. Rather than splitting the sample at ran-
dom, block CV splits the data into n blocks. For example, block 10-fold cross-validation with sample
size T = 100 splits the entire data into 10 segments, (X1, . . . , X10), (X11, . . . , X20), . . . ,(X91, . . . , X100).
Then one block of observations will be served as the test set while the rest of blocks are used as
training set.
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Figure 1: True coefficient matrix.

3. Finite sample performances

3.1. Simulation settings

In this section, we examine the finite sample performance of the sparse VHAR modeling methods.
Our data generating process (DPG) is based on a 10-dimensional VHAR model with true coefficients
as in Figure 1. The coefficients is generated by empirically fitting 10 dimensional RVs, so we tried to
mimic long memory and sparsity level of financial market. Also, we consider Gaussian innovations

εt := (εt,1, . . . , εt,10)′ ∼ N(0,Σz), (3.1)

with two types of covariance matrix. DGP1 assumes covariance matrix as Σz = I10, therefore, there
are no spatial correlations. On the other hand, DGP2 assumes covariance matrix as

Σz =



δ2 δ/12 δ/12 δ/16 δ/16 δ/20 δ/20 δ/24 δ/24 δ/28
δ/12 1 0 0 0 0 0 0 0 0
δ/12 0 1 0 0 0 0 0 0 0
δ/16 0 0 1 0 0 0 0 0 0
δ/16 0 0 0 1 0 0 0 0 0
δ/20 0 0 0 0 1 0 0 0 0
δ/20 0 0 0 0 0 1 0 0 0
δ/24 0 0 0 0 0 0 1 0 0
δ/24 0 0 0 0 0 0 0 1 0
δ/28 0 0 0 0 0 0 0 0 1


and cross-sectional correlations are considered and controlled by δ. This covariance matrix is partly
referred from Davis et al. (2016) and it is adjusted to satisfy the consistency assumption of innovation
covariance matrix Σ = (σi j) (Baek and Park, 2020),

σii −
∑
j,i

σi j > 0, i = 1, . . . , k.

The finite sample performances are measured by (empirical) root mean squared error (RMSE) of
VHAR coefficients and misspecification error (ME). RMSE is defined as

RMSE = E‖α̂ − α‖2, (3.2)

where E represents empirical average over many replications. We also considered the misspecification
error (ME)

ME = E‖1{α̂=0} − 1{α=0}‖
2
2/(3k2), (3.3)
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Table 1: Summary of performance measures for DGP1

DGP1 / Σ = Ik DGP1 / update Σ

eBIC eBIC
AdaLasso SCAD MCP AdaLasso SCAD MCP

250 RMSE 0.1079 0.0895 0.0965 0.1090 0.0889 0.0964
ME 0.2024 0.1593 0.1783 0.2050 0.1578 0.1766

500 RMSE 0.0653 0.0871 0.0946 0.0654 0.0868 0.0942
ME 0.1336 0.1536 0.1758 0.1344 0.1531 0.1748

1000 RMSE 0.0519 0.0857 0.0935 0.0519 0.0857 0.0935
ME 0.0977 0.1495 0.1743 0.0982 0.1495 0.1743

BLOCK-CV BLOCK-CV
AdaLasso SCAD MCP AdaLasso SCAD MCP

250 RMSE 0.0856 0.0821 0.0822 0.0924 0.0804 0.0807
ME 0.1877 0.1848 0.1622 0.2058 0.1894 0.1652

500 RMSE 0.0575 0.0764 0.0766 0.0581 0.0750 0.0752
ME 0.1453 0.1649 0.1376 0.1504 0.1669 0.1405

1000 RMSE 0.0401 0.0722 0.0723 0.0401 0.0715 0.0717
ME 0.1149 0.1537 0.1193 0.1182 0.1534 0.1191

the misspecification of non-zero coefficients. Here, 1{α=0} is an indicator function that returns 1 if
jthelement is zero or returns 0 otherwise. In other words, ME denotes how accurately the sparse
VHAR model derives sparseness of the true model. Thus, ME ranges between 0 and 1 and near
0 indicates sparsistency. Each of the Monte Carlo simulations is repeated 500 times respectively.
Sample sizes are set as N = 250, 500, and 1000. We also considered the case where cross-correlations
are not considered in estimation by setting Σ = Ik in equations (2.6), (2.9) and (2.12). This is to see
the improvement of methods when inter-dependence is directly considered in estimation.

Table 1 summarizes the result for DGP1 which has no spatial dependence. First of all, observe
that RMSE or ME tends to decrease as sample size increases. This shows the sparsistency hold
for all three proposed penalization methods considered here. Furthermore, since the simulation of
DGP1 assumes Σ as an identity matrix (no spatial dependence), iterative process that updates the
Σ does not make a meaningful difference in performance. Regarding tuning parameter selection
method, two methods perform similarly, but Block-CV performs slightly better than eBIC overall.
More interestingly, observe when the sample size is small as N = 250, SCAD and MCP show better
performance than the adaptive lasso method. However, when the sample size gets larger and larger
(N = 500, 1000), adaptive lasso tends to perform better than the other two. Also, it is notable that
MCP shows better overall performance than SCAD.

Tables 2–4 summarize the results for DGP2 when the spatial dependence is considered. Cross-
sectional correlations are controlled by δ and we set δ = 1, 2, 5, and 10 with sample sizes T = 250, 500,
and 1000. Note that both RMSE and ME tend to increase as δ increases. For example, when delta is
small (δ = 1 or 2), updating Σ does not show clear difference in performance. However, when delta
is large (δ = 5 or 10), updating Σ gives better performance overall. It means that the dependence
structure cannot be ignored in estimation, and it is important to incorporate such structure in the
model. However, RMSE and ME tend to decrease as sample size increases, so consistency is also
achieved in DGP2.

Regarding non-convex penalty methods, we observe that SCAD and MCP performs similar but
SCAD performs slightly better. When it comes to the comparison with adaptive lasso with debiasing,
it depends on the sample size. That is, non-convex penalty methods outperform adaptive lasso when
the sample size is small, T = 250 for all δ considered. However, as sample size increases, the
two-stage estimation procedure with adaptive lasso shows smaller RMSE and ME. Also, Block-CV
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Table 2: Summary of performance measures for DGP2 with sample size 250

DGP2 / Σ = Ik DGP2 / update Σ

eBIC eBIC
δ Adpative Lasso SCAD MCP Adpative Lasso SCAD MCP

1 RMSE 0.1084 0.0899 0.0969 0.1099 0.0910 0.0977
ME 0.2044 0.1597 0.1784 0.2086 0.1630 0.1791

2 RMSE 0.1162 0.0872 0.0959 0.1114 0.0889 0.0974
ME 0.2062 0.1561 0.1757 0.2085 0.1609 0.1777

5 RMSE 0.2674 0.0952 0.1088 0.1555 0.0925 0.1064
ME 0.2107 0.1574 0.1729 0.2070 0.1580 0.1746

10 RMSE 0.5725 0.1717 0.1833 0.2836 0.1797 0.1847
ME 0.2165 0.1683 0.1757 0.1623 0.1708 0.1767

BLOCK-CV BLOCK-CV
δ Adaptive Lasso SCAD MCP Adaptive Lasso SCAD MCP

1 RMSE 0.0867 0.0823 0.0825 0.0934 0.0801 0.0802
ME 0.1885 0.1854 0.1643 0.2104 0.1882 0.1661

2 RMSE 0.0968 0.0815 0.0821 0.0929 0.0792 0.0792
ME 0.1802 0.1750 0.1604 0.2048 0.1848 0.1651

5 RMSE 0.1777 0.1095 0.1147 0.0970 0.0790 0.0799
ME 0.1614 0.1631 0.1679 0.1935 0.1818 0.1670

10 RMSE 0.2889 0.1048 0.1087 0.1101 0.0995 0.1014
ME 0.2111 0.1594 0.1667 0.1875 0.1944 0.1907

Table 3: Summary of performance measures for DGP2 with sample size 500

DGP2 / Σ = Ik DGP2 / update Σ

eBIC eBIC
δ Adpative Lasso SCAD MCP Adpative Lasso SCAD MCP

1 RMSE 0.0664 0.0865 0.0939 0.0659 0.0878 0.0949
ME 0.1364 0.1520 0.1753 0.1372 0.1563 0.1775

2 RMSE 0.0674 0.0828 0.0924 0.0662 0.0853 0.0941
ME 0.1366 0.1462 0.1717 0.1374 0.1541 0.1752

5 RMSE 0.1070 0.0880 0.1027 0.0790 0.0880 0.1034
ME 0.1534 0.1480 0.1686 0.1481 0.1545 0.1733

10 RMSE 0.2042 0.1481 0.1580 0.1200 0.1030 0.1055
ME 0.1691 0.1590 0.1683 0.1626 0.1534 0.1625

BLOCK-CV BLOCK-CV
δ Adaptive Lasso SCAD MCP Adaptive Lasso SCAD MCP

1 RMSE 0.0576 0.076 0.0761 0.0580 0.0733 0.0735
ME 0.1481 0.1634 0.1387 0.1550 0.1617 0.1362

2 RMSE 0.0622 0.0732 0.0736 0.0586 0.0721 0.0724
ME 0.1372 0.1521 0.1353 0.1521 0.1623 0.1378

5 RMSE 0.1018 0.0908 0.0932 0.0655 0.0683 0.0688
ME 0.1258 0.1451 0.1487 0.1494 0.1611 0.1449

10 RMSE 0.1433 0.1625 0.1661 0.0749 0.0814 0.0824
ME 0.1350 0.1618 0.1679 0.1430 0.1709 0.1755

method generally shows smaller RMSE and ME regardless of sample sizes and δ.
To summarize, we were able to verify that all three sparse estimations of VHAR considered here

showed consistency as sample size increases. However, non-convex penalty methods such as SCAD
and MCP performs better in smaller sample, while adaptive lasso with debiasing outperformed other
methods as sample size increases. Indeed, it is important to take the cross-correlations structure in the
estimation. Also, Block-CV method that considers spatial and temporal dependence worked fine in
selecting penalty parameter.
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Table 4: Summary of performance measures for DGP2 with sample size 1000

DGP2 / Σ = Ik DGP2 / update Σ

eBIC eBIC
δ Adpative Lasso SCAD MCP Adpative Lasso SCAD MCP

1 RMSE 0.0524 0.0850 0.0931 0.0518 0.0851 0.0936
ME 0.1023 0.1473 0.1736 0.1027 0.1478 0.1742

2 RMSE 0.0529 0.0801 0.0900 0.0518 0.0806 0.0905
ME 0.1045 0.1399 0.1705 0.1066 0.1409 0.1708

5 RMSE 0.0712 0.0849 0.1011 0.0614 0.0845 0.1008
ME 0.1252 0.1434 0.1669 0.1263 0.1442 0.1670

10 RMSE 0.1172 0.1258 0.1350 0.0842 0.1264 0.1363
ME 0.1449 0.1466 0.1568 0.1485 0.1467 0.1581

BLOCK-CV BLOCK-CV
δ Adaptive Lasso SCAD MCP Adaptive Lasso SCAD MCP

1 RMSE 0.0398 0.0718 0.0720 0.0392 0.0691 0.0693
ME 0.1160 0.1470 0.1140 0.1199 0.1461 0.1150

2 RMSE 0.0428 0.0679 0.0682 0.0395 0.0674 0.0676
ME 0.1070 0.1404 0.1148 0.1148 0.1427 0.1117

5 RMSE 0.0695 0.0735 0.0743 0.0462 0.0613 0.0619
ME 0.0950 0.1363 0.1330 0.1063 0.1371 0.1224

10 RMSE 0.1004 0.1399 0.1415 0.0516 0.0716 0.0725
ME 0.1120 0.1525 0.1600 0.0935 0.1662 0.1889

4. Real data application to RV

In this section, we apply three sparse VHAR estimation methods to 20 multinational RVs and com-
pare their forecasting performances. The data is taken from the Oxford-Man Institute of Quantitative
Finance (http://realized.oxford-man.ox.ac.kr). It is calculated based on the aggregation of 5-minute
intraday returns. Since multinational stock markets have different opening days, we use linear inter-
polation to adjust them. The 20 multinational stock indices are S&P 500, FTSE 100, Nikkei 225,
DAX, Russell 2000, All Ordinaries, DJIA, Nasdaq 100, CAC 40, Hang Seng, KOSPI, AEX Index,
Swiss Market Index, IBEX 35, NIFTY 50, IPC Mexico, IBovespa, S&P/TSX Composite Index, Euro
STOXX 50, and FTSE MIB. We considered the period from January 2016 to December 2019; 1087
observations in total. Figure 2 shows the RV time series plot of DJIA, SP500, KOSPI and Nikkei225
stock markets. It clearly shows long non-periodic cyclic behavior which means strong positive long-
term correlations.

To evaluate forecasting performance, we split the entire data into two sets. In-sample set is the train
set which is the first 1037 periods and out-of-sample set is the test set from the last 50 periods. Then,
we use 1-step-ahead out-of-sample forecasting method to obtain forecasts. The overall performance
is measured by mean squared prediction error (MSPE), and mean absolute percentage error (MAPE)
given by

MSPE =
1
T0

T∑
t=T−T0+1

(
Y (d)

t − Ŷ (d)
t

)2
,

MAPE =
1
T0

T∑
t=T−T0+1

∣∣∣∣∣∣∣Y
(d)
t − Ŷt

(d)

Y (d)
t

∣∣∣∣∣∣∣ ,
where T0 is the out-of-sample(test) set size and Ŷt

(d) is the 1-step-ahead estimated value based on the
data from 1 to t − 1.



62 Andrew Jaeho Shin, Changryong Baek, Minsu Park

Figure 2: RV time series plot of DJIA, SP500, KOSPI and Nikkei225.

Table 5: Forecasting performance of Adaptive Lasso, MCP, and SCAD

Adaptive Lasso MCP SCAD
MSPE MAPE MSPE MAPE MSPE MAPE

AEX.Index 0.0663 2.6531 0.0705 1.7001 0.0679 1.6877
ALL.Ordinaries 0.0560 2.1621 0.0538 2.4850 0.0575 2.6645
Bovespa.Index 0.0477 1.2657 0.0519 1.1414 0.0518 1.1443
DJIA 0.0827 1.3385 0.0836 1.4511 0.0846 1.4141
CAC.40 0.0604 1.2546 0.0722 1.1056 0.0661 1.2040
FTSE.MIB 0.0659 1.6785 0.0785 1.5099 0.0744 1.5501
FTSE.100 0.0535 1.5471 0.0487 1.5234 0.0485 1.5213
DAX 0.0837 1.3915 0.0893 1.1656 0.0897 1.1640
S.P.TSX.Composite.Index 0.0538 1.4974 0.0569 1.5285 0.0568 1.5256
Hang.Seng 0.0419 2.3259 0.0397 3.3698 0.0414 3.0527
IBEX.35 0.0400 1.6957 0.0478 1.2418 0.0477 1.2430
Nasdaq.100 0.1136 1.1525 0.1199 1.2329 0.1195 1.2239
KOSPI.Composite.Index 0.0356 2.7994 0.0393 3.0088 0.0502 1.5590
IPC.Mexico 0.0441 0.9211 0.0317 1.5395 0.0327 1.4836
Nikkei.225 0.0932 1.3550 0.1018 1.1960 0.0977 1.2371
S.P.CNX 0.0363 2.9844 0.0338 2.0442 0.0320 1.8573
Russel.2000 0.0990 3.5046 0.1055 3.4162 0.1056 3.4271
S.P.500 0.1023 0.8713 0.1013 0.8732 0.1025 0.8813
Swiss.Market.Index 0.0492 5.0024 0.0510 3.8228 0.0507 3.8682
Euro.STOXX.50 0.0802 1.3878 0.0937 1.1979 0.0892 1.2206
Average 0.0653 1.9394 0.0685 1.8277 0.0683 1.7465
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Table 5 shows performance measures according to each estimation method. The penalty parameter
is chosen by 10-fold block-CV following the result of simulation study. The convexity parameters
γ were set as 3.7 and 3 for SCAD and MCP, respectively. It shows some interesting results. First,
observe that the MSPE of adaptive lasso is the smallest, but MCP, and SCAD give very similar MSPEs
as well. However, nonconvex penalization methods give slightly smaller error in light of MAPE. This
may show that it is hard to say one method is superior to others since it depends on the performance
measure. That is, the adaptive lasso method may still have some bias even with debiasing procedure.
On the other hand, non-convex penalty methods can reduce bias from penalty design. Therefore,
ensembling forecasts from all three methods seems to be an interesting open question.

5. Concluding remarks

In this study, we considered sparse VHAR model tailored to high-dimensional long memory time
series. In particular, we focused on the SCAD and MCP where the estimation bias is reduced by
considering well-designed nonconvex penalty. On the other hand, we also considered two-stage esti-
mation procedure, debiasing with adaptive lasso. We compared them through extensive Monte Carlo
simulation and applied to 20 multinational RVs to compare forecasting. Several findings are in or-
der. First, taking into cross-sectional correlations reduced bias in all cases considered. In terms of
bias reduction, however, there are some pros and cons depending on methods. Our simulation study
shows that nonconvex penalties perform better when the sample size is small while adaptive lasso
procedure with debiasing outperforms as sample size increases. Hence, in practice, it is expected that
the adaptive lasso with debiasing would be most reliable when the sample size is sufficient. Put it on
the other way around, noncovex penalty methods is preferred for a relatively small sample size com-
pared to dimension. From a forecasting perspective, it seems that the risk measure is more important
than methods since nonconvex methods give smaller MAPE while adaptive lasso gives the smallest
MSPE. Therefore, one can select method depending on their risk measure or ensembling forecast
from all three methods can be used as well. Lastly, it remains an interesting future work on how to
incorporate other high-dimensional approaches such as applying the dynamic factor approach (Baek
et al., 2018), sure independence screening (SIS), elastic net, and many other methods to this domain.
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