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Abstract

In this paper, we introduce an efficient algorithm for the non-convex penalized multinomial logistic regression
that can be uniformly applied to a class of non-convex penalties. The class includes most non-convex penalties
such as the smoothly clipped absolute deviation, minimax concave and bridge penalties. The algorithm is devel-
oped based on the concave-convex procedure and modified local quadratic approximation algorithm. However,
usual quadratic approximation may slow down computational speed since the dimension of the Hessian matrix
depends on the number of categories of the output variable. For this issue, we use a uniform bound of the Hessian
matrix in the quadratic approximation. The algorithm is available from the R package ncpen developed by the
authors. Numerical studies via simulations and real data sets are provided for illustration.

Keywords: concave-convex procedure, modified local quadratic approximation algorithm, multi-
nomial logistic regression, non-convex penalty

1. Introduction

In statistical learning, the multiclass classification is the problem of classifying samples into a specific
category when there are more than two possible categories. There are various real filed applications of
multiclass classification. For example, we can conduct cancer diagnosis from gene microarrays (Zhu
and Hastie, 2004) or distinguish car types from various care images (Huttunen et al., 2016). One of
popular methods for multiclass classification is the multinomial logistic regression that assumes the
multinomial distribution for the samples to be classified.

For years, the penalized multinomial logistic regression has been studied by many authors since
there can be many noisy variables among the input variables. We can avoid unnecessary modeling
biases by deleting the noisy input variables from the model, which often results in higher classification
accuracy. For example, Krishnapuram et al. (2005) proposed to use the least absolute shrinkage and
selection operator (LASSO) (Tibshirani, 1996) and ridge (Hoerl and Kennard, 1970). They developed
a fast quadratic approximation algorithm for maximizing the penalized multinomial likelihood, where
the Hessian matrix is uniformly bounded by a positive definite matrix (Bohning, 1992). Kim et al.
(2006) proposed the sparse one-against-all logistic regression using the gradient LASSO algorithm
developed by Kim et al. (2008). Cawley et al. (2007) proposed the Bayesian LASSO that significantly
reduces computational expense by integrating out the usual tuning parameter in the LASSO. Simon
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et al. (2013) applied the group LASSO (Yuan and Lin, 2006) by treating the parameters in each
class as grouped parameters in the group LASSO. Chen et al. (2014) adapted the elastic net (Zou
and Hastie, 2005) for imposing group effects on the input variables which often serves to improve
prediction accuracy. Tutz et al. (2015) developed a category-specific group LASSO for cases when a
set of category-specific predictors are available (Tutz, 2011).

In general, convex penalties such as the LASSO and elastic net are known to select input variables
more than necessary unless a certain condition on the design matrix (Zhao and Yu, 20006) is satisfied.
On the other hand, non-convex penalties have been proven to have the oracle property for a wide range
of statistical models, including the generalized linear models (Fan and Peng, 2004; Kwon and Kim,
2012), random effect models, (Bondell et al., 2010; Kwon et al., 2016) and non-parametric regression
models (Xie and Huang, 2009; Huang et al., 2010). However, up to the authors’ knowledge, there
are very few literatures that have concentrated on the multinomial logistic regression with non-convex
penalties. One main reason comes from the lack of efficient computational algorithms that implement
the penalized estimators. Although there are some unified algorithms studied before (Kwon and Kim,
2012; Lee et al., 2016), data analysts still feel annoying or uncomfortable from working with non-
convex penalties for multinomial logistic regression.

In this paper, we introduce an efficient algorithm for the non-convex penalized multinomial lo-
gistic regression that can be uniformly applied to a class of non-convex penalties. The class includes
most non-convex penalties such as the smoothly clipped absolute deviation (SCAD) (Fan and Li,
2001), minimax concave (MC) (Zhang, 2010) and bridge (Huang et al., 2008) penalties. The algo-
rithm is developed based on the concave-convex procedure (CCCP) (Yuille and Rangarajan, 2002)
and modified local quadratic approximation (MLQA) algorithm (Lee et al., 2016). However, usual
quadratic approximation may slow down computational speed since the dimension of the Hessian
matrix depends on the number of categories of the output variable. For this issue, we use a uniform
bound of the Hessian matrix introduced by Boéhning (1992) when we apply the MLQA algorithm.
The algorithm is available from R package ncpen that has been developed by the authors. Numerical
studies via simulations and real data sets are provided.

The rest of the paper consists of the following. Section 2 introduces the non-convex penalized
multinomial logistic regression. Section 3 presents some details on the algorithm. Numerical studies
and concluding remarks follow in Sections 4 and 5.

2. Non-convex penalized multinomial logistic regression

2.1. Penalized multinomal likelihood

Let (y;, x;), i < n, be n output and input sample pairs, where y; € {1,...,m + 1} is an output to be
classified, m + 1 is the number of distinct categories and x; = (x;p, . .. ,x,-p)T is a p-dimensional input
vector. The multinomial logistic regression assumes P(y; = k|x;) = pi, i < n, k < m + 1, where

exp (xiTﬂk) o
Pik = —————F .
[ sl exp (.XITJT{?)
and 7, = (myq, ... ,nkp)T. Without loss of generality, we set 7,41 = 0, for areference level, where 0, is

the zero vector of length p, which makes the model (2.1) identifiable. Then the negative log-likelihood
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to be minimized becomes

n m+l n m m
{(r) = — Z Z vir log(pi) = — Z Z {yikxirnk —log [1 + Z exp (xfm)]} s 2.2)

i=1 k=1 i=1 k=1 =1

where 7 = (z],...,7L)" and yy = I(y; = k).

>m

Let ¢, be a penalty then the penalized estimator with respect to ¢, is defined as a local or global
minimizer of the penalized negative log-likelihood:

m p
G = o+ Y vallm), (2.3)

k=1 j=1I

where A > 0 is an extra parameter that controls the model complexity, which is often called the tuning
parameter. For example, the LASSO is equivalent to y,(f) = At, t > 0.

2.2. Non-convex penalties

We consider a class of non-convex penalties that satisfy:

(C1) (e = O\tl Viya(s)ds, t € R for some non-decreasing function Vi,.

(C2) &(t) = wa(lt)—«kaltl, t € Ris concave and continuously differentiable, where x; = lim,_,04 Vi1 (7).

There is a number of non-convex penalties that satisfy (C1) and (C2). Examples include flat-tailed
non-convex penalties such as the SCAD penalty (Fan and Lv, 2011),

A1
vm(t):/ll(0<z<4)+‘; 1A<t<a),

-1
for a > 2, MC penalty (Zhang, 2010),
V(1) = (/1 - é)l(o <t<al),
for a > 1 and capped or truncated ¢; penalty (Zhang and Zhang, 2012; Shen et al., 2012),
Vi (t) = U0 < t <a),

for a > 0. The class also includes some hybrid versions of existing convex and non-convex penalties.
Let ¢, yk, and ¥ be the MC, LASSO and ridge penalties, respectively. Then the class includes the
sparse ridge (Kwon et al., 2013),

oM al R al
V() = Vi (01 (O <t< 1 ) + Vi, 0] (t > " ay),

+ ay
for a > 2 and y > 0, moderately clipped LASSO (Kwon et al., 2015),
Vya(t) = Vi (D10 < 1 < a(d =) + VLIt 2 a(d - y)),
fora > 1 and 0 < y < A, and mnet penalty (Huang et al., 2016),
Vya(r) = Vi (1) + Vi (o),
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Figure 1: Plot of various penalties with A = 1,y = 0.5, and a = 3.

for a > 2 and y > 0. Some non-convex penalties have infinite derivatives near the origin, that is,
k) = oo so that it cannot be cast into the class. Examples are the log (Zou and Li, 2008), bridge
(Huang et al., 2008) and h-likelihood (Lee and Oh, 2014) penalties defined as ¢,(|tf|)) = Alog|t,
vallt) = AN and y(t) = Alog |t| + y|t|, for v > 0O, respectively. For these penalties, Um et al.
(2019) introduced a linear approximation near the origin

VYAt = Vg (@)I(0 < t < a) + V(011 > a),

for a > 0, so that ¢ satisfies (C1) and (C2).

Note that the h-likelihood penalty has more complex form than the one defined in this paper.
However, it is sufficient to understand the h-likelihood penalty as a weighted sum of the log and
LASSO penalties as described in Kwon er al. (2016). We put some plots in Figure 1 for graphical
comparison of the penalties introduced.

3. Computational algorithm

In this section, we introduce an efficient algorithm for minimizing the penalized negative log-likelihood
in (2.3). Since the objective function is non-convex, we first introduce the CCCP (Yuille and Rangara-
jan, 2002) and then apply local quadratic approximation (LQA) (Lee et al., 2016), where the Hessian
matrix is replaced with a fixed positive definite matrix (Bohning, 1992).

3.1. Concave-convex procedure

The CCCP is one of powerful optimization algorithms for minimizing non-convex functions that can
be decomposed as a sum of convex and concave functions. Assume that f = v + ¢, where v is convex
and c is concave and continuously differentiable. Given a current solution %, the CCCP first defines
a function f“(:|X) that is an upper tight convex function of f by using local linear approximation of ¢
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around x:
SUXIR) = v(x) + c(®) + Ve®) (x - £),
where Ve(x) = dc(x)/0x. Then the iterative algorithm below is known to converge to a local minimizer

of f (Yuille and Rangarajan, 2002) under some regularity conditions:

U = argmin f4(x|x*), s> 1.
X

From (C2), we can see that y,(|f]) = xalt| + &:(]f]), t € R. Hence, the penalized negative log-
likelihood in (2.3) can be written as

Gm =+ Zp: il + Y i &),

k=1 j=1 k=1 j=1
where the first two terms are convex and the third term is concave and continuously differentiable.
Hence the upper tight convex function, ignoring the constant, to be minimized becomes

m

CiGal) = €m) + Z Z il + Z Z Ve D,

=1 j=1 =1 j=1
given an initial solution &. To sum up, we can obtain an iterative algorithm that converges to a local
minimizer of £, as follows:

o = arg n}jiin Oy(nln), s> 1. 3.1)

Note that the algorithm in (3.1) iteratively solves LASSO penalized convex objective functions which
is an important advantage from the CCCP.

3.2. Local quadratic approximation

The algorithm (3.1) includes minimizing £, which can be done by using the LQA algorithm (Lee et
al., 2016). The LQA first defines a function that locally majorizes ¢ around an initial solution 7:
(r = A)TV2F) (- 7)

(nl7t) = L) + VIR (- 7) + 3 ,

where V£(rr) = 0£(rr)/0n and V>{(n) = §*€(n)/0n>. Then we have an iterative algorithm for minimiz-
ing ¢ in (3.1), using £4(-|7t) instead of ¢ for given x*:

a1 = arg min e (7r|7rt"“, 77“') , o>, (3.2)
T

where

Mu

m p m
"q(7r|7r“ 71) 4l 7T|7T” +ZZKAI7U<, +Z

k=1 j=1 k=1 j

Vé, |7Tk, Tk j.

Note that the objective function é’ﬁ’q in (3.2) is a LASSO penalized quadratic function with tuning
parameter «, so that we may use many existing algorithms for the LASSO such as the coordinate
descent (CD) algorithm developed by Friedman et al. (2010).
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3.3. Uniform bound of the Hessian

The computational time of the algorithm in (3.2) can be significantly slow since we repeatedly calcu-
late mp x mp dimensional Hessian matrix V2£(r) for the multinomial logistic regression:

Vin) = Z (A= pipl) @ (il ).

i=1

where p; = (pi1,. .., Pim)» A is the diagonal matrix with elements in p; and ® is Kronecker matrix
product. Note that the Hessian matrix is uniformly bounded (Bohning, 1992) as follows:

Vi(n) < Q, Vn,

where A < B implies that B — A is positive definite, Q = >, -1 lT/(m + 1)} ® x;x T/Z I, is
m X m identity matrix and 1,, is the vector of length m whose elements are all 1. Hence we can save
the computational time by using Q instead of the Hessian matrix for all the iteration steps:

t+1,s

7 = argmin €77 (nlﬂt’s,n“), t>1, (3.3)

where

m p
, al
5;’4(7r|7r“,7r) +LT7T+ZZK/1|7T1<J +ZZV§A |7rkj s

=1 j=1 k=1 j=1
and L, ; = V(") — On™*.

3.4. CCCP-UBQA-CD algorithm

The two core algorithms in (3.1) and (3.3) for minimizing £, as follows:

CCCP-UBQA algorithm for minimizing ¢,

e (CCCP) Set an initial & and update 7 with 7 obtained by UBQA until & converges.
e (UBQA) Set an initial 7 and update 7 with 7 below until 7 converges:

# = argmin £, (n|#, 7).
T

We finish the section giving the solution 77 in UBQA step explicitly by applying the CD algorithm in
Friedman et al. (2010), which is used for ncpen. Let ay; = (k—1)p+ j, k < m, j < p be the parameter
index of 7. Let O be the ay jth column vector of O, Oy jx; the a/f(h entry of O, and Ok j be the vector
obtained by deleting QO x; from Qy;. Similarly let mr; and V,;{(7) be the a ; entry of 7 and V£(7),
respectively and 7_; be the vector obtained by deleting 71z ; from 7. The CD algorlthm sequentially
minimizes coordinate functions of fﬁ’q(ﬂlﬁ, 7), where the ayth coordinate function becomes

Okjkj
m(’rk/)_( > ”21

+{ Qb ki + Vil = QF 7 + V(D] 7y + Kl
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as a function of m;; only. Then the minimizer of fﬁ’zj(ﬁk ;) becomes (Friedman et al., 2010)

K . ) v o Ka
it =sign (a0 )| |17l — ——| , (3.4)
kj g (kJ)( k1| Qk.i,kj)Jr

where x, = xI(x > 0) and

o Q]];/“_kjﬂ'—kj + ijf(ﬁ') - ijﬁ- + VW/I (iﬁkj|)
Ap=— .
ki Okjkj

Now, the CCCP-UBQA algorithm applied with the CD algorithm becomes as follows:
CCCP-UBQA-CD algorithm for minimizing ¢,

e (CCCP) Set an initial & and update 7 with 7 obtained by UBQA until & converges.
e (UBQA) Set an initial 7 and update 7 with 7 obtained by CD until 7t converges.

e (CD) Set an initial 77 and update coordinates of 7 as below until 77 converges:

~ _ VK/I .
Tty = 7ty k<m, j<p.

Note that an immediate and reasonable initial solution for the UBQA and CD steps are 7 = 7 and
7t = 7, respectively. Based on our empirical experience, we found that the choice greatly enhances
the computational time and makes the algorithm more stable compared with the trivial cases when
a=1=0.

4. Numerical studies

In this section, we present results from numerical studies via simulations and data analysis. We inves-
tigate the finite sample performance of the penalized multinomial logistic regression. We compare the
SCAD, moderately clipped LASSO and modified bridge penalties with the LASSO penalty for illus-
tration, which are denoted by lasso, scad, classo and mbridge in the tables. The non-convex penalized
estimators are obtained by R package ncpen and the LASSO is obtained by R package glmnet. Tuning
parameters are obtained by using the Bayesian information criterion (BIC) or generalized information
criterion (GIC).

4.1. Simulation studies for finite sample performance

We generate n simulated samples from model (2.1), where x; ~ N(0,,,X),i < nwithX;; = p'j_j'l, Jj <
p. Weset iy, = 2/+jI(k < m,j < q) for the true regression coefficients. We consider n €
{200, 400, 800}, m € {3,5}, p € {10,100}, g = 5, and p = 0.5. We measure selection performance by
using the sensitivity, specificity and accuracy defined by IS N S|/|Sl, ISC N S/|8¢|, and I(S = 3),
where § = {(k,j) : 7xj # 0} and S = {(k, j) : m; # 0}, and the prediction error based on 1,000
independent test samples.

We repeat the simulation 100 times and present the averages of the measures in Tables 1 and 2. For
comparison we also consider the oracle estimator obtained by using signal variables only as well as
the ordinary non-penalized estimator available only when n > mp. We summarize some observations
from the simulations. The LASSO is the best for the sensitivity but the worst for the specificity in
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Table 1: Simulation results for the selection

k » n Sensitivity
oracle ordinary lasso scad classo mbridge
200 1 1 0.96 0.758 0.718 0.754
10 400 1 1 0.99 0.896 0.904 0.902
800 1 1 1 0.996 0.99 0.996
3 1600 1 1 1 1 1 1
200 1 0 0.552 0.522 0.566 0.568
100 400 1 1 0.936 0.79 0.832 0.85
800 1 1 0.996 0.932 0.972 0.932
1600 1 1 1 0.992 1 1
200 1 1 0.828 0.613 0.583 0.617
10 400 1 1 0.962 0.76 0.711 0.788
800 1 1 0.998 0.951 0.926 0.943
5 1600 1 1 1 1 0.998 0.997
200 1 0 0.002 0.278 0.274 0.305
100 400 1 0 0.063 0.452 0.479 0.499
800 1 1 0.878 0.723 0.764 0.766
1600 1 1 0.983 0.864 0.941 0.903
s » n Specificity
oracle ordinary lasso scad classo mbridge
200 1 0 0.726 0.928 0.962 0.946
10 400 1 0 0.726 0.928 0.952 0.95
800 1 0 0.816 0.968 0.984 0.974
3 1600 1 0 0.9 0.988 0.996 0.99
N 200 1 1 0.996 0.99 0.992 0.989
100 400 1 0 0.974 0.969 0.975 0.968
800 1 0 0.966 0.975 0.986 0.981
1600 1 0 0.962 0.992 0.996 0.992
200 1 0 0.755 0.913 0.935 0.92
10 400 1 0 0.705 0.921 0.947 0.921
800 1 0 0.718 0.906 0.948 0.926
5 1600 1 0 0.757 0.94 0.963 0.951
200 1 1 1 0.994 0.995 0.995
100 400 1 1 1 0.995 0.995 0.995
800 1 0 0.983 0.984 0.983 0.983
1600 1 0 0.98 0.981 0.985 0.979
X » n Accuracy
oracle ordinary lasso scad classo mbridge
200 1 0 0 0.02 0.04 0.06
10 400 1 0 0.02 0.12 0.16 0.18
800 1 0 0.16 0.72 0.8 0.78
3 1600 1 0 0.42 0.88 0.96 0.90
200 1 0 0 0 0 0
100 400 1 0 0 0 0 0
800 1 0 0 0.02 0.06 0.04
1600 1 0 0 0.30 0.48 0.26
200 1 0 0 0 0 0
10 400 1 0 0 0 0 0
800 1 0 0 0.06 0.16 0.10
5 1600 1 0 0 0.32 0.52 0.40
200 1 0 0 0 0 0
400 1 0 0 0 0 0
100 800 1 0 0 0 0 0
1600 1 0 0 0 0.02 0
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Table 2: Simulation results for the prediction

Prediction error

k p n

oracle ordinary lasso scad classo mbridge

200 0.369 0.376 0.376 0.383 0.385 0.382

10 400 0.365 0.370 0.368 0.369 0.370 0.368

800 0.362 0.363 0.364 0.362 0.363 0.362

3 1600 0.362 0.363 0.365 0.362 0.362 0.362
200 0.366 0.717 0.441 0.406 0.397 0.399

100 400 0.367 0.491 0.381 0.382 0.377 0.378

800 0.361 0.390 0.367 0.366 0.364 0.364

1600 0.364 0.380 0.367 0.364 0.363 0.363

200 0.523 0.529 0.535 0.539 0.535 0.537

10 400 0.518 0.522 0.527 0.529 0.53 0.528

800 0.514 0.516 0.522 0.516 0.517 0.516

5 1600 0.515 0.516 0.52 0.515 0.515 0.516
200 0.520 0.845 0.615 0.571 0.567 0.565

100 400 0.520 0.847 0.615 0.549 0.542 0.544

800 0.514 0.550 0.551 0.528 0.524 0.523

1600 0.517 0.531 0.539 0.518 0.517 0.520

Table 3: Simulation results for the computation time in seconds

k p n scad classo mbridge k P n scad classo mbridge
200 0.290 0.228 0.292 200 2.567 2.248 2.474

10 400 1.221 1.059 1.329 10 400 9.904 8.927 9.968

800 4.321 3.909 5.107 800 35.505 32.863 38414

3 1600 15.500 14.219 19.486 5 1600 112.720 116.600 119.740
200 0.656 0.559 0.574 200 2.204 2.201 1.938

100 400 2.682 2.362 2.320 100 400 8.601 8.359 7.988

800 9.814 8.873 9.265 800 33.290 34.680 32.099

1600 26.414 25.002 29.977 1600 135.88 187.800 142.320

most cases, which empirically shows that the LASSO tends to overfit the true model. The sensitivity
and specificity for the non-convex penalties are increasing to 1 which empirically supports the oracle
property studied in other papers (Fan and Li, 2001; Fan and Peng, 2004; Kwon and Kim, 2012). The
accuracy for the non-convex penalties is increasing although it is very small when m and p are large.
We believe that the accuracy will approach to 1 in this case also if we increase the sample size to be
enough. The prediction accuracy of the non-convex penalized estimators become better than that of
the LASSO as the sample size increases. The GIC may not guarantee the best prediction performance
of the LASSO so that the prediction results in this simulation should be interpreted carefully. For the
readers, we report the averages of the computational times for the simulations in Table 3.

4.2. Data examples

We apply the penalized multinomial regression for the ‘zoo’ sample that is available from the UCI
machine learning repository. The sample includes n = 101 observations with 16 covariates (hair,
feathers, eggs, milk, airborne, aquatic, predator, toothed, backbone, breathes, venomous, fins, legs*,
tail, domestic, and catsize) and the type of animals are labeled from 1 to 7. All the covariates are
Boolean except for legs that is ranged from O to 8. Visit ‘https://archive.ics.uci.edu/ml/datasets/zoo’
for a detailed description of the variables.

The estimated regression coefficients are listed in Table 4, where the variables with zero coeffi-
cients for all methods are deleted. All the penalized estimators share the same variables with non-zero
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Class1 Class2
lasso scad classo mbridge lasso scad classo mbridge
intercept —-1.0925 —15.4251 —-1.0926 -5.2049 —1.4835 —14.4535 —1.4835 —-5.3949
feathers 0 0 0 0 5.0542 31.5816 5.0542 15.7573
milk 4.9497 37.6148 4.9498 15.336 0 0 0 0
airborne 0 0 0 0 0 0 0 0
fins 0 0 0 0 0 0 0 0

Class3 Class4
lasso scad classo mbridge lasso scad classo mbridge
intercept —0.6931 —-0.6931 —-0.6931 —0.6931 -1.5134 —7.5558 —-1.5134 -5.2502
feathers 0 0 0 0 0 0 0 0
milk 0 0 0 0 0 0 0 0
airborne 0 0 0 0 0 0 0 0
fins 0 0 0 0 3.9357 16.6094 3.9357 10.8944

Class5 Class6
lasso scad classo mbridge lasso scad classo mbridge
intercept -0.9163 —-0.9163 —-0.9163 —-0.9163 —-0.6472 —-0.2231 —0.6472 —-1.5649
feathers 0 0 0 0 0 0 0 0
milk 0 0 0 0 0 0 0 0
airborne 0 0 0 0 1.4255 0 1.4255 6.0378
fins 0 0 0 0 0 0 0 0

Table 5: Number of wrong classifications of zoo sample
ordinary lasso scad classo mbridge
5 11 18 11 11

regression coefficients for each class but the effect size is different. We calculate the leave-one-out
errors and summarize the results in Table 5. The ordinary non-penalized estimator performs the best
and the SCAD is the worst. However we note that the number of variables used for the classification
is only 4, which can be an advantage from penalized estimation.

5. Concluding remarks

We introduced the CCCP-UBQA algorithm for the non-convex penalized multinomial logistic regres-
sion which can cover most non-convex penalties. The algorithm implemented in R package ncpen is
stable and fast enough to be used for academic purposes. However, we also found that the algorithm
rapidly becomes slow when m and p are large. For this issue, we have two strategies for enhancing
the computational speed, which can be a future study regarding the algorithm. The CCCP-UBQA
includes two iterative algorithms which cause a computational burden. Based on the authors’ experi-
ence, we can collapse these two iterative algorithms into one. The idea is approximating the penalty
and likelihood simultaneously at the current solution. Further, we may not fully iterate the UBQA
steps for the convergence which often reduces the computational time. We did not use these two
methods in ncpen since the convergence of the methods should be carefully investigated.
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