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Abstract
The sparse linear discriminant analysis can be incorporated into the penalized linear regression framework,

but most studies have been limited to specific convex penalties, including the least absolute selection and shrink-
age operator and its variants. Within this framework, concave penalties can serve as natural counterparts of the
convex penalties. Implementing the concave penalized direction vector of discrimination appears to be straight-
forward, but developing its theoretical properties remains challenging. In this paper, we explore a class of concave
penalties that covers the smoothly clipped absolute deviation and minimax concave penalties as examples. We
prove that employing concave penalties guarantees an oracle property uniformly within this penalty class, even
for high-dimensional samples. Here, the oracle property implies that an ideal direction vector of discrimination
can be exactly recovered through concave penalized least squares estimation. Numerical studies confirm that the
theoretical results hold with finite samples.

Keywords: concave penalties, linear discriminant analysis, direction vector, oracle property, high
dimension

1. Introduction

The Linear Discriminant Analysis (LDA) stands out as a popular technique for classification tasks.
However, its applicability falters when the sample is high-dimensional; that is, the number of input
variables p is larger than the sample size n, which is a situation that has become increasingly prevalent
in practical scenarios. In these cases, the classical LDA faces a critical limitation in estimating the
population covariance matrix due to the singularity of the pooled sample covariance matrix. For
example, Bickel and Levina (2004) pointed out that the performance of the classical LDA can be as
poor as a random guess for a high-dimensional sample.

Many authors have studied modifications of the classical LDA concerning high-dimensional sam-
ple, with early proposals based on the independence rule and variable selection. Bickel and Levina
(2004) proposed to use the independence rule or the diagonal LDA paradigm for estimating the pop-
ulation covariance matrix by ignoring the correlation structure of the input variables. Tibshirani et al.
(2002) and Fan and Fan (2008) introduced the nearest shrunken centroid estimation and the features
annealed independent rule, in which the variable selection is done by soft and hard thresholding rules,
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respectively. However, these methods do not achieve Bayes classification error for the classification
task unless the true common covariance matrix is diagonal.

Recently, the sparse LDA approaches have been proposed as an alternative to the independence
rule. Cai and Liu (2011) proposed the linear programming discriminant rule that finds a sparse es-
timate of the population covariance matrix by using the Dantzig selector (James et al., 2009), and
Fan et al. (2012) proposed the regularized optimal affine discriminant method, which is based on the
`1-Fisher’s discriminant analysis. Similar `1-penalized linear discriminant analysis was studied in
Trendafilov and Jolliffe (2007) and Witten and Tibshirani (2011). Clemmensen et al. (2011) proposed
the sparse optimal scoring method which solves the optimal scoring formulation (Hastie et al., 1994)
with the `1-penalty. The Direct Sparse Discriminant Analysis (DSDA) studied in Mai et al. (2012) is
another popular sparse LDA, which is computationally efficient and easier to understand, because it
reformulates the high-dimensional LDA into a penalized linear regression framework. In general, the
sparse LDA approaches have theoretical advantages over other methods of independence rules since
they allow non-diagonal population covariance matrices, enabling the resulting classifier to achieve
Bayes classification error. However, most previous works have been limited to specific convex penal-
ties such as the Least Absolute Selection and Shrinkage Operator (LASSO) and its variants.

In this study, we focus on the DSDA applied with a class of concave penalties, including the
smoothly clipped absolute deviation (Fan and Li, 2001), minimax concave (Zhang, 2010), and trun-
cate d-`1 (Shen et al., 2013) penalties as examples. Within this framework, implementing the concave
penalized direction vector of discrimination appears to be straightforward, but developing the theoret-
ical properties of the estimated direction vector still remains challenging. For this purpose, we prove
that the concave penalized direction vector satisfies an oracle property uniformly in the class, which
is the main contribution of the paper. Here, the oracle property implies that an ideal LDA direction
vector of discrimination can be exactly recovered through concave penalized least square estimation.
In addition, we provide various numerical studies to confirm whether the theoretical results hold with
finite samples.

The rest of the paper is organized as follows. Section 2 introduces the sparse LDA. Section 3
introduces the concave penalized LDA and presents the related theoretical results. Section 4 provides
numerical studies to confirm the theoretical results, and concluding remarks are given in Section 5.
Technical details and proofs are provided in Appendix.

2. Sparse linear discriminant analysis

2.1. Fisher’s linear discriminant analysis

Fisher’s Linear Discriminant Analysis (LDA) (Fisher, 1936) is an efficient technique for discriminat-
ing a binary class label C ∈ {0, 1} given an input vector X ∈ Rp. The LDA assumes that X is a random
vector with multivariate normal distribution given a binary random variable C such that

X | C = c ∼ N (µc,Σc) , c ∈ {0, 1}, (2.1)

independently, where µc and Σc are the mean vector and covariance matrix of the normal distribution,
respectively. Let φ(·; µc,Σc), c ∈ {0, 1} be the density function of N(µc,Σc) and πc = P(C = c). The
ratio between two conditional density values of C|X = x provides a natural rule for discriminating the
class label as C = 1 given X = x as follows.

π1φ(x; µ1,Σ1)
π0φ(x; µ0,Σ0)

≥ 1, x ∈ Rp. (2.2)
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In addition, when the covariance matrices in (2.1) are assumed to be common, Σ0 = Σ1 = Σ, the
discrimination rule in (2.2) can be simplified into a linear form,

ψ(x) = {x − (µ0 + µ1) /2}T βBS + log (π1/π0) ≥ 0, x ∈ Rp, (2.3)

where βBS = Σ−1(µ1 − µ0) is Bayes direction vector.
Let (xi, ci), i ≤ n be n random samples of (X,C) then the LDA estimate ψ̂ of ψ in (2.3) can be

obtained by using simple moment type estimates:

ψ̂LDA(x) = {x − (µ̂0 + µ̂1) /2}T β̂LDA + log (π̂1/π̂0) ≥ 0, x ∈ Rp, (2.4)

where β̂LDA = Σ̂−1(µ̂1 − µ̂0) is the LDA direction vector,

µ̂c =
∑
ci=c

xi/nc,

Σ̂c =
∑
ci=c

(xi − µ̂c) (xi − µ̂c)T /(nc − 1), (2.5)

Σ̂ =
∑

c∈{0,1}

(nc − 1)Σ̂c/(n − 2),

π̂c = nc/n,

and nc is the number of samples with ci = c.

2.2. Sparse linear discriminant analysis

In many real fields, application of the LDA raises two challenging problems because of sparsity of
the model and high-dimensionality of the samples. The sparsity of the model implies that Bayes
direction vector satisfies βBS

j = 0 for some j ≤ p but, in general, the LDA estimate in (2.4) produces
β̂LDA

j , 0 for all j ≤ p. The high-dimensionality of the samples implies p > n, where the pooled
sample covariance matrix Σ̂ in (2.5) becomes singular. In both cases, the discriminant analysis may
produce unexpected bad results in prediction as well as interpretation. There are many literatures that
figure out these problems and the penalized approach via the least squares estimation can be a nice
solution (Mai et al., 2012).

Let yi = (−1)1+ci n/nci , i ≤ n, ci ∈ {0, 1} then the LDA direction vector in (2.4) can be interpreted
as a Least Squares Estimator (LSE) as follows:

β̂LSE = kβ̂LDA (2.6)

for some positive constant k unless µ̂0 , µ̂1 (Hastie et al., 2009), where

(
α̂LSE, β̂LSE

)
= arg min

α,β

n∑
i=1

(
yi − α − xT

i β
)2
/2n. (2.7)

Hence the LDA rule in (2.4) can be cast into the LSE rule:

ψ̂LSE(x) = {x − (µ̂0 + µ̂1) /2}T β̂LSE + k log (n1/n0) ≥ 0, x ∈ Rp. (2.8)
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Given the sparsity and high-dimensionality, it is natural to employ the penalized LSE:

(
α̂λ, β̂λ

)
= arg min

α,β


n∑

i=1

(
yi − α − xT

i β
)2
/2n +

p∑
j=1

Jλ
(∣∣∣β j

∣∣∣) ,
where Jλ is a penalty equipped with a tuning parameter λ. In this case, the LSE rule in (2.8) can be
replaced with the penalized LSE rule again:

ψ̂λ(x) = {x − (µ̂1 + µ̂0) /2}T β̂λ + kλ log (n1/n0) ≥ 0, (2.9)

where kλ = β̂λ
T
Σ̂β̂λ/(µ̂1 − µ̂0)T β̂λ is given by Mai et al. (2012) that is optimal to the discrimination

whenever (µ̂1 − µ̂0)T β̂λ > 0.

3. Concave penalized linear discriminant analysis

3.1. Concave penalized estimation

Let Jλ be a penalty function with tuning parameter λ > 0 and J′λ be the first derivative of Jλ. We
assume that following conditions hold.

(J1) Jλ(t) is concave and non-decreasing over t ∈ [0,∞) and Jλ(0) = 0.

(J2) J′λ(t) is non-increasing and continuous over t ∈ (0,∞) and limt→0+ J′λ(t) = λ.

(J3) J′λ(t) ≥ λ − t/a over t ∈ (0, aλ) and J′λ(t) = 0 over t ∈ (aλ,∞) for some a > 0.

The class of penalties that satisfy (J1), (J2), and (J3) has been studied as a representative con-
cave penalty class (Kim and Kwon, 2012; Zhang and Zhang, 2012), including the Smoothly Clipped
Absolute Deviation (SCAD) (Fan and Li, 2001),

J′λ(t) = min {λ, (aλ − t)+ /(a − 1)} , a > 2,

minimax concave (MCP) (Zhang, 2010),

J′λ(t) = (λ − t/a)+ , a > 1,

and truncated-`1 penalties (TLP) (Shen et al., 2013)

Jλ(t) = λmin {t, a} , a > 1,

as examples, where x+ = max{0, x}.
Let Z = (Z1, . . . ,Zp) be the centered design matrix in (2.7) then the LSE direction vector in (2.7)

can be simplified into

β̂LSE = arg minβ
{
‖Zβ‖22 /2n − (µ̂1 − µ̂0)T β

}
.

Now, considering the true signal set S = { j|βBS
j , 0}, one of the best estimators for the sparse Bayes

direction vector is the oracle LSE,

β̂OR = arg minβ j=0, j∈Sc

{
‖Zβ‖22 /2n − (µ̂1 − µ̂0)T β

}
, (3.1)
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which is unavailable in practice without the knowledge of S. Hence, the main objective of the concave
penalized LDA is to recover β̂OR through the penalized LSE:

β̂λ = arg minβLλ(β), (3.2)

where

Lλ(β) = ‖Zβ‖22 /2n − (µ̂1 − µ̂0)T β +

p∑
j=1

Jλ
(∣∣∣β j

∣∣∣) .
3.2. Optimality conditions

In this subsection, we introduce three lemmas that provide non-asymptotic sufficient conditions for a
given estimator to be a local or unique local minimizer of Lλ. Let Ξλ be the set of all local minimizers
of Lλ and θ̂ = µ̂1 − µ̂0.

Lemma 1. If β̂ ∈ Rp satisfies minβ̂ j,0 |β̂ j| > aλ and maxβ̂ j=0 |Z
T
j Zβ̂/n − θ̂ j| ≤ λ then β̂ ∈ Ξλ.

The conditions in Lemma 1 are simply the sub-gradient optimality conditions for the penalty class
that satisfy penalty conditions (J1), (J2), and (J3), under which a given estimator becomes a local
minimizer (Kim et al., 2008; Kwon et al., 2021) of Lλ. We say that β̂ ∈ Ξλ satisfies the uniqueness
condition (Kim and Kwon, 2012) with ρ > 0 if

max
β̂ j=0

∣∣∣ZT
j Zβ̂/n − θ̂ j

∣∣∣ < λmin{1, aρ} ≤ λ(1 + aρ) < ρmin
β̂ j,0

∣∣∣β̂ j

∣∣∣ . (3.3)

The following lemma states that the uniqueness condition forms a sufficient condition for a local
minimizer to be unique. Let ρmin(A) be the minimum eigenvalue of a square matrix A.

Lemma 2. If β̂ ∈ Ξλ satisfies the uniqueness condition with ρ = ρmin(ZT Z/n) > 0 then β̂ is a unique
local minimizer of Lλ, that is, Ξλ = {β̂}.

Lemma 2 requires ZT Z/n is non-singular which is impossible to hold for high-dimensional sam-
ples with p > n. However, we can extend the result to the cases by assuming the true model is sparse
enough to estimate. For any subsetD ⊂ {1, . . . , p}, let ZD be a sub-design matrix of Z constructed by
the columns Z j, j ∈ D. We say that Z satisfies the Sparse Riesz condition (Zhang, 2010) with ρ > 0
and rank r > 0 if

min
|D|≤r

ρmin

(
ZT
DZD/n

)
> ρ. (3.4)

Let Ξκ
λ = {β̂ ∈ Ξλ : ‖β̂‖0 ≤ κ} ⊆ Ξλ be a restricted set of local minimizers of Lλ for some κ ≤ p, where

‖a‖0 denotes the number of nonzero elements of a vector a. The following lemma extends the result
of Lemma 2 to high-dimensional cases.

Lemma 3. If Z satisfies the Sparse Riesz condition with ρ > 0 and rank r ≥ 2κ and β̂ ∈ Ξλ satisfies
the uniqueness condition with ρ then Ξκ

λ = {β̂}.

Remark 1. (a) The uniqueness and Sparse Riesz conditions in (3.3) and (3.4) are modified versions
for the penalized LDA from those for the penalized linear regression (Kim and Kwon, 2012; Zhang,
2010), respectively. Lemma 1,2, and 3 are direct applications of Theorem 2 and 3 in Kim and Kwon
(2012). (b) In Lemma 3, κ ≤ p represents the maximum number of candidate input variables that
can be included in the final model, expecting that the corresponding local minimizer is unique in Ξκ

λ,
which is impossible for Ξλ in general. Hence, it is reasonable to assume that 2κ ≤ r ≤ n since κ should
be assumed or expected to be significantly less than the sample size.
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3.3. Oracle property

In this subsection, we present the main results of the paper: The concave penalized LSE in (3.2) is
unique, and hence, the global minimizer of Lλ, and the same as the oracle LSE in (3.1) asymptotically,
in the sense that Ξκ

λ = {β̂λ} and β̂λ = β̂OR with probability tending to 1.

3.3.1. Notations

We introduce some notations. For any matrix A, let ‖A‖∞ = maxi
∑

j |Ai j|, where Ai j is the (i, j) entry
of A, and let ADD′ be a sub-matrix of A constructed by the entry Ai j, i ∈ D, j ∈ D′. For any vector
a, let ‖a‖∞ = maxi |ai| and ‖a‖1 =

∑
i |ai|, where ai is the ith element of a, and let aD be a sub-vector

of a constructed by the elements ai, i ∈ D. Let |A| be the cardinality of a set A. For any positive
sequences xn and yn, we write xn � yn if xn/yn → ∞ and xn � yn if xn/yn → a for some constant a as
n→ ∞.

Recall the definition of the oracle LSE β̂OR obtained under the knowledge of the true signal set
S = { j|βBS

j , 0}. It is easy to see that

β̂OR
S

= Ω̂−1
SS
θ̂S and β̂OR

N
= 0,

where Ω̂ = ZT Z/n, θ̂ = µ̂1 − µ̂0, and N = { j|βBS
j = 0} is the true noisy set. Hence, we can construct a

population counterpart βOR of β̂OR by defining

βOR
S

= Ω−1
SS
θS and βOR

N
= 0,

where Ω = Cov(X) and θ = µ1 − µ0. Note that βOR is exclusively considered for the development
of theoretical properties since βOR = kβBS for some constant k , 0. For further details, refer to
Proposition 3 in Mai et al. (2012).

3.3.2. Oracle property

The main objective of the concave penalized LSE is to recover β̂OR by using β̂λ in (3.2), which is
often referred to the strong oracle property (Fan and Li, 2001; Kim et al., 2016). From the lemmas
in previous subsection, it is sufficient to prove that β̂OR satisfies the outlined uniqueness and Sparse
Riesz conditions with probability tending to 1 of which the proofs are provided in Appendix. We
assume the following regularity conditions:

(C1) There exist positive constants, bi, i ≤ 4, such that

ρmin(Ω) > b1,
∥∥∥ΩNSΩ−1

SS

∥∥∥
∞
< b2,

∥∥∥Ω−1
SS

∥∥∥
∞
< b3, and ‖θS‖∞ < b4,

for any n.

Remark 2. The conditions in (C1) specify technical requirements for the oracle property that are
slightly weaker than those applied with the Least Absolute Selection and Shrinkage Operator (LASSO)
in Mai et al. (2012). For the LASSO, we need b1 = 1 that plays as the strong irrepresentable condition
in Zhao and Yu (2006) for linear regression.

Theorem 1. Assume that (C1) holds. The oracle LSE is unique local, and hence, the global mini-
mizer of Lλ with probability tending to one, in the sense that

lim
n→∞

P
(
Ξκ
λ =

{
β̂OR

})
= 1,
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Table 1: Estimated probabilities of including correct model

r p q n Oracle property Sign consistency
TLP MCP SCAD LASSO TLP MCP SCAD

0.25

300

10
500 0.38 0.37 0 0.53 0.38 0.38 0.14

1000 0.95 0.97 0.13 0.99 0.96 0.97 0.78
2000 1 0.98 0.79 1 1 1 0.99

20
500 0 0 0 0 0 0 0

1000 0.11 0.11 0 0.13 0.11 0.11 0.03
2000 0.87 0.87 0.01 0.83 0.87 0.87 0.43

3000

10
500 0.05 0.07 0 0.10 0.05 0.08 0.02

1000 0.89 0.89 0 0.90 0.89 0.90 0.48
2000 1 0.98 0.33 1 1 1 0.99

20
500 0 0 0 0 0 0 0

1000 0 0 0 0.01 0 0 0
2000 0.50 0.50 0 0.50 0.50 0.51 0.09

0.5

300

10
500 0.05 0.11 0 0 0.06 0.11 0

1000 0.72 0.76 0.01 0.30 0.72 0.76 0.18
2000 1 1 0.53 0.88 1 1 0.86

20
500 0 0 0 0 0 0 0

1000 0 0.01 0 0 0 0.01 0
2000 0.38 0.38 0 0.04 0.38 0.38 0.01

3000

10
500 0 0 0 0 0 0 0

1000 0.32 0.37 0 0.03 0.32 0.37 0
2000 0.96 0.97 0.14 0.71 0.96 0.97 0.36

20
500 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0
2000 0.08 0.08 0 0 0.08 0.08 0

for any sequence κ = κ(n) that satisfies 2q ≤ κ ≤ n, provided that

λ = o(mS), log p = o
(
min

{
n/κ3, nλ2/q2

})
and min

{
n/κ2, nλ2/q2

}
→ ∞,

as n→ ∞, where q = |S| and mS = min j∈S |β
OR
j |.

Remark 3. If n/κ3 � nλ2/q2 → ∞ then conditions in Theorem 1 can be simplified as

mS � λ � q
√

log p/n and log p = o
(
nλ2/q2

)
as n→ ∞. Therefore, we can observe the following theoretical properties:

(a) The penalized LDA allows for exponentially many input variables, polynomially many signal
variables, and diminishing regression coefficients, satisfying that p = o(exp(nλ2/q2)), q = o(n1/3),
and mS → 0 at a slower rate than q

√
log p/n.

(b) Compared with the ordinary penalized linear regression (Zhang, 2010), the requirements are
stronger since p = o(exp(nλ2)), q = o(n), and mS → 0 at a slower rate than

√
log p/n.

(c) The stronger requirements mainly comes from the random design matrix Z in (2.7) and the random
Sparse Riesz condition in (3.4). We can check similar results in many literatures, for example,
p = o(n1/2) for the autoregressive model (Na and Kwon, 2018) and q = o(n1/5) for general
maximum likelihood estimation (Fan and Peng, 2004; Kwon and Kim, 2012).
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4. Numerical studies

In this section, we report some results of simulation studies and real data analysis.

4.1. Simulation studies

We generated n random samples of C from Ber(π) with π = 1/2, and then generated n random samples
of X|C = c, c ∈ {0, 1} from N(µc,Σ). We set µ0 = 0 and µ1 = ΣβBS, where Σ jk = r| j−k| and βBS

j =

(2/
√

j)(−1) jI( j ≤ q), j, k ≤ p. We consider three concave penalties, TLP with a = 0.001, MCP with
a = 1.001, and SCAD with a = 2.001, as examples in the penalty class, and set n ∈ {500, 1000, 2000},
p ∈ {300, 3000}, and q ∈ {10, 20} with r ∈ {0.25, 0.5} for each simulation. We repeated the simulation
200 times by using R package ncpen (Kim et al., 2020).

We first investigated whether the oracle property can hold with finite samples and Table 1 shows
the estimated probabilities of achieving the oracle property. For each simulation, we first found the
interval [λmax, λmin] that satisfies ‖β̂λmax‖0 = 0 and ‖β̂λmin‖0 = 50. Then we checked whether there exists
a λ that satisfies β̂λ = β̂OR by investigating 200 values of λ decreasing with log-scale in the interval.
From the table, we observed the followings:

• The ratios of the TLP and MCP approaches nearly 1 for some cases, while the SCAD has lower
ratios, with the largest ratio being 0.79. In cases where both p and q are large, it is rare for the oracle
property to hold, but we believe that this occurs due to limitations in the simulation settings. In
general, we can conclude that the ratio increases as n increases and p, q, and r decreases, regardless
of the simulation settings and penalties, which confirms the result of Theorem 1.

• In addition, we checked the sign consistency, sign(β̂λ) = sign(β̂OR) for some λ, which is a slightly
less stringent condition than the oracle property. The results exhibit similar pattern to that of the
oracle property but the ratios are slightly larger. We found that the LASSO also achieves the sign
consistency as Mai et al. (2012) proved. In general, the sign consistency of the LASSO does not
hold even for the ordinary linear regression since it requires the strong irrepresentale condition on
the design matrix. See Section 3 and example 3 in Zhao and Yu (2006) for some details.

Second, we compared the finite sample performance of the concave penalized estimators, using
the LASSO as a benchmark method. The primary objective of the simulation is to check whether the
oracle property can be realized through typical tuning parameter selection criteria. Note that there are
two natural tuning parameter selection criteria from the characteristic of the framework: Minimizing
the regression error in (2.7) and the classification error in (2.9). We used n training samples for esti-
mating the penalized direction vector and n/2 independent validation samples for selecting an optimal
tuning parameter λopt by minimizing the two criteria. We calculated three measures of selection ac-
curacy: The numbers of true and false positive selection (TPS and FPS) and the ratio of the correct
model selection (CMS): TPS =

∑
j I(β̂λopt

j , 0, βBS
j , 0), FPS =

∑
j I(β̂λopt

j , 0, βBS
j = 0), and CMS is

the ratio of the cases when TPS = q and FPS = p−q. In addition, we calculated the miss-classification
error rate (ERR) by using 2n independent test samples.

Tables 2 and 3 summarizes the results. We first discuss the cases when λopt was chosen based on
the regression errors of the validation samples:

• TPS increases to q as n increases, regardless of the penalties and simulation settings. This suggests
that the signal variables tend to be selected as the sample size increases. As p or r increases while
keeping n fixed, TPS decreases. This implies that higher model complexity and stronger correlation
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Table 2: Averages of the four measures: Validation by regression errors

r p q n TPS FPS
LASSO TLP MCP SCAD LASSO TLP MCP SCAD

0.25

300

10
500 9.97 9.31 9.33 9.65 29.29 1.15 1.04 14.01

1000 10.00 9.99 9.99 10.00 30.48 0.66 0.51 8.08
2000 10.00 10.00 10.00 10.00 29.40 0.48 0.37 4.92

20
500 18.66 13.44 13.42 15.62 29.74 2.36 2.18 12.64

1000 19.94 18.94 18.98 19.05 30.02 2.50 2.34 10.43
2000 19.99 19.94 19.94 19.98 30.26 0.72 0.51 8.46

3000

10
500 9.74 7.69 7.80 8.81 36.88 1.12 0.96 18.79

1000 10.00 9.91 9.91 9.96 38.56 0.57 0.44 17.28
2000 10.00 10.00 10.00 10.00 37.88 0.47 0.30 6.08

20
500 15.64 8.55 8.63 11.67 34.84 1.31 1.15 17.91

1000 19.02 15.37 15.32 16.55 32.12 2.21 1.75 13.99
2000 19.97 19.64 19.64 19.52 31.38 1.21 0.98 10.87

0.5

300

10
500 9.74 8.20 8.31 8.86 37.05 2.06 1.80 13.90

1000 9.99 9.99 9.97 10.00 38.49 1.02 0.90 10.03
2000 10.00 10.00 10.00 10.00 37.44 0.42 0.35 4.27

20
500 16.12 10.21 10.30 11.83 33.76 2.62 2.62 13.12

1000 19.42 17.31 17.25 16.71 31.20 4.72 4.05 12.86
2000 19.97 19.71 19.74 19.51 30.68 1.74 1.60 9.65

3000

10
500 7.94 5.87 5.81 6.47 41.96 1.15 0.94 19.51

1000 9.78 9.17 9.16 9.11 41.51 1.01 0.88 20.05
2000 10.00 9.99 9.99 10.00 41.88 0.39 0.31 8.20

20
500 9.88 5.93 5.77 7.19 39.89 1.32 1.10 18.78

1000 14.72 10.76 10.78 11.15 36.70 2.00 1.94 18.46
2000 18.98 17.82 17.82 15.88 32.21 2.56 2.60 14.61

r p q n CMS ERR
LASSO TLP MCP SCAD LASSO TLP MCP SCAD

0.25

300

10
500 0 0.28 0.29 0 0.093 0.092 0.092 0.093

1000 0 0.57 0.66 0.04 0.088 0.085 0.085 0.085
2000 0 0.71 0.79 0.34 0.086 0.084 0.084 0.084

20
500 0 0 0 0 0.082 0.088 0.088 0.089

1000 0 0.06 0.07 0 0.072 0.071 0.071 0.075
2000 0 0.53 0.67 0 0.068 0.066 0.066 0.067

3000

10
500 0 0.03 0.05 0 0.103 0.105 0.103 0.109

1000 0 0.65 0.69 0 0.091 0.086 0.086 0.090
2000 0 0.66 0.80 0.14 0.087 0.084 0.084 0.084

20
500 0 0 0 0 0.097 0.104 0.103 0.107

1000 0 0 0 0 0.080 0.079 0.078 0.087
2000 0 0.35 0.42 0 0.072 0.067 0.067 0.073

0.5

300

10
500 0 0.04 0.08 0 0.173 0.168 0.167 0.166

1000 0 0.49 0.53 0 0.159 0.150 0.150 0.149
2000 0 0.72 0.77 0.28 0.152 0.148 0.148 0.148

20
500 0 0 0 0 0.167 0.168 0.167 0.165

1000 0 0 0.01 0 0.147 0.141 0.141 0.148
2000 0 0.28 0.32 0 0.135 0.130 0.130 0.132

3000

10
500 0 0 0 0 0.202 0.187 0.185 0.196

1000 0 0.25 0.32 0 0.171 0.156 0.155 0.164
2000 0 0.67 0.76 0.05 0.157 0.148 0.148 0.148

20
500 0 0 0 0 0.203 0.188 0.186 0.196

1000 0 0 0 0 0.171 0.159 0.158 0.166
2000 0 0.07 0.07 0 0.149 0.136 0.136 0.147

among the input variables have a negative effect on selection of signal variables. Among the con-
cave penalties, the SCAD produces the largest TPS but the difference does not seem significantly



402 Sunghoon Kwon, Hyebin Kim, Dongha Kim, Sangin Lee

large.

• For the concave penalties, FPS decreases as n increases for almost all cases. This implies that the
noisy variables tend to be excluded as the sample size increases, which is not true for the LASSO.
FPS of the SCAD is smaller than that of the LASSO but it is not at a negligible level even when
n = 2000. However, FPS for the TLP and MCP are near 0 when n = 2000, implying that they
excluded nearly all noisy variables.

• For the concave penalties, CMS increases as n increases regardless of the penalties and simulation
settings, achieving the largest score 0.80, 0.77, and 0.34 for the TLP, MCP, and SCAD, respectively.
For the LASSO, CMS is consistently 0, indicating that the regression errors does not work for the
LASSO to select correct models.

• One of the reasons for the poor FPS and CMS of the SCAD seems to be because its shape or
concavity on the interval [0, aλ]. Since the SCAD penalty is the same as the LASSO on [0, λ] and
a > 2 is limited below, the maximum concavity on [0, aλ] is smaller than that of the MCP with
a > 1, which results in selecting more variables with higher FPS and smaller CMS than those of
the MCP. We refer to Zhang (2010) for some detailed discussion on the maximum concavity of the
concave penalties.

• ERR decreases to that of the Bayes, the best performance, as n increases but increases as p or r
increases with fixed n, regardless of the penalties and simulation settings.

For the cases of classification errors, we observed the followings:

• TPS shows similar patterns as n increases, resembling the case of regression errors. This occurs
regardless of the penalties and simulation settings.

• The LASSO and SCAD select significantly less noisy variables, producing lower FPS and slightly
higher CMS. However, the TLP and MCP show opposite results.

To sum up, (a) we can conclude that tuning parameter selection based on the regression errors
exhibits better selection performance for the TLP and MCP. However, for the LASSO and SCAD,
the classification errors seems to be more informative, as indicated by smaller FPS and larger CMS.
(b) The two tuning parameter selection criteria can function to some extent in the simulation settings
designed in this paper. (c) However, the probabilities of correctly identifying the true model in Table 1
consistently reach nearly 1, regardless of the penalties and simulation settings. This suggests that we
need to develop other alternatives such as the information criterion based on the underling probability
structure.

4.2. Real data analysis

We apply the penalized LDA methods to two benchmark datasets: The prostate and lung cancer
datasets, which is available from the R packages datamicroarray. The prostate cancer dataset
consists of the expression levels of approximately 12,600 genes obtained from 52 prostate tumour
samples and 50 non-tumour prostate samples (Singh et al., 2002). Likewise, the lung cancer dataset
comprises 12,533 genes from 150 patients with adenocarcinoma and 31 patients with malignant pleu-
ral mesothelioma (Gordon et al., 2002). The main task is to predict whether an observation is the
specific tumor tissue or not, and to identify the genes associated with each type of cancer. We first
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Table 3: Averages of the four measures: Validation by classification errors

r p q n TPS FPS
LASSO TLP MCP SCAD LASSO TLP MCP SCAD

0.25

300

10
500 9.80 8.79 8.79 9.30 14.67 1.87 1.84 8.96

1000 10.00 9.82 9.79 9.95 14.08 2.44 2.39 6.28
2000 10.00 9.95 9.93 9.99 14.54 3.31 2.91 5.10

20
500 17.41 12.57 12.62 13.72 14.54 2.65 2.86 6.95

1000 19.54 17.37 17.43 17.90 15.52 2.31 2.28 5.80
2000 19.98 19.50 19.53 19.86 14.33 1.98 2.01 5.63

3000

10
500 9.36 7.36 7.51 8.08 15.34 1.37 1.23 10.29

1000 10.00 9.74 9.72 9.80 18.61 1.13 1.31 10.81
2000 10.00 9.98 9.96 9.99 15.93 1.94 1.96 5.40

20
500 13.98 8.29 8.44 10.23 16.91 1.50 1.80 9.29

1000 18.47 14.84 14.93 15.36 17.62 2.47 2.54 8.24
2000 19.93 18.95 19.08 19.14 18.73 1.50 1.65 6.87

0.5

300

10
500 9.20 7.98 8.06 8.45 21.94 2.74 3.13 10.80

1000 9.95 9.77 9.71 9.84 23.10 2.82 2.34 8.84
2000 10.00 9.94 9.96 9.97 21.13 2.83 2.76 6.34

20
500 14.69 10.14 10.63 11.00 22.63 3.32 4.23 10.12

1000 18.99 15.96 15.98 15.19 23.22 4.24 4.15 8.63
2000 19.87 19.27 19.19 19.05 21.89 2.97 2.93 7.27

3000

10
500 7.12 5.60 5.66 5.91 23.50 1.62 1.54 12.70

1000 9.51 8.97 8.97 8.43 24.92 1.97 2.12 12.08
2000 9.99 9.86 9.85 9.93 25.88 1.20 1.75 8.47

20
500 8.29 5.77 5.69 6.10 21.49 1.69 1.56 11.51

1000 13.72 10.48 10.32 9.89 24.71 3.29 2.59 10.57
2000 18.76 17.51 17.41 14.88 26.59 3.52 3.42 9.78

r p q n CMS ERR
LASSO TLP MCP SCAD LASSO TLP MCP SCAD

0.25

300

10
500 0.03 0.15 0.14 0.02 0.097 0.097 0.097 0.098

1000 0.09 0.33 0.29 0.15 0.089 0.088 0.088 0.088
2000 0.20 0.43 0.44 0.42 0.086 0.086 0.086 0.085

20
500 0 0 0 0 0.086 0.092 0.091 0.095

1000 0 0.04 0.04 0 0.075 0.074 0.074 0.078
2000 0.03 0.29 0.23 0.07 0.069 0.067 0.067 0.068

3000

10
500 0 0.05 0.05 0 0.107 0.108 0.106 0.113

1000 0.11 0.52 0.41 0.02 0.092 0.088 0.088 0.092
2000 0.07 0.43 0.43 0.24 0.087 0.086 0.086 0.085

20
500 0 0 0 0 0.102 0.106 0.105 0.112

1000 0 0 0 0 0.082 0.081 0.081 0.090
2000 0.04 0.26 0.25 0 0.073 0.069 0.069 0.075

0.5

300

10
500 0 0.04 0.04 0 0.178 0.171 0.171 0.170

1000 0 0.25 0.23 0.03 0.160 0.154 0.155 0.153
2000 0 0.50 0.41 0.17 0.153 0.150 0.150 0.150

20
500 0 0 0 0 0.171 0.170 0.170 0.169

1000 0 0 0 0 0.149 0.145 0.145 0.150
2000 0 0.14 0.11 0 0.137 0.132 0.132 0.134

3000

10
500 0 0 0 0 0.207 0.190 0.189 0.200

1000 0 0.19 0.21 0 0.174 0.160 0.160 0.168
2000 0 0.54 0.47 0.08 0.158 0.150 0.150 0.150

20
500 0 0 0 0 0.209 0.191 0.189 0.201

1000 0 0 0 0 0.174 0.162 0.162 0.171
2000 0 0.05 0.04 0 0.150 0.138 0.138 0.149

choose top p ∈ {500, 1000, 2000} genes with the largest t-statistics across two classes. We then ap-
plied the penalized LDA methods with two classes as a response variable and the chosen top p genes
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Table 4: Averages of the measures in prostate and lung cancer data analysis

Data Measure p Cross-validation by regression error Cross-validation by classification error
LASSO TLP MCP SCAD LASSO TLP MCP SCAD

Prostate

ERR(%)
500 6.34 9.32 9.44 9.04 7.28 9.64 9.48 9.06

1000 7.06 9.40 9.24 9.12 7.84 10.28 9.80 9.16
2000 7.76 9.40 9.32 9.30 8.00 10.38 10.56 9.14

#MIS
500 1.58 2.33 2.36 2.26 1.82 2.41 2.37 2.27

1000 1.76 2.35 2.31 2.28 1.96 2.57 2.45 2.29
2000 1.94 2.35 2.33 2.33 2.00 2.60 2.64 2.28

SIZE
500 25.31 4.60 4.00 11.24 12.25 5.98 5.17 8.45

1000 25.65 3.08 3.10 13.40 9.12 6.43 6.68 9.03
2000 25.50 3.01 2.21 12.94 6.28 4.46 5.21 6.40

Lung

ERR(%)
500 0.94 1.69 1.66 1.64 1.57 2.03 2.09 1.84

1000 0.93 1.84 1.86 1.59 1.56 2.02 2.23 1.79
2000 0.94 1.80 2.00 1.50 1.54 2.20 2.26 1.91

#MIS
500 0.43 0.76 0.75 0.74 0.71 0.92 0.94 0.83

1000 0.42 0.83 0.84 0.72 0.70 0.91 1.01 0.81
2000 0.43 0.81 0.90 0.68 0.70 0.99 1.02 0.86

SIZE
500 58.57 21.36 18.03 21.60 12.54 11.31 9.76 9.39

1000 60.05 17.73 17.57 25.31 12.95 11.23 10.26 9.85
2000 60.81 17.45 18.09 27.88 12.51 11.95 11.80 10.10

as predictive variables. For comparison, we split the data into the training and test sets by randomly
choosing 3/4 samples and 1/4 samples, respectively. For each training set, the tuning parameter λ is
selected by the 10-fold cross-validation methods based on regression error and classification error as
in the simulations. We compute the mis-classification error rate (ERR), the number of mis-classified
samples (#MIS) on the test set, and the model size (SIZE) representing the number of selected vari-
ables on the training set.

Table 4 presents the average values of the three measures obtained from 200 random partitions of
data. In most cases, the LASSO shows the best prediction performance but selects the most variables.
The TLP, MCP, and SCAD show similar prediction performances and they substantially selects fewer
variables than the LASSO. Among the concave penalized methods, the SCAD selects more variables
than other methods. Similar to the simulation results, the methods based on regression error exhibit
better prediction performances. For model size, the LASSO and SCAD based on the classification
error produce more sparse models while the methods based on regression error produce more sparse
model for TLP and MCP. These results suggest that the concave penalized LDA method could be a
good alternative when we wish to construct the sparse model without losing the prediction accuracy
much.

5. Concluding remarks

In this paper, we studied the high-dimensional LDA based on the concave penalized linear regression.
We proved that an oracle property holds uniformly on a class of concave penalties, including the TLP,
SCAD, and MCP as examples. The primary advantage of the concave penalized approach lies in
its superior selection performance compared to the convex penalized approach, as supported by the
simulation studies. In addition, we found that the tuning parameter selection criteria based on the
prediction errors work to some extent, and hence, we may use the criteria in practice. However, we
believe that there are better alternatives, such as the Bayesian information criterion, which has been
proven to be useful for other penalized approaches, including the penalized linear regression (Fan and
Tang, 2012).
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Appendix

Let ‖A‖2 = sup‖u‖2=1 ‖Au‖2 denote the spectral norm of a matrix A. Let δ̂ = θ̂ − θ, ∆̂ = Ω̂ − Ω, and
Γ̂ = Ω̂−1 −Ω−1.

Lemma 4. (Mai et al., 2012) There exist positive constants ε0 and ci, i ≤ 4 such that

P
(∣∣∣δ̂D∣∣∣

∞
≥ ε

)
≤ 2r exp

(
−c1nε2

)
,

P
(
‖∆̂DD‖∞ ≥ ε

)
≤ 2r2 exp

(
−c2nr−2ε2

)
,

P
(
‖Γ̂DD‖∞ ≥ ε

)
≤ 2r2 exp

(
−c4nr−2ε2

)
,

P
(
‖Λ̂DcD‖∞ ≥ ε

)
≤ 2pr exp

(
−c3nr−2ε2

)
,

for any ε ≤ ε0 and subsetD ⊆ {1, . . . , p}, where r = |D| and Λ̂DcD = Ω̂DcDΩ̂−1
DD
−ΩDcDΩ−1

DD
.

Proof of Theorem 1 Let ρ = ρmin(Ω) and κ be a sequence with 2q ≤ κ ≤ n. First, we will show that Z
satisfies the Sparse Riesz condition with ρ/2 and rank κ with probability tending to 1. For any subset
D ⊂ {1, . . . , p},

ρmin

(
Ω̂DD

)
= inf
‖u‖2=1

{
uT ΩDDu − uT

(
ΩDD − Ω̂DD

)
u
}
≥ ρmin(ΩDD) −

∥∥∥ΩDD − Ω̂DD
∥∥∥

2 .

From Cauchy’s interlacing theorem, min|D|≤κ ρmin(ΩDD) ≥ ρ. By Lemma 4, it follows that

P
(
min
|D|≤κ

ρmin

(
Ω̂DD

)
≤ ρ/2

)
≤ P

(
max
|D|≤κ

∥∥∥ΩDD − Ω̂DD
∥∥∥

2 ≥ min
|D|≤κ

ρmin (ΩDD) − ρ/2
)

≤
∑
|D|≤κ

P
(∥∥∥∆̂DD∥∥∥

∞
≥ ρ/2

)
≤ pκ2κ2 exp

(
−c2nκ−2(ρ/2)2

)
→ 0, (5.1)

provided that n/κ2 → ∞ and n/κ2 � κ log p as n→ ∞.
Second, we will prove that β̂OR satisfies the first inequality in the uniqueness condition with ρ/2.

On the event min|D|≤κ ρmin(Ω̂DD) > ρ/2, Ω̂SS is invertible since |S| = q ≤ κ/2. Hence, (5.1) implies
that β̂OR

S
satisfies

β̂OR = Ω̂−1
SS
θ̂S

with probability tending to 1. By the triangular inequality,

min
j∈S

∣∣∣β̂OR
j

∣∣∣ ≥ min
j∈S

∣∣∣βOR
j

∣∣∣ −max
j∈S

∣∣∣β̂OR
j − β

OR
j

∣∣∣ ≥ mS −
∥∥∥β̂OR
S
− βOR

S

∥∥∥
∞
.

Since βOR
S

= Ω−1
SS
θS,

β̂OR
S
− βOR

S
= Ω̂−1

SS
θ̂S −Ω−1

SS
θS = Γ̂SSδ̂S + Ω−1

SS
δ̂S + Γ̂SSθS.

From Lemma 4, there exist positive constants d1 and d2 such that

‖β̂OR
S
− βOR

S
‖∞ ≤ ‖Γ̂SS‖∞‖δ̂S‖∞ + ‖Ω−1

SS
‖∞‖δ̂S‖∞ + ‖Γ̂SS‖∞‖θS‖∞

≤ d1‖Γ̂SS‖∞ + d2‖δ̂S‖∞,
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for all sufficiently large n. From Lemma 4 again, there exist positive constants d3 and d4 such that

P
(
min
j∈S
|β̂OR

j | ≤ λ(a + 2/ρ)
)
≤ P

(
mS − ‖β̂OR

S
− βOR

S
‖∞ ≤ λ(a + 2/ρ)

)
≤ P

(
d1‖Γ̂SS‖∞ + d2‖δ̂S‖∞ ≥ mS − λ(a + 2/ρ)

)
≤ P

(
‖Γ̂SS‖∞ ≥ d3mS

)
+ P

(
‖δ̂S‖∞ ≥ d4mS

)
≤ 2q2 exp

(
−c4nq−2(d3mS)2

)
+ 2q exp

(
−c1n(d4mS)2

)
,

for all sufficiently large n since mS � λ. Hence the first inequality in (3.3) holds with probability
tending to 1, provided that nm2

S
/q2 � nλ2/q2 → ∞ and nλ2/q2 � log p as n→ ∞.

Third, we will show that the third inequality in the uniqueness condition holds with probability
tending to 1. By using θN = ΩNSΩ−1

SS
θS,

θ̂N − Ω̂NSβ̂
OR
S

= δ̂N + θN − Ω̂NSΩ̂−1
SS
θ̂S

= δ̂N + ΩNSΩ−1
SS
θS − Ω̂NSΩ̂−1

SS
θ̂S.

From Lemma 4, there exist positive constants e1 and e2 such that

‖θ̂N − Ω̂NSβ̂
OR
S
‖∞ ≤ ‖δ̂N‖∞ + ‖ΩNSΩ−1

SS
θS − Ω̂NSΩ̂−1

SS
θ̂S‖∞

≤ ‖δ̂N‖∞ + ‖Λ̂NS‖∞‖δ̂S‖∞ + ‖ΩNSΩ−1
SS
‖∞‖δ̂S‖∞ + ‖θS‖∞‖Λ̂NS‖∞

≤ e1‖δ̂‖∞ + e2‖Λ̂NS‖∞,

for all sufficiently large n. From Lemma 4 again, there exist positive constants e3 and e4 such that

P
(
‖θ̂N − Ω̂NSβ̂

OR
S
‖∞ > λmin{1, aρ/2}

)
≤ P

(
e1‖δ̂‖∞ + e2‖Λ̂NS‖∞ > λmin{1, aρ/2}

)
≤ P

(
‖δ̂‖∞ > e3λ

)
+ P

(
‖Λ̂NS‖∞ > e4λ

)
≤ 2p exp

(
−c1n(e3λ)2

)
+ 2(p − q)q exp

(
−c3nq−2(e4λ)2

)
,

for all sufficiently large n. Hence the third inequality in (3.3) holds with probability tending to 1,
provided that nλ2/q2 → ∞ and nλ2/q2 � log p as n→ ∞. �
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