• Title/Summary/Keyword: compressive strength of standard

Search Result 551, Processing Time 0.029 seconds

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns without Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 비재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • To prevent the explosive spalling of the high strength concrete and control the rise of temperature in the steel rebar during fire, a fiber cocktail method has been proposed simultaneously with the use of polypropylene and steel fiber. After applying the fiber cocktail (polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of between 40 and 100 MPa and evaluating the thermal properties at elevated temperatures, the fire test was carried out on structural members in order to evaluate the fire resistance performance. Two column specimens were exposed to the fire without loading for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed and the original color of specimen surface was changed to light pinkish grey. The inner temperature of concrete dropped rapidly starting from 60mm deep. After 60 minutes of exposure to the fire, the temperature gradient of fiber cocktail reinforced high strength concrete was measured as 2.2oC/mm, which is approximately 5 times less than that of normal concrete. The final temperatures of steel rebar after 180 minutes of fire test resulted in 488.0oC for corner rebar, 350.9oC for center rebar, and 419.5oC for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 137.1oC The tendency of temperature rise in concrete and steel rebar changed between 100oC and 150oC The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

Comparative study in fracture strength of zirconia cores fabricated with three different CAD/CAM systems (3종의 CAD/CAM 시스템에서 지르코니아 코어의 파절 강도에 관한 비교 연구)

  • Shin, Eon-Sick;Lee, Young-Soo;Park, Won-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.1
    • /
    • pp.22-30
    • /
    • 2008
  • Purpose: The purpose of this study is to compare three different CAD/CAM systems through the fracture strength of zirconia core and to evaluate the clinical availability of each system. Material and methods: The following three groups of 30 maxillary mesial incisor core for all-ceramics(each group 10) were fabricated as follows: group 1. $Adens^{(R)}$ CAD/CAM system, group 2. $Cerasys^{(R)}$ CAD/CAM system, group 3. 3M $Lava^{(R)}$ CAD/CAM system. All specimens were manufactured consistently thickness 0.5mm and relief $40{\mu}m$. Specimens were subjected to compressive loading on the lingual area by Z250/$SN5S^{(R)}$. Each group's mean and standard deviation were calculated and Kruskal Waillis test, Wilcoxon Rank Sum test were utilized to find out the relationship among the groups. Results: The results were as follows: 1. The mean fracture strength of $Adens^{(R)}$ system was $615.89{\pm}156.1N$, the $Cerasys^{(R)}$ system was $863.98{\pm}151.5N$, and the 3M $Lava^{(R)}$ system was $1143.1{\pm}286.6N$. 2. The fracture strength of the systems showed the significant statistical differences in order of 3M $Lava^{(R)}$ system, $Cerasys^{(R)}$ system, $Adens^{(R)}$ system. Conclusion: In this study, in spite of the differences among the groups, every group showed clinically useful results. It is necessary to study further clinical experiments on a long term basis.

Estimation of Shear Strength Along Concrete Construction Joints Considering the Variation of Concrete Cohesion and Coefficient of Friction (콘크리트 시공줄눈 면에서 점착력 및 마찰계수의 변화를 고려한 전단내력 평가)

  • Yang, Keun-Hyeok;Kwon, Hyuck-Jin;Park, Jong-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.106-112
    • /
    • 2017
  • This paper presents a mathematical model derived from the upper-bound theorem of concrete plasticity to rationally evaluate the shear friction strength of concrete interfaces with a construction joint. The upper limit of the shear friction strength was formulated from the limit state of concrete crushing failure on the strut-and-tie action along the construction joints to avoid overestimating the shear transfer capacity of a transverse reinforcement with a high clamping force. The present model approach proposed that the cohesion and coefficient of friction of concrete can be set to be $0.27(f_{ck})^{0.65}$ and 0.95, respectively, for rough construction joints and $0.11(f_{ck})^{0.65}$ and 0.64, respectively, for smooth ones, where $f_{ck}$ is the compressive strength of concrete. From the comparisons with 155 data compiled from the available literature, the proposed model gave lower values of standard deviation and coefficient of variation of the ratios between predictions and experiments than AASHTO and fib 2010 equations, indicating that the proposed model has consistent trends with test results, unlike the significant underestimation results of such code equations in evaluating the shear friction strength.

The Bond Characteristics of Deformed Bars in High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트와 이형철근의 부착특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Kim, Kyung Hwan;An, Tae Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.511-518
    • /
    • 2009
  • This study was intended to compare and evaluate the adhesion of High flowing Self-compacting Concrete (HSCC), Conventional Concrete (CC) and deformed bar based on concrete strength 3 (30, 50 and 70 MPa), among the factors affecting the bond strength between concrete and rebar, after fabricating the specimen by modifying the rebar position at Horizontal reinforcement at bottom position (HB), horizontal reinforcement at top position (HT) and vertical reinforcement type (V). As a result of measuring bond strength of HB/HT rebar to evaluate the factor of the rebar at top position, the bond strength of HB/HT rebar at 50 and 70 MPa was 1.3 or less and at 30 MPa, HSCC and CC appeared to be 1.2 and 2,1, respectively. Thus, when designing the anchorage length according to the concrete structure design standard (2007) at HSCC 30, 50 and 70 MPa, it would be desirable to reduce the correction factor of anchorage length of the horizontal reinforcement at top position, which is suggested for the reinforcement at top position, to less than 1.3 of CC.

Shear Strength of Interface between Natural Aggregate Concrete and Recycled Aggregate Concrete (천연골재 콘크리트와 순환골재 콘크리트 접합면의 전단강도)

  • Moon, Hoon;Choi, Ik-Je;Kim, Ji-Hyun;Chung, Chul-Woo;Kim, Young-Chan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.26-32
    • /
    • 2020
  • Concrete recycling is becoming mandatory rather selective due to depletion of constructional materials and increase of concrete waste. Studies on recycling concrete are conducted in various point of view for long time. However, standard or guideline of many countries for the application of recycled aggregate concrete(RAC) has restrictions such as low replacement rate of coarse aggregate and no fine aggregate allowed due to inferior material properties of recycled aggregate. This study intends to figure out the feasibility of casting natural aggregate concrete(NAC) and RAC separately in a structural member. In making RAC, replacement rate of coarse aggregate was 50, 100% in RAC and treatment of interface of two concretes is introduced. RAC treatment of recycled aggregate or inclusion of additives was not done as it can increase embodied energy of concrete work. Double-shear test with uniformly distributed loading was adopted to evaluate shear strength at the interface of two concretes. After curing it was hard to distinguish interface of two concretes. Experimental result revealed that specimen with higher replacement rate showed higher shear-to-compressive strength ratio, which is possibly attributed to coarse aggregate size and roughness of sheared section. Further study on the effect of various parameters is required and subsequent research activity is on-going.

Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition (60MPa급 고강도 콘크리트의 굵은골재 종류와 고온상태에 따른 변형특성 평가)

  • Yoon, Min-Ho;Choe, Gyeong-Cheol;Lee, Tae-Gyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • Strain properties of concrete member which acts as an important factor in the stability of the concrete structure in the event of fire, significantly affected the characteristics of the coarse aggregate, which accounts for most of the volume. For this reason, there are many studies on concrete using artificial lightweight aggregate which has smaller thermal expansion deformation than granite coarse aggregate. But the research is mostly limited on concrete using clay-based lightweight aggregate. Therefore, in this study, the high temperature compressive strength and elastic modulus, thermal strain and total strain, high temperature creep strain of concrete was evaluated. As a result, remaining rate of high-temperature strength of concrete using lightweight aggregate is higher than concrete with general aggregate and it is determined to be advantageous in terms of structural safety and ensuring high-temperature strength from the result of the total strain by loading and strain of thermal expansion. In addition, in the case of high-temperature creep, concrete shrinkage is increased by rising loading and temperature regardless of the type of aggregate, and concrete using lightweight aggregate shows bigger shrinkage than concrete with a granite-based aggregate. From this result, it is determined to require additional consideration on a high temperature creep strain in case of maintaining high temperature like as duration of a fire although concrete using light weight aggregate is an advantage in reducing the thermal expansion strain of the fire.

Mechanical Properties of Repair Mortar Incorporated with Bio Polymer (바이오 폴리머를 이용한 구조물 보수용 모르타르의 역학적 특성 평가)

  • Lee, Sun-Mok;Hyun, Jung-hwan;Kwon, Ki-Seong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.97-104
    • /
    • 2018
  • In recent years, more than 5,000 tons of sargassum honeri have been infested in the southern coast and the coast of Jeju Island, causing serious damage to the farms and fisheries, and environmental problems. The alginate contained in the sargassum honeri is a natural polymeric substance mainly used for medicines and foods. However, since there is no way to utilize it in large quantities, a study was carried out to utilize bio polymer obtained from sargassum honeri in producing polymer mortar for repairing deteriorated infrastructures. From the tests of setting time, it was found that the L0BP12 mixture containing 12% of bio polymer increased the setting time by 20% as compared with the L12BP0 mixture using only synthetic polymer. From the tests of water absorbtion, the LOBP12 combination decreased by 0.36% compared to Plain-URHC using ultra rapid hardening cement. This indicated that the watertightness of the mortar was increased by the incorporation of the bio polymer. In the compressive and flexural strength tests, the strength decreased as the amount of bio polymer increased. The incorporation rate of the maximum bio polymer satisfying the KS F 4042 standard was determined to be 12%. In addition, the bond strength of the mortar produced with biopolymer was higher than that of Plain-URHC specimens, and it was confirmed that incorporation of bio polymer improves bond strength of mortar.

Study on the Testing Method for Setting Time of Set Accelerating Agent Using Shotcrete by Gilmour Needles (길모어침에 의한 숏크리트용 급결제의 품질시험방법에 대한 고찰)

  • Kim, Chun Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.195-200
    • /
    • 2011
  • KS F 2782 (for shotcrete accelerators) standard cross-section of tunnel construction or repair is a reinforcement used in the field of shotcrete accelerators as a criterion in assessing shotcrete performance. Thus, KS F 2782 by standard accelerator will determine the nature of the product of concrete accelerators that will be used to record variations in the product roles, through determination of the quality of the experimental method to identify only the quality of the many variables that exist. This evaluation standard has so far distinguished accelerator products in indoor experiments that do not meet quality standards but were mostly for an on-site accelerator mixed with the shotcrete after being quite satisfied with the level of quality in a certain number of products. This observation is derived from the results of an indoor experiment considered to verify whether the site is suitable for indoor experiments, and whether its actual location in the city is relevant to the accelerator quality, to find a way to test if it fits. This study centers on the material conditions of the shotcrete accelerator and a variety of experimental results, and used the Gilmore needle to compare the compressive strength and KS F 2782 specification of the accelerator as a means to ensure product quality conformity analysis and for further research experiments. In conclusion, a portion of KS F 2782 standard that fixes the problems that can be resolved from the ground up as a whole is not a review for the domestic reality. As an indoor experiment to ensure uniformity in the field when applied in a sufficient correlation, complement must be in place.

A Study for Field Application of Environmental-friendly Waterproof Method for Riverbed (친환경 하상차수공법 현장 적용성에 관한 연구)

  • Park, Minchul;Kim, Seonggoo;Kwak, Nokyung;Shin, Hyohee;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • In period of rapid economic development, as doing river conservation work by using harmful materials environmental pollution has adversely effected humans, animals and plants frequently. For recovery of environmental pollution it needs a lot of time and cost. Therefore, in this study, in order to take an environment-friendly method which is also economical and durable both results of the laboratory model test and field test were compared and analyzed. According to the results of the laboratory model test, those methods such as concrete paving, asphalt paving, bentonite mat, stabilized soil method and mixed soil method have small amount of seepage, but on the other hand compaction soil, grassland and permeable materials have considerable amount of seepage. The results of field test show a similar tendency with laboratory test and have been satisfied to assess standard of domestic water permeability below $1.0{\times}10^{-7}cm/sec$ and unconfined compressive strength is also than 1.0MPa so it has been satisfied about standard. In conclusion, as compaction rate increased, as unconfined compression strength increased and coefficient of permeability decreased.

A Study on the Fabrication of the Laminated Wood Composed of Poplar and Larch (포푸라와 일본잎갈나무의 집성재 제조에 관한 연구)

  • Jo, Jae-Myeong;Kang, Sun-Goo;Kim, Ki-Hyeon;Chung, Byeong-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.25-31
    • /
    • 1974
  • 1. Various gluing qualities applying Resorcinol Plyophen #6000 were studied on aiming the strength relationships of laminated woods resulted by single species [poplar (Populus deltoides), larch(Larix leptolepis)], mixed species of (poplar and larch), preservatives, treated poplar the scarf joint with mixed species of poplar and larch and the scarf joint treated with preservatives. 1. 1 On the block shear and on the DVL tension test, the mean wood failure ratio showed an excellent value i.e., above 65% and the tangential strength for larch was higher than that of radial, but it was reversed for poplar as shown in Tables 1 and 2. 1. 2 The lamina treated with Na-PCP reduced slightly the strength but the limited strength allowed for manufacturing laminated wood was not influenced by treating Na-PCP as shown in Tables 3 and 4. 1. 3 The safe scarf ratio in the plane scarf joint was above 1/12 for larch and 1/6 for poplar regard less of the chemical treatment or untreatment as shown in Tables. 5, 6, 7 and 8. 2. In the normal and boiled state, the gluing quality of the laminated wood composed of single[poplar (Populus deltoides), larch (Larix leptolepis)] and double species (poplar and larch) glued with Resorcinol Plyophen #6000 were measured as follow, and also represented the delamination of the same laminated wood. 2.1 The normal block shear strength of the straight and curved laminated wood (in life size) were more than three times of the standards adhesion strength. And, the value of the boiled stock was decreased to one half of the standard shear adhesion strength, but it was more than twice the standard strength for the boiled stock. Thus, it was recognized that the water resistance of the Resorcinol Plyophen #6000 was very high as shown in Tables 9 and 10. 2. 2 The delamination ratio of the straight and curved laminated woods in respect of their composition were decraesed, in turn, in the following order i. e., larch, mixed stock (larch+poplar) and poplar. The maximum value represented by the larch was 3.5% but it was below the limited value as shown in Table 11. 3. The various strengthes i.e., compressive, bending and adhesion obtainted by the straight laminaced wood which were constructed by five plies of single and double species of lamina i. e., larch (Larix leptolepis) and poplar (Populus euramericana), glued with urea resin were shown as follows: 3. 1 If desired a higher strength of architectural laminated wood composed of poplar (P) and larch (L), the combination of the laminas should be arranged as follows, L+P+L+P+L as shown in Table 12. 3.2 The strength of laminated wood composed of laminas which included pith and knots was conside rably decreased than that of clear lamina as shown Table 13. 3.3 The shear strength of the FPL block of the straight laminated wood constructed by the same species which were glued with urea adhesives was more than twice the limited adhesion strength, thus it makes possible to use it for interior constructional stock.

  • PDF