References
- Ceia, F,, Raposo, J., Guerra, M., Julio, E., De Brito, J. (2016). Shear strength of recycled aggregate concrete to natural aggregate concrete interfaces, Construction and Building Materials, 109, 139-145. https://doi.org/10.1016/j.conbuildmat.2016.02.002
- Gao, D., Zhang, L., Nokken, M. (2017). Mechanical behavior of recycled coarse aggregate concrete reinforced with steel fibers under direct shear, Cement and Concrete Composites, 70, 1-8. https://doi.org/10.1016/j.cemconcomp.2016.03.011
- Kim, J.H., Sung, J.H., Lee, S.Y., Kwon, G.H., Lee, S.H. (2017). An experimental study on the physical and mechanical properties of concrete using recycled Sand, Journal of the Korean Recycled Construction Resources Institute, 5(4), 359-365 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.4.359
- Kobayashi, K., Uomoto, T., Minematsu, T. (1980). Experimental study on shear strength testing method for steel fiber reinforced concrete, Seisan Kenkyu, 32(4), 229-232.
- Lee, H.J., Suh, J.I., Yoo, S.W. (2017). An evaluation of shear strength of plain HVFAC concrete by double shear test method, Journal of the Korean Recycled Construction Resources Institute, 5(3), 261-266 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.3.261
- Lee, J., Lee, B.C., Cho, Y.K., Park, K.M., Jung, S.H. (2017). Carbonation properties of recycled aggregate concrete by specified concrete strength, Journal of the Korean Recycled Construction Resources Institute, 5(1), 85-93 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.1.085
- Lee, S.Y., Kim, G.Y., Yoon, M.H., Na, C.S., Lee, S.K., Shin, S.G., Nam, J.S. (2019). Monitoring on compressive strength and carbonation of reinforced concrete structure with 100% recycled aggregate, Journal of the Korea Institute of Building Construction, 19(5), 383-389 [in Korean]. https://doi.org/10.5345/JKIBC.2019.19.5.383
- Malesev, M., Radonjanin, V., Marinkovic, S. (2010). Recycled concrete as aggregate for structural concrete production, Sustainability, 2, 1204-1225. https://doi.org/10.3390/su2051204
- Moon, K.T., Park, S.Y., Kim, S.E. (2019). Compressive strength of concrete due to moisture conditions of recycled coarse aggregates and curing conditions, Journal of The Korean Society of Civil Engineers, 39(4), 485-492 [in Korean].
- Pepe, M. (2015). A Conceptual Model for Designing Recycled Aggregate Concrete for Structural Applications, Springer.
- Rahal, K. (2017). Shear strength of recycled aggregates concrete, Procedia Engineering, 210, 105-108. https://doi.org/10.1016/j.proeng.2017.11.054
- Saldanha, R., Julio, E., Dias-da-Costa, D., Santos, P. (2013). A modified slant shear test designed to enforce adhesive failure, Construction and Building Materials, 41, 673-680. https://doi.org/10.1016/j.conbuildmat.2012.12.053
- Song, H.Y., Lee, S.S., Lee, D.H., Lee, J.G., Kim, J.H., Lim, H.U. (2006). An experimental study on the drying shrinkage of concrete using high-quality recycled sand, Journal of the Korean Recycled Construction Resources Institute, 2(1), 136-143 [in Korean].
- Tam, V.W.Y., Wang, K., Tam, C.M. (2007). Ways to facilitate the use of recycled aggregate concrete, Proceedings of the Institution of Civil Engineers, Waste and Resource Management, 160(3), 125-129. https://doi.org/10.1680/warm.2007.160.3.125
- Tuan, H.N., Otsuka, H., Ishikawa, Y., Takeshita, E. (2006). A study on shear strength of concrete under direct shear test, Proceedings of the Japan Concrete Institute, 28(1), 1529-1534.
- Verian, K.P., Ashraf, W., Cao, Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. Resources, Conservation & Recycling, 133, 30-49. https://doi.org/10.1016/j.resconrec.2018.02.005
- Wijayasundara, M., Mendis, P., Crawford, R.H. (2018). Integrated assessment of the use of recycled concrete aggregate replacing natural aggregate in structural concrete, Journal of Cleaner Production, 174, 591-604. https://doi.org/10.1016/j.jclepro.2017.10.301
- Xiao, J., Wang, C., Ding, T., Akbarnezhad, A. (2018). A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint, Journal of Cleaner Production, 199, 868-881. https://doi.org/10.1016/j.jclepro.2018.07.210