• 제목/요약/키워드: completely prime ideal

검색결과 9건 처리시간 0.033초

INTUITIONISTIC FUZZY IDEALS OF A RING

  • Hur, Kul;Jang, Su-Youn;Kang, Hee-Won
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제12권3호
    • /
    • pp.193-209
    • /
    • 2005
  • We introduce the notions of intuitionistic fuzzy prime ideals, intuitionistic fuzzy completely prime ideals and intuitionistic fuzzy weakly completely prime ideals. And we give a characterization of intuitionistic fuzzy ideals and establish relationships between intuitionistic fuzzy completely prime ideals and intuitionistic fuzzy weakly completely prime ideals.

  • PDF

RINGS IN WHICH NILPOTENT ELEMENTS FORM AN IDEAL

  • Cho, June-Rae;Kim, Nam-Kyun;Lee, Yang
    • East Asian mathematical journal
    • /
    • 제18권1호
    • /
    • pp.15-20
    • /
    • 2002
  • We study the relationships between strongly prime ideals and completely prime ideals, concentrating on the connections among various radicals(prime radical, upper nilradical and generalized nilradical). Given a ring R, consider the condition: (*) nilpotent elements of R form an ideal in R. We show that a ring R satisfies (*) if and only if every minimal strongly prime ideal of R is completely prime if and only if the upper nilradical coincides with the generalized nilradical in R.

  • PDF

Interval-Valued Fuzzy Ideals of a Ring

  • Lee, Keon-Chang;Hur, Kul;Lim, Pyung-Ki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권3호
    • /
    • pp.198-204
    • /
    • 2012
  • We introduce the notions of interval-valued fuzzy prime ideals, interval-valued fuzzy completely prime ideals and interval-valued fuzzy weakly completely prime ideals. And we give a characterization of interval-valued fuzzy ideals and establish relationships between interval-valued fuzzy completely prime ideals and interval-valued fuzzy weakly completely prime ideals.

SOME FUZZY SEMIPRIME IDEALS OF SEMIGROUPS

  • Kim, Jupil
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.459-466
    • /
    • 2009
  • The purpose of this paper is to study the some properties of fuzzy quasi-semiprime ideal, fuzzy prime ideals and to prove some fundamental properties of semigroups. In particular, we will establish a relation between fuzzy prime ideals and weakly completely semiprime ideals by using the some equivalent conditions of fuzzy semiprime ideals.

  • PDF

ON WEAK II-REGULARITY AND THE SIMPLICITY OF PRIME FACTOR RINGS

  • Kim, Jin-Yong;Jin, Hai-Lan
    • 대한수학회보
    • /
    • 제44권1호
    • /
    • pp.151-156
    • /
    • 2007
  • A connection between weak ${\pi}-regularity$ and the condition every prime ideal is maximal will be investigated. We prove that a certain 2-primal ring R is weakly ${\pi}-regular$ if and only if every prime ideal is maximal. This result extends several known results nontrivially. Moreover a characterization of minimal prime ideals is also considered.

P-STRONGLY REGULAR NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • 대한수학회논문집
    • /
    • 제27권3호
    • /
    • pp.483-488
    • /
    • 2012
  • In this paper we introduce the notion of P-strongly regular near-ring. We have shown that a zero-symmetric near-ring N is P-strongly regular if and only if N is P-regular and P is a completely semiprime ideal. We have also shown that in a P-strongly regular near-ring N, the following holds: (i) $Na$ + P is an ideal of N for any $a{\in}N$. (ii) Every P-prime ideal of N containing P is maximal. (iii) Every ideal I of N fulfills I + P = $I^2$ + P.

AN IDEAL-BASED ZERO-DIVISOR GRAPH OF 2-PRIMAL NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1051-1060
    • /
    • 2009
  • In this paper, we give topological properties of collection of prime ideals in 2-primal near-rings. We show that Spec(N), the spectrum of prime ideals, is a compact space, and Max(N), the maximal ideals of N, forms a compact $T_1$-subspace. We also study the zero-divisor graph $\Gamma_I$(R) with respect to the completely semiprime ideal I of N. We show that ${\Gamma}_{\mathbb{P}}$ (R), where $\mathbb{P}$ is a prime radical of N, is a connected graph with diameter less than or equal to 3. We characterize all cycles in the graph ${\Gamma}_{\mathbb{P}}$ (R).

A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • 대한수학회논문집
    • /
    • 제24권2호
    • /
    • pp.161-169
    • /
    • 2009
  • In this paper, we introduce the generalized ideal-based zero-divisor graph structure of near-ring N, denoted by $\widehat{{\Gamma}_I(N)}$. It is shown that if I is a completely reflexive ideal of N, then every two vertices in $\widehat{{\Gamma}_I(N)}$ are connected by a path of length at most 3, and if $\widehat{{\Gamma}_I(N)}$ contains a cycle, then the core K of $\widehat{{\Gamma}_I(N)}$ is a union of triangles and rectangles. We have shown that if $\widehat{{\Gamma}_I(N)}$ is a bipartite graph for a completely semiprime ideal I of N, then N has two prime ideals whose intersection is I.

Ideal Theory in Commutative A-semirings

  • Allen, Paul J.;Neggers, Joseph;Kim, Hee Sik
    • Kyungpook Mathematical Journal
    • /
    • 제46권2호
    • /
    • pp.261-271
    • /
    • 2006
  • In this paper, we investigate and characterize the class of A-semirings. A characterization of the Thierrin radical of a proper ideal of an A-semiring is given. Moreover, when P is a Q-ideal in the semiring R, it is shown that P is primary if and only if R/P is nilpotent.

  • PDF