RINGS IN WHICH NILPOTENT ELEMENTS FORM AN IDEAL

Jung Rae Cho, Nam Kyun Kim and Yang Lee

Abstract

We study the relationships between strongly prime ideals and completely prime ideals, concentrating on the connections among various radtcals (prime radıcal, upper nilradical and generalized nilradical). Given a ring R, consider the condition (*) mlpotent elements of R form an ideal in R. We show that a ring R satısfies (*) if and only if every munimal strongly prume.ıdeal of R is completely prime if and only if the upper nulradical concides with the generalized nulradical in R

1. Introduction

This paper was motivated by the results in [1] and [4] which are related to nilradicals. Throughout this paper, all rings are associative with identity. Given a ring R we use $\mathbf{P}(R), \mathbf{N}(R)$, and $\operatorname{Spec}_{S}(R)$ to represent the prime radical, the set of all mulpotent elements, and the set of all strongly prime ideals of R, respectively.

Recall that a ring R is called strongly prime if R is prime with no nonzero nil ideals and an ideal P of R is called strongly prime if R / P is strongly prime, and that the upper nilradical of a ring R is the unique

Recelved November 12, 2001
2000 Mathematics Subject Classification: 16D25, 16N40, 16 N 60.
Key words and phrases. upper nilradical, strongly prıme ideal, completely prime ideal.

The first and third named authors were supported by Korea Research Foundation Grant (KRF-2000-015-DP0002), and the third named author was also supported by grant No.(R02-2000-00014) from the Korea Science \& Engineering Foundation.
maximal nil ideal of R (see [3, Proposition 2.6.2]); we denote it by $\mathbf{N}_{r}(R)$. Notice that

$$
\begin{aligned}
\mathbf{N}_{r}(R) & =\{a \in R \mid R a R \text { is a nil ideal of } R\} \\
& =\bigcap\{P \mid P \text { is a strongly prime ideal of } R\} \\
& =\bigcap\{P \mid P \text { is a minimal strongly prime ideal of } R\} .
\end{aligned}
$$

It is straightforward to check that a ring R satisfies (*) if and only if $\mathbf{N}_{\boldsymbol{r}}(R)=\mathbf{N}(R)$ if and only if $R / \mathbf{N}_{r}(R)$ is a reduced ring (i.e., a ring without nonzero nilpotent elements). It is clear that the Köthe's conjecture (i.e., the upper nilradical contains every nil left ideal) holds if given a ring satisfies $\left(^{*}\right.$); but the converse is not true in general considering 2 -by-2 full matrix rings over reduced rings (see [3, Theorem 2.6.35]). A ring R is called 2-primal if $\mathbf{P}(R)=\mathbf{N}(R)$. 2-primal rings satisfy $\left({ }^{*}\right)$ obviously; however the converse does not hold in general by [2, Example 3.3]. Commutative rings and reduced rings are 2-primal and so they satisfy $\left({ }^{*}\right)$.

2. Rings which satisfy (*)

An ideal P of a ring R is called a minimal strongly prime ideal of R if P is minimal in $\operatorname{Spec}_{S}(R)$ To observe the properties of minimal strongly prime ideals of rings which satisfy $\left({ }^{*}\right)$, we introduce the following concepts:

$$
\begin{gathered}
N(P)=\left\{a \in R \mid a R b \subseteq \mathbf{N}_{r}(R) \text { for some } b \in R \backslash P\right\}, \\
N_{P}=\left\{a \in R \mid a b \in \mathbf{N}_{r}(R) \text { for some } b \in R \backslash P\right\}, \\
\bar{N}_{P}=\left\{a \in R \mid a^{m} b \in \mathbf{N}_{r}(R) \text { for some integer } m\right. \\
\text { and some } b \in R \backslash P\},
\end{gathered}
$$

where P is a strongly prime ideal of a ring R. It may be easily checked that for each prime ideal P of a ring $R, N(P) \subseteq P$ and $N(P) \subseteq N_{P} \subseteq$ \bar{N}_{P}.

To obtain the following results, from Lemma 1 to Theorem 5, we use the methods that Shin used in [4].

A right (or left) ideal I of a ring R is said to have the IFP (ansertion of factors property) if $a b \in I$ implies $a R b \subseteq I$ for $a, b \in R$. Notice that the zero ideal of a reduced ring has the IFP. Given a ring R, recall that a subset S of $R \backslash\{0\}$ is called an m-system if $s_{1}, s_{2} \in S$ implies $s_{1} r s_{2} \in S$ for some $r \in R$. Obviously the complement of any prime ideal is an m-system.

LEMMA 1. For a ring R, the following statements are equivalent:
(1) R satisfies $\left(^{*}\right)$.
(2) $\mathrm{N}_{r}(R)$ has the IFP.

Proof. (1) \Rightarrow (2): Since $R / \mathbf{N}_{r}(R)$ is reduced by hypothesis, $a b \in$ $\mathbf{N}_{\boldsymbol{r}}(R)$ implies $a R b \subseteq \mathbf{N}_{r}(R)$ for $a, b \in R$.
(2) \Rightarrow (1): Let, $a \in \mathbf{N}(R)$. Then $a^{n}=0$ for some positive integer n We claim $a \in \mathbf{N}_{r}(R)$. Assume to the contrary that $a \notin \mathbf{N}_{r}(R)$. Then there exists a strongly prime ideal P such that $a \notin P$. Since $R \backslash P$ is an m-system, there exist $r_{1}, \ldots, r_{n-1} \in R$ such that $a r_{1} a \cdots a r_{n-1} a \in$ $R \backslash P$. But $a r_{1} a \cdots a r_{n-1} a \in \mathbf{N}_{r}(R)$ since $\mathbf{N}_{r}(R)$ has the IFP. Consequently $a r_{1} a \cdots a r_{n-1} a \in P$, a contradiction; and therefore R satisfies ${ }^{*}$).

LEMMA 2 If a ring R satusfies $\left(^{*}\right)$, then $N(P)=N_{P}=\bar{N}_{P}$ for each strongly prime adeal P of R.

Proof. It is trivial that $N(P) \subseteq N_{P} \subseteq \bar{N}_{P}$. Take $a \in \bar{N}_{P}$ and let $m \geq 1$ be minimal with $a^{m} b \in \mathbf{N}_{r}(R)$ for some $b \in R \backslash P$. By Lemma $1 a R a^{m-1} b \in \mathbf{N}_{r}(R)$ and $a^{m-1} b \notin P$ so $a \in N(P)$.

Theorem 3. Suppose that a ring R satisfies (${ }^{*}$). Then $N(P)=$ $\cap\left\{Q \in \operatorname{Spec}_{S}(R) \mid N(P) \subseteq Q \subseteq P\right\}$ for each $P \in \operatorname{Spec}_{S}(R)$.

Proof. If $Q \subseteq P$ for $P, Q \in \operatorname{Spec}_{S}(R)$, then $N(P) \subseteq N(Q) \subseteq Q \subseteq$ P; hence we have $N(P) \subseteq \bigcap\left\{Q \in \operatorname{Spec}_{S}(R) \mid N(P) \subseteq Q \subseteq P\right\}$. Conversely, suppose that $a \notin N(P)$. We claim that there exists a strongly prime ideal Q such that $a \notin Q$ and $Q \subseteq P$. The set $S=\left\{a, a^{2}, a^{3}, \ldots\right\}$ is closed under multiplication that does not contain 0 by Lemma 2, and
note that $L \stackrel{\text { let }}{=} R \backslash P$ is a m-system. Let $T=\left\{a^{t_{0}} b_{1} a^{t_{1}} b_{2} \cdots b_{n} a^{t_{n}} \neq 0 \mid\right.$ $\left.b_{\imath} \in L, t_{\imath} \in\{0\} \cup \mathbb{Z}^{+}\right\}$, where \mathbb{Z}^{+}is the set of positive integers. Let $M=S \cup T$. Note that $L \subseteq T$. Now we will show that M is closed under multiplication. If $x, y \in S$, then $x y \in S \subseteq M$. If $x \in S$ and $y \in T$ with $x=a^{s}, y=a^{t_{0}} b_{1} a^{t_{1}} b_{2} \cdots b_{n} a^{t_{n}}$, then $x y \neq 0$. For, if $x y=0$ then

$$
x y=a^{s+t_{0}} b_{1} a^{t_{1}} b_{2} \cdots b_{n} a^{t_{n}}=0 \in \mathbf{N}_{r}(R)
$$

By Lemma 1, we have that

$$
\left(a^{s+t_{0}} a^{t_{1}} \cdots a^{t_{n}}\right)\left(b_{1} \cdots b_{n}\right) \cdots\left(a^{s+t_{0}} a^{t_{1}} \cdots a^{t_{n}}\right)\left(b_{1} \cdots b_{n}\right) \in \mathbf{N}_{r}(R)
$$

and so

$$
\left[\left(a^{s+t_{0}+}+t_{n}\right)\left(b_{1} \cdots b_{n}\right)\right]^{n+1} \in \mathbf{N}_{r}(R)
$$

Thus $\left(a^{s+t_{0}+}{ }^{+t_{n}}\right)\left(b_{1} \cdots b_{n}\right) \in \mathbf{N}_{r}(R)$ because $\mathbf{N}_{r}(R)=\mathbf{N}(R)$. Since L is an m-system, there exist $r_{1}, \ldots, r_{n-1} \in R$ such that

$$
b_{1} r_{1} \cdots b_{n-1} r_{n-1} b_{n} \in L
$$

Let $s+t_{0}+\cdots+t_{n}=w$ and $b_{1} r_{1} \cdots b_{n-1} r_{n-1} b_{n}=b$. Then $a^{w} b \in \mathbf{N}_{r}(R)$ and hence $a \in \bar{N}_{P}=N(P)$ by Lemma 2, which is a contradiction. Consequently $x y \in T \subseteq M$. Similarly, if $x, y \in T$ then $x y \neq 0$ and so $x y \in T \subseteq M$. Thus M is a multiplicatively closed system which is disjoint from (0); hence there exists a prime ideal Q that is disjoint from M. Therefore $a \notin Q$ and $Q \subseteq P$. To complete the proof, we have to show that Q is strongly prime. $(M+Q) / Q$ has no nilpotent elements but intersects every nonzero ideal in R / Q by the maximality of Q with respect to the property $M \cap Q=0$, so Q is strongly prime.

Corollary 4. Suppose that a ring R satisfies (*). Then for each strongly prime adeal P of R the following statements are equivalent:
(1) P is a minimal strongly prime ideal of R.
(2) $N(P)=P$.
(3) For any $a \in P, a b \in \mathbf{N}_{r}(R)$ for some $b \in R \backslash P$.

Proof. (1) $\Leftrightarrow(2)$ follows from Theorem 3.
(2) $\Rightarrow(3)$: For each $a \in P=N(P), a b a b \in a R b \subseteq \mathbf{N}_{r}(R)$ for some $b \in R \backslash P$, hence $a b$ is nilpotent and so $a b \in \mathbf{N}_{r}(R)$.
(3) \Rightarrow (2): If $a \in P$ and $a b \in \mathbf{N}_{r}(R)$ for some $b \in R \backslash P$, then $a R b \subseteq$ $\mathbf{N}_{r}(R)$ because $R / \mathbf{N}_{r}(R)$ is reduced. Hence $a \in N(P)$ and so $N(P)=$ P since $N(P) \subseteq P$ always.

Recall that an ideal I of a ring R is called completely prime if R / I is a domain. We use $\mathbf{P}_{C}(R)$ for the intersection of all completely prime ideals of a ring R. Birkenmeier-Heatherly-Lee [1, Proposition 2.1] proved that a ring R is 2-primal if and only if $\mathbf{P}(R)=\mathbf{P}_{C}(R)$, and Shin [4, Proposition 1.11] proved that R is 2 -primal if and only if every minimal prime ideal of R is completely prime. The following theorem, which contains similar connections to the preceding results among $\mathbf{N}(R), \mathbf{N}_{r}(R)$ and $\mathbf{P}_{C}(R)$, is our main result in this note.

Theorem 5. For a ring R, the following statements are equivalent: (1) R satisfies (${ }^{*}$).
(2) Every minımal strongly prime ideal of R is completely prime.
(3) $\mathbf{N}_{r}(R)=\mathbf{P}_{C}(R)$.

Proof. (1) $\Rightarrow(2)$: Let P be a minimal strongly prime ideal of R such that $a b \in P$ and $b \notin P$. Then by Corollary $4,(a b) c \in \mathbf{N}_{r}(R)$ for some $c \in R \backslash P$. Snce $R \backslash P$ is a m-system and $b, c \in R \backslash P$, there exists $z \in R$ such that $b z c \in R \backslash P$. Also by Lemma $1, \mathbf{N}_{r}(R)$ has the IFP. So we have $a R(b z c) \subseteq \mathbf{N}_{r}(R)$ and $a \in N(P)=P$. Therefore P is a completely prime ideal of R.
$(2) \Rightarrow(3): \mathbf{N}_{r}(R)$ is the intersection of mmimal strongly prime ideals in R, so an intersection of completely prime ideals by the condition, and this contains $\mathbf{P}_{C}(R)$. Next since $R / \mathbf{P}_{C}(R)$ is reduced, also $\mathbf{N}_{\boldsymbol{r}}(R) \subseteq$ $\mathbf{P}_{C}(R)$.
(3) \Rightarrow (1) : By hypothesis $R / \mathbf{N}_{r}(R)$ is a subdirect product of domains and so it is reduced; hence R satisfies (*).

References

[1] G.F. Bırkenmeier, H E. Heatherly and E K. Lee, Completely prime ideals and associated radicals, Proc Bienmal Ohio State-Denison Conference 1992, edited
by S.K. Jain and S.T. Rizvi, World Scientifc, Singapore-New Jersey-LondonHong Kong (1993), 102-129.
[2] G F. Birkenmeier, J.Y Kım and J.K. Park, Regularity condetions and the simplacity of prime factor rings, J Pure and Appl. Algebra 115 (1997), 213-230.
[3] L.H. Rowen, Rang Theory, Academic Press, Inc., San Diego, 1991.
[4] G. Shin, Prıme ideals and sheaf representatzon of a pseudo symmetric rings, Trans. Amer. Math Soc 184 (1973), 43-60.

Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-maul: jungcho@pusan.ac.kr
Division of General Education
Hanbat National University
DaeJeon 305-719, Korea
E-mavi: nkikim@hanbat.ac.kr
Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-mall: ylee@pusan.ac.kr

