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Abstract

We introduce the notions of interval-valued fuzzy prime ideals, interval-valued fuzzy completely prime ideals and interval-
valued fuzzy weakly completely prime ideals. And we give a characterization of interval-valued fuzzy ideals and establish
relationships between interval-valued fuzzy completely prime ideals and interval-valued fuzzy weakly completely prime

ideals.
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1. Introduction and Preliminaries

In 1975, Zadeh[11] introduced the concept of interval-
valued fuzzy sets as a generalization of fuzzy sets intro-
duced by himself[10]. After then, Biswas[1] applied the
notion of interval-valued fuzzy sets to group theory. More-
over, Gorzalczany[4] applied it to a method of inference
in approximate reasoning, and Montal and Samanta[8] ap-
plied it to topology. Recently, Hur et al.[5] introduced the
concept of an interval-valued fuzzy relations and obtained
some of it’s properties. Also, Choi et al.[3] applied it to
topology in the sense of Sostak, Kang and Hur[7], and
Kang[6] applied it to algebra.

In this paper, we introduce the notions of interval-valued
fuzzy prime ideals, interval-valued fuzzy completely prime
ideals and interval-valued fuzzy weakly completely prime
ideals. And we give a characterization of interval-valued
fuzzy ideals and establish relationships between interval-
valued fuzzy completely prime ideals and interval-valued
fuzzy weakly completely prime ideals.

Now, we will list some basic concepts and well-known
results which are needed in the later sections.

Let D(I) be the set of all closed subintervals of the
unit interval 7 = [0,1]. The elements of D(I) are gen-
erally denoted by capital letters M, N, - - -, and note that
M = [M*, MY], where M* and MY are the lower and
the upper end points respectively. Especially, we denoted ,
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0=10,0], 1 = [1,1], and a=][a, a] forevery a € (0,1). We
also note that

i (VM,N € D(I)) (M =N < ML = NL,MU =
NY),

(i) (YM,N € D(I)) (M < N & M* < NE, MU <
NY).
For every M € D(I), the complement of M, denoted by
M¢,is definedby M¢ =1—M = [1 — MY 1— MZ%|(See
[8D.

Definition 1.1 [8, 11]. A mapping A : X — D(I) is
called an interval-valued fuzzy set (in short, IVS) in X
and is denoted by A = [AL, AY]. Thus for each x € X,
A(z) = [AF(x), AY(x)], where AL (z)[resp. AY(x)] is
called the lower[resp. upper] end point of x to A. For any
[a,b] € D(I), the interval-valued fuzzy set A in X defined
by A(z) = [a, b] for each x € X is denoted by [a, b] and if
a = b, then the IVS [a, b] is denoted by simply @. In partic-
ular, 0 and 1 denote the interval-valued fuzzy empty set
and the interval-valued fuzzy whole set in X, respec-
tively.

We will denote the set of all IVSs in X as D(I)X. It is
clear that set A = [AL, AY] € D(I)X foreach A € IX.

Definition 1.2 [8]. Let A, B € D(I)* and let { A, }oer C
D(I)X. Then

(a) A C Biff AY < B and AV < BU.

(b) A= Biff AC Band B C A.

(©) A° =[1— AV, 1 — AL].

(d) AuB=[AL v BE AV v BY.

(@ U Ao = [\/ Agv \/ Ag]'

aecl’ ael ael
(e) AN B = [AY A BE AV A BY).



© () A« =\ AL N\ ALl
ael ael ael
Result 1.A [8, Theorem 1]. Let A, B,C € D(I)X and let
{Au}aer € D(I)X. Then
@0cAcl.
b)AUB=BUA,ANnB=BnNA.
cAu(BUC)=(AuB)UC,
AN(BAC) = (ANB)NC.
) A BCAUB,ANBC A, B.

@AN (| 4 = |J AnAn).

acl aecl
M AU([) Aa) = [ (AU AL).
B aGF 5 agF
(2 (0)°=1,(1)c=0.
(h) (A°)° = A.
(i) (|J 4w)° = ) 45, () 4 = U 45
ael acll ael acll

Definition 1.3 [7]. Let A be an IVS in a set X and let
[\, 1] € D(I). Then the set AM# = {2 € X : AL(z) >
Aand AY (z) > p} is called a [\, u]-level subset of A.

Definition 1.4 [8]. Let [\, u] € D(I). Then an interval-
valued fuzzy point(in short, IVP) x5 ) of X is the IVS in
X defined as follows : For each y € X,

T, p) (y) = { (L))\ML

ify = x;
otherwise.

)

In this case, x is called the support of x|y ,; and, A and p
are called the value and nonvalue of xy ,, respectively.
In particular, if A\ = p, then it is also denoted by . An
IVP x); is said to belong to an IVS A in X, denoted by
xy € Aif ME < AL(x) and MY < AY ().

Itis clear that A = Uy, caxpr and zps € A if and only
if 150 € AP and 0 € AU, foreach A € P(I)X.

We will denote the set of all IVPs in X as IVP(X).

The following is the immediate result of Definition 1.2
and 1.4.

Theorem 1.5. Let A, B € D(I)X. Then A C B if and
only if for each x5, € IVP(X), xp; € A implies 2, € B.

Definition 1.6 [7]. Let (X, -) be a groupoid and let A, B €
D(I)X. Then the interval-valued fuzzy product of A and
B, A o B is defined as follows : For each x € X,

Ao B(z)
[\ (A%(y) A B*(2)),

- yZ\/ (AY(y) ABY(2))], ifx=yz;
0, o orherwise.
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Result 1.B [7, Proposition 3.2]. Let (X, -) be a groupoid,
let ”o” be the same as above, let x5, yny € IVP(X) and let
A, B € D(I)X. Then

(@) zar o yn = (TY) MN-

(b) Ao B = UacMeA,yNEB T OYN-

Definition 1.7 [1]. Let G be a group and let A € D(I)“.
Then A is called an interval-valued fuzzy subgroup(in
short, IVG) of G if it satisfies the following conditions :

(a) AL (zy) > AL(z) A AE(y) and AY (zy) > AY(z) A
AU (y) for any x,y € G.

(b) AL (xz71) > A¥(x) and AV (271) > AY(z) for each
x € G.

We will denote the set of all IVGs as IVG(G).

Result 1.C [1, Proposition 3.1]. Let A be an IVG of
a group G with identity e. Then A(z~!) = A(x) and
AL(z) > AX(e), AY(z) > AY(e) for each x € G.

Definition 1.8 [7]. Let (R,+,) be a ring and let
0 # A € D). Then A is called an interval-
valued fuzzy subring(in short, IVR) of R if it satisfies fol-
lowing conditions :

(a) A is an IVG with respect to the operation ” + 7.

(b) Al(zy) > AL(x) A Al(y) and AY(zy) >
AY(z) A AY(y) for any z,y € R.

We will denote the set of all IVRs as IVR(R).

2. Interval-valued fuzzy ideals

Definition 2.1 [7]. Let A be a non-empty IVR of a ring R.
Then A is called an :

(1) interval-valued fuzzy left ideal (in short, IVLI) of R
if AF(zy) > AL (y) and AY (xy) > AY(y) for any z,y €
R.

(ii) interval-valued fuzzy right ideal (in short, IVRI) of
R if A¥(zy) > AL(z) and AY(zy) > AY(x) for any
z,y € R.

(iii) interval-valued fuzzy ideal (in short, IVRI) of R if
itis an IVLI and an IVRI of R .

We will denote the set of all IVRIs [resp. IVLIs and
IVIs] of R as IVRI(R) [resp. IVLI(R) and IVI(R) ].

Result 2.A [7, Proposition 6.6]. Let R be a ring. Then A
is an ideal [resp. a left ideal and a right ideal ] of R if and
any of [y, xa] € IVI(R) [resp. IVLI(R) and IVRI(R)].

Result 2.B [7, Proposition 6.5]. Let R be a ring and let

0 # A € D(I)®. Then A € IVI(R)[resp. IVLI(R) and
IVRI(R)] if and only if for any z,y € R,
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() Al(z —y) > AL(z) A AF(y) and AY(z — y) >
AY(z) A AY (y).
(i) A*(zy)
AY(z) AN AY(y) [resp.
AV(zy) > AY(y),

A (zy) = AY(2)).

> Al(z) A AE(y) and AY(zy) >
Ab(xy) > Al(y) and
Al(xy) > A¥(x) and

Lemma 2.2. Let R be aring and let A, B € D(I)%.

(a) If A, B € IVLI(R) [resp. IVRI(R) and IVI(R)], then
AN B € IVLIR) [resp. IVRI(R) and IVI(R)].

) If A € IVRIR) and B € IVLI(R), then
AoB C AN B.

Proof. (a) Suppose A, B € IVLI(R) and let x, y € R. Then

(AN B)t(z )
=AYz —y) AB (z —y)
> (A" (x) A A" (y)) A (B () A B ()
=(ANB)"*(x) A (AN B)"(y).
Similarly, we have (AN B)U(x —y) > (AN B)U(az) A
(AN B)Y (). Also
(AN B)*(zy)
=A(zy) A B (zy)
> A% (y) A BE(y) (Since A, B € IVLI(R))
=(ANB)"(y).
Similarly, we have (ANB)Y(zy) > (ANB)Y(y).
Hence, by Result 2.B, A N B € IVLI(R). Similarly, we
can easily see the rest.

(b) Let x € G and suppose A o B(z) = [0,0]. Then
there is nothing to show. Suppose A o B(x) # [0, 0]. Then

Ao B(x) = [V,_,.(A"(y) A BH(2)), V,_,.(AY (y) A
BY(z))]. Since A € IVRI(R) and B € IVLI(R),

Al(y) < AM(yz) = A (2), AV (y) < AV (y2) = AV (2)

and

B*(z) < B*(yz) = B"(x), BY () < BY(yz) = BY ().

Thus

(Ao B)"(z) = \/ (A*(y) A B"(2))

T=yz

< AM(z) A BY(z) = (AN B)" ().

Similarly, we have (A o B)Y (z) < (AN B)Y(z). Hence
Ao B C AN B. This completes the proof. O

A ring R is said to be regular if for each a € R there
exists an z € R such that a = aza.

200

Result 2.C [2, Theorem 9.4]. A ring R is regular if and
only if JM = J N M for each right ideal J and left ideal
M of R.

Theorem 2.3. A ring R is regular if and only if for each
A € IVRI(R) and each B € IVLI(R), Ao B= AN B.

Proof. (=) : Suppose R is regular. From Lemma 2.2(b),
it is clear that Ao B C AN B. Thus it is sufficient to
show that AN B C Ao B. Let a € R. Then, by the
hypothesis, there exists an € R such that a = aza. Thus
Af(a) = AL(aza) > Al(ax) > A%(a) and AY(a) =
AY(aza) > AY(ax) > AY(a). So A(az) = A(a).

On the other hand,
(AoB)"(a) = \/ (A"(y) A B"(2))

Al(ax) A BE(a)  (Since a = aza)
A¥(a) A B¥(a) = (AN B)"(a).

v

Similarly, we have (Ao B)Y(a) > (AN B)Y(a). Thus
ANBC Ao B.Hence Ao B=ANB.

(<) : Suppose the necessary condition holds. Let J and
M be right and left ideals of R, respectively. Then, by
Result 2.A, [x s, xs] € IVRI(R) and [xas, xas] € IVLI(R).
Leta € JN M andlet A = [xs,xs, B = [xm;xm]
Then, by the hypothesis, (Ao B)(a) = (ANB)(a) = [1,1].
Thus

(Ao B)*(a)

V' (A(a1) A B (a2))

a=ai1a2

— \/ (xs(a1) A xn(az))

a=aj1a

=1

Similarly, we have (Ao B)Y(a) = 1. So there exist
b1,b2 € R such that x;(b1) = 1 and xar(b2) = 1 with
a = biby. Thusa € JM, ie., JNM C JM. Since
JM C JNM,JM = JnN M. Hence, by Result 2.C, R is
regular. This completes the proof. [

3. Interval-valued fuzzy prime ideals

Definition 3.1. Let P be an IVI of a ring R. Then P is
said to be prime if P is not a constant mapping and for
any A, B € IVI(R), Ao B C P implies either A C P or
BCP.

We will denote the set of all interval-valued fuzzy prime
ideals of R as IVPI(R).

Theorem 3.2. Let J be an ideal of a ring R such that
J # R. Then J is a prime ideal of R if and only if



[x7,X7] € IVPI(R).

Proof. (=) : Suppose J is a prime ideal of R and let
P = [xJ,xJ]- Since J # R, P is not a constant mapping
on R. Assume that there exist A, B € IVI(R) such that
AoB C Pand A ¢ P and B ¢ P. Then there exist
z,y € R such that

AL(JU) > PL(x) = xJs(x), AU(x) > PU(I) = xs(x)
and
B(y) > P*(y) = xs(y), B (y) > PY(y) = xs(y).

Thus AL (z) # 0, AY(x) # 0and BL(y) # 0, BY (y) # 0.
But xs(z) = 0and xy(y) = 0. Sox ¢ Jandy ¢ J.
Since J is a prime ideal of R, by the process of the proof of
Theorem 2 in [9], there exist an r € R such that zry ¢ J.
Let a = xry. Then clearly, x j(a) = 0. Thus

Ao B(a) =[0,0].
On the other hand,
(AoB)(a) =

3.1)

V (A%(e) A BH(a))

a=cd
AL (z) A BE(ry) (Since a = zry)
AL (z) A BE(y) (Since B € IVI(R))

> 0. (Since A¥(x)#0 and B%(y) #0)

Similarly, we have (A o B)Y(a) > 0. Then A o B(a) # 0.
This contradicts (3.1). So P satisfies the second condition
of Definition 3.1. Hence P = [x s, x] € IVPI(R).

(<) : Suppose P = [xJ,xs] € IVPI(R). Since P is
not a constant mapping on R, J # R. Let A and B be
two ideals of R such that AB C J. Let A B € IVI(R).
Consider the product AoB. Letz € R. o

Suppose A o B(z) = [0,0]. Then clearly Ao B C P.

Suppose A o B(z) # [0,0]. Then (Ao E)L(x) =
Veey-(xa(y) A xB(2)) # 0. Similarly, we have

(Ao E)U(q:) # 0. Thus there exist y, z € R with x = yz
such that x4(y) # 0 and xp(z) # 0. So xa(y) = 1
and xp(z) = 1. This implies y € A and z € B. Thus
r =yz € AB C J. So xy(z) = 1. It follows that
AoB C P.Since P € IVPI(R), either A C Por B C P.
Thus either A C J or B C J. Hence J is a prime ideal of
R. This completes the proof. O

Proposition 3.3. Let P be an interval-valued fuzzy prime
ideals of aring Rand let Rp = {z € R: P(z) = P(0)}.
Then Rp is a prime ideal of R.

Proof. Let 2,y € Rp. Then P(x) = P(0) and P(y) =
P(0). Thus Pl(z — y) > PE(x) A PE(y) = PL(0).
Similarly, we have PY (z—%) > PY(0). Since P € IVI(R),

PE(0) = PE(0(z — y)) = P*(z —y).

Interval-Valued Fuzzy Ideals of a Ring

Similarly, we have PY(0) > PY(z —y).Soz —y € Rp.

Now letr € Rand let x € Rp. Then
PE(ra) > PY(x) = P*(0)and PY(rz) > PY(2) = PY(0).
By Result 1.C, P(rz) = P(0). So rz € Rp. Similarly we
have xr € Rp. Hence Rp is an ideal of R.

Let J and M be two ideals of R such that JM C
Rp. We define two mappings A,B : R — D(I) by
A = P(0)[xs,xs] and B = P(0)[xar, x|, respectively,
where P(0)[x.s,xs] = [PL(0)xs, PY(0)xs]. Then we
can easily prove that A, B € IVI(R). Let x € R.

Suppose A o B(x) = [0,0]. Then Ao B C P.

Suppose A o B(x) # [0,0]. Then (A oB) (z) =
Ve, (A5W) A BHE) = Vomy o (PEON ()
PL(0)xas(2)) # 0. Similarly, we have (A o B)Y (z) # 0
Thus there exist y, z € R with z = yz such that

PE(0)xa(y) A P*(0)xar(2) # 0

and
PY(0)xs(y) A PY(0)xa(z) # 0.

So xs(y) =1and xp(2) = 1. Thusy € Jand z € M,
ie, r = yz € JM C Rp. So P(x) = P(0), ie.,
Ao B C P. Since P € IVPIR) and A, B € IVI(R),
either A C P or B C P. Suppose A C P. Then
P(0)[xs,xs] C P. Assume that J C Rp. Then there
exists an a € J such that a ¢ Rp. Thus P(a) # P(0). By
Result 1.C, PE(a) < PE(0) and PY(a) < PY(0). Then
AL(a) = PY(0)xs(a) = PY(0) > PZ(a). Similarly, we
have AY(a) > PY(a). This contradicts the assumption
that A C P. So J C Rp. By the similar arguments, we
can show that if B C P, then M C Rp. Hence Rp is a
prime ideal of R. This completes the proof. O

Remark 3.4. Let P € IVI(Z). Then, by Proposition 3.3,
Rp is an ideal of Z. Hence there exists an integer n > 0
such that Rp = nZ.

Proposition 3.5. Let P € IVI(Z) with Rp = nZ # (0).
Then P can take at most r values, where r is the number
of distinct positive divisors of n.

Proof . Let a € Z and let d = (a,n). Then there exist
r,s € Z such that d = ar + ns. Thus

P(d)

Similarly, we have PY(d) > PY(a) A PY(n). Since n €
Rp = nZ, by Result 1.C,

PE(n) = P¥(0) > P%(a) and PY(n) = PY(0) > PY(a).

Thus PL(d) > P%(a) and PY(d) > PY(a). Since d is a
divisor of a, there exists a ¢t € Z such that a = dt. Then
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PL(a) = PL(dt) > P¥(d) and PU(a) = PY(dt) >

PY(d).
So P(a) = P(d). Moreover, by Result 1.C,
P(z) = P(—x) for each x € R. Hence for each

a € Z there exists a positive divisor d of n such that
P(a) = P(d). This completes the proof. O

The following result gives a complete characterization
of interval-valued fuzzy prime ideals of Z :

Theorem 3.6. Let P € IVPI(Z) with Zp # (0). Then P
has two distinct values. Conversely, if P € D(I)% such
that P(n) = [A1,p1] when p | n and P(n) = [Az2, po)
when p { n, where p is a fixed prime, A\; > A2 and
H1 > g, then P € IVPI(Z) with Zp # (0).

Proof. Suppose P € IVPI(Z) with Zp = nZ # (0). Then,
by Proposition 3.3, Zp is a prime ideal of Z. Thus n is a
prime integer. Since n has two distinct positive integers, by
Proposition 3.5, P has at most two distinct values. On the
other hand, an interval-valued fuzzy prime ideals cannot be
a constant mapping. Hence P has two distinct values.

Conversely, let P be an IVS in Z satisfying the given
conditions. Let a, b € Z.

Case(i): Suppose p | (a —b). Then P(a —b) = [A1, p1]-
Thus A\; = PX(a —b) > PE(a) A PL(b) (Since A1 > Ag)
and p11 = PY(a —b) > PY(a) A PY(b) (Since p1 > pa).

Case(ii): Suppose p 1 (a —b). Then p f a or p 1 b.
Thus either P(a) = [)\2, ,ug] or P(b) = [)\2, ,LLQ]. So Ay =
Pl(a —b) > PE(a) A PE(b) and py = PY(a — b) >
PY(a) A PY(b).

Case(iii): Suppose p | ab. Then clearly P (ab)
PL(b) and PY (ab) > PY(b).

Case(iv): Suppose p t ab. Then p { a and p 1 b.
Thus PL(ab) > PL(b) and PY(ab) > PY(b). Conse-
quently, by Result 1.C, P € IVI(Z) with Zp = pZ # (0).
Moreover, by the similar arguments of the proof of Propo-
sition 3.2, we can see that P € IVPI(Z). This completes
the proof. O

Y

Proposition 3.7. Let R be a ring with 1. If every IVI of R
has finite values, then R is a Noetherian ring.

Proof . Let {J;};cz+ be a sequence of ideals of R such that
Ji1 CJy CJ3C---andletJ = (J;cp+ Ji- Then clearly
J is an ideal of R. We define a mapping P : R — D(I) as
follows : Foreach z € R,

0, ifedJ;
1
11 11
where 4, = minimum of ¢ such that z € J;. Then it is clear
that P € IVI(R) from the definition of P. Moreover, we
can easily see that P € IVI(R). If the chain does not termi-
nate, then P takes infinitely many values. This contradicts
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the hypothesis. Thus the chain terminates. Hence R is a
Noetherian ring. This completes the proof. O

Proposition 3.8. Let A : Z — D(I) be the mapping such
that

(a) A(z) = A(—=x) for each z € Z.

(b) Ab(z +y) > AF(x) A AF(y) and AV (z +y) >
AY(z) A AY(y) for any z,y € Z.
If there exists a non-zero integer m such that
A(m) = A(0), then A can take at most finitely many
values.

Proof. It is clear that A € D(I)% from the definition of A.
Moreover, we can easily show that A € IVI(Z) such that
Z 4 # (0). Hence, by Proposition 3.5, A can take at most
finitely many values. O

4. Interval-valued fuzzy completely prime
ideals

Definition 4.1. Let P be an IVI of a ring R. Then P is
called an interval-valued fuzzy completely prime ideals(in
short, IVCPI) of R if it satisfies the following conditions :

(a) P is not a constant mapping.

(b) For any xp;,yn € IVPRR), 57 o yy € P implies
either xp; € Poryy € P.

We will denote the set of all IVCPIs of R as IVCPI(G).

Proposition 4.2. (a) Let R be a ring. Then IVCPI(R) C
IVPI(R).

(b) Let R be a commutative ring. Then IVPI(R) C
IVCPI(R). Hence IVCPI(R) = IVPI(R).

Proof . (a) Let P € IVCPI(R) and let A, B € IVI(R) such
that Ao B C P. Suppose A ¢ P. Then, by Theorem
1.5, there exists an x5 ,; € IVP(R) such that [, ,; € P
but z[y ) & P. Lety;;q € B. Then, by Result 1.B(a),
T © Yit,s] = (TY)[ant,uns)- On the other hand,

PY(zy) > (Ao B)*(zy) > A*(z) A B"(y)
=AAt= (x[)\’#] o y[t’s])L(l‘y).

Similarly, we have PV (zy) > (x[y ) © y[t’s])U(scy).

Let z € R such that 2 # xy. Then clearly [z[) ) ©
Yit,s)(2) = [0,0]. Thus x5, o y,s) € P. Since P €
IVCPI(R), w5, € Poryy, € P. Since z)y ) € P,
Yt,s] € P. So, by Theorem 1.5, B C P. Hence P €
IVPI(R).

(b) Let P € IVPI(R) and let (5 ), yjz.«] € IVP(R) such
that T © Yits] € P. Then (.’13[)\’#] Oy[t’S])L(l‘y) <

Pl(zy) and (zp 0 yre)" (zy) < PY(xy).



Thus, by Result 1.B(a),
ANt < PE(zy)and p A s < PY(ay). 4.1)

We define two mappings A, B : R — D(I) as follows :
For each z € R,

[, ifze (a);

Al2) _{ [0,0], otherwise.

e t,s) )
_ t,s|, ifze(y);

B(z) = { [0,0], otherwise,

where () is the ideal generated by x. Then clearly A, B €
D(I)® from the definitions of A and B. It is easily seen
that if z is not expressible in the form z = wwv for some
u € (z) and v € (y), then A o B(z) = [0,0]. Suppose
there exist u € (x) and v € (y) such that z = wv. Then

AoB) ()=

z=uv,u€(z),ve(y)

(AL (u) A BE(v)) = ANt

and

AoB)(z)=

z=uv,uc(x),ve(y)

(AY(u)ABY (v)) = pns.

Since R is commutative and v € (z), there exist n € Z
and b € R such that w = nx + zb. Since v € (y), there
exist m € Z and ¢ € R such that v = my + yc. Since
R is commutative, uv = (nx + xb)(my + yc) = xyd +
mnzy for some d € R. Then

P*(uv) Pt (ay)
AN

(Since P € IVI(R))
(By (4.1))

Similarly, we have that PY (uv) > PY(zy) > p A s. Thus
ZMAtuns] = Uay] © Vt,s) € P. So,inall, Ao B C P. On
the other hand, from the definitions of A and B, we can
easily prove that A, B € IVI(R). Since P € IVPI(R), either
A C Por B C P. Thus either z) ,,) € Poryp € P.
Hence P € IVCPI(R). This completes the proof. O

>
2

Proposition 4.3. Let P be a non-constant IVI of a ring R.
(a) If P is an IVPI [resp. IVCPI] of R, then
() Rp is a prime [resp. completely prime] ideal of R.
(i) Im P consists of exactly two points of D(I).
(b) If P(0) = [1, 1] and P satisfies the conditions (i) and
(i), then P € IVPI(R) [resp. IVCPI(R)].

Proof . (a) We shall confirm our proof to the case of
interval-valued fuzzy prime ideals. An analogous proof
can be given by for interval-valued fuzzy completely prime
ideals. Suppose P € IVPI(R). Then, by Proposition 3.3,
Rp is a prime ideal of R. Assume that ImP contains
more than two values. Then there exist z,y € R\ Rp

Interval-Valued Fuzzy Ideals of a Ring

such that P(z) # P(y). Suppose without loss of gener-
ality that PX(z) < PL(y) and PY(z) < PY(y). Since
P ¢ IVI(R) and A(y) # A(0), by Result 1.C, PX(x) <
PL(y) < PE(0) and PY(x) < PY(y) < PY(0). Let
[A, 1], [t, s] € D(I) be chosen such that

PE(z) < XA < PE(y) <t < PE(0)

and 4.2)

PY(z) < p < PY(y) < s < PY(0).

Let (z) and (y) denote respectively the ideals generated by
x and y. We define two mappings A, B : R — D(I) as
follows: A = [Ax(2), 41X ()] and B = [tX(y), X (y)]. Then
it is easily seen that A, B € IVI(R) from the definitions of
Aand B. Let z € R which cannot be expressed in the from
z =wuv foru € (x) and v € (y). Then Ao B(z) = [0,0].
Thus Ao B C P. Now let z € R. Suppose there exist
u € (z) and v € (y) such that z = uv for some u € ()
and v € (y). Then

AoB)(z)=

z=uv,u€(z),ve(y)

Similarly, we have (Ao B)Y(z) = p. Since u € (),
there exist m € Z and r; € R(i = 1,2,3,4) such that u =
mx + rix + xry + ryaxry. Similarly, there exist n € Z and
s; € R(1 =1,2,3,4) such thatv = ny+s1y+ysa+s3ysqa.
Since P € IVI(R), by Result 1.C,

PL(z) = PL(uv) > PE(z) A PL(y) > A
and
PY(2) = PY(uv) > PY(x) A PY(y) > p.

Thus (Ao B)"(z) < PL(z) and (Ao B)Y(z) < PY(2).
So Ao B C P. Since P € IVPI(R), either A C P or
B C P. Then either A% (z) = A < PL(2), AY(2) = u <
PY(z) or B¥(y) = t < P*(y), BV(y) = s < PY(y).
This contradicts (4.2). Hence ImP consists of exactly two
points of D(I).

(b) Suppose P(0) = [1,1] and P satisfies the conditions
(1) and (ii). Then, by the similar arguments of proof of
Theorem 3.2, we can see that P € IVPI(R). This completes
the proof. O

Corollary 4.3. Let P be an interval-valued fuzzy com-
pletely prime ideal of a ring R. Then for any z,y € R,
P(zy) = [Pt(z) A PE(y), PY(x) A PY(y)].

Remark 4.4. Proposition 4.3 generalizes Proposition 3.5.
Definition 4.5. Let A be a non-constant IVI of

a ring R. Then A is called an interval-valued
fuzzy weakly completely prime ideal of R if for any
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(AF(u)AB"(v)) = At = \.
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z,y € R, A(zy) = [A"(z) N AR (y), AV (z) A AY (y)].

The following is the immediate result of Definitions 4.1
and 4.5.

Proposition 4.6. Let A be an interval-valued fuzzy
weakly completely prime ideal of a ring R. Then for
each [\, u] € D(I), xpp) © Yp,s) € A implies that
either x[y ) € Aoryy, € A. Furthermore, for each
[A\,u] € D(I) such that A + p < 1,A < AL(0) and
pu < AY(0), APH is a completely prime ideal of R. In
particular, A1%% is a completely prime ideal of R. Con-
versely if for each [\, ] € D(I), AM# is a completely
prime ideal then A is an interval-valued fuzzy weakly
completely prime ideal.

The following is the example that an interval-valued
fuzzy weakly completely prime ideal need not be an
interval-valued fuzzy completely prime ideal.

Example 4.7. Let R = Z x Z, let S = {0} x Z and let
T = (2) x Z. We define a mapping A : R — D(I) as
follows : For each z € R,

[1,1], ifzes;
Alz) =14 (3,3), ifzeT\S;
[0,0], ifzc R\T.

Then clearly A € D(I)" from the definition of A.
Moreover, we can easily show that A is an interval-valued
fuzzy weakly completely prime ideal but, by Proposition
4.2, A is not an interval-valued fuzzy weakly completely
prime ideal. O

References

[1] R.Biswas, “Rosenfeld’s fuzzy subgroups with
interval-valued membership functions,” Fuzzy set

and systems, vol. 63, pp. 87-90, 1995.

[2] D.M.Burton, “A First Course
Ideals”’(Addition-Wesley, 1970).

in Rings and

[3] J.Y.Choi, S.RKim and K.Hur, “Interval-valued
smooth topological spaces,” Honam Math.J., vol. 32,
pp. 711-738, 2010.

204

[4] M.B. Gorzalczany, “A method of inference in approx-
imate reasoning based on interval-valued fuzzy sets,”
Fuzzy Sets and Systems, vol. 21, pp. 1-17, 1987.

[5]1 K.Hur, J.G.Lee and J.Y.Choi, “Interval-valued fuzzy
relations,” J.Korean Institute of Intelligent systems,
vol. 19, pp. 425-432, 2009.

[6] H.W.Kang, “Interval-valued fuzzy subgroups and ho-
momorphisms,” Honam Math. J., vol. 33, 2011.

[7] K.-Hur and H.W.Kang, “Interval-valued fuzzy sub-
groups and rings,” Honam Math.J., vol. 32, pp. 593-
617, 2010.

[8] T.K.Mondal and S.K.Samanta, “Topology of interval-
valued fuzzy sets,” Indian J.Pure Appl.Math., vol. 30,
pp- 20-38, 1999.

[9] T.K.Mukherjee and M.K.Sen, “On fuzzy ideals of a
ring,” Fuzzy sets and Systems, vol. 21, pp. 98-104,
1987.

[10] L.A.Zadeh, “Fuzzy sets,” Inoform. and Centrol, vol.
8, pp. 338-353, 1965.

[11] L.A.Zadeh, “The concept of a linguistic variable
and its application to approximate reasoning 1,” In-
form.Sci, vol. 8, pp. 199-249, 1975.

Keon Chang Lee

Professor in Dongshin University

His research interests are Category Theory, Hyperspace
and Topology.

E-mail : kclee@dsu.ac.kr

Kul Hur

Professor in Wonkwang University

His research interests are Category Theory, Hyperspace
and Topology.

E-mail : kulhur@wonkwang.ac.kr

Pyung Ki Lim

Professor in Wonkwang University

His research interests are Category Theory, Hyperspace
and Topology.

E-mail : pklim@wonkwang.ac.kr



