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Abstract

We introduce the notions of interval-valued fuzzy prime ideals, interval-valued fuzzy completely prime ideals and interval-
valued fuzzy weakly completely prime ideals. And we give a characterization of interval-valued fuzzy ideals and establish
relationships between interval-valued fuzzy completely prime ideals and interval-valued fuzzy weakly completely prime
ideals.
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1. Introduction and Preliminaries

In 1975, Zadeh[11] introduced the concept of interval-
valued fuzzy sets as a generalization of fuzzy sets intro-
duced by himself[10]. After then, Biswas[1] applied the
notion of interval-valued fuzzy sets to group theory. More-
over, Gorzalczany[4] applied it to a method of inference
in approximate reasoning, and Montal and Samanta[8] ap-
plied it to topology. Recently, Hur et al.[5] introduced the
concept of an interval-valued fuzzy relations and obtained
some of it’s properties. Also, Choi et al.[3] applied it to
topology in the sense of Šostak, Kang and Hur[7], and
Kang[6] applied it to algebra.

In this paper, we introduce the notions of interval-valued
fuzzy prime ideals, interval-valued fuzzy completely prime
ideals and interval-valued fuzzy weakly completely prime
ideals. And we give a characterization of interval-valued
fuzzy ideals and establish relationships between interval-
valued fuzzy completely prime ideals and interval-valued
fuzzy weakly completely prime ideals.

Now, we will list some basic concepts and well-known
results which are needed in the later sections.

Let D(I) be the set of all closed subintervals of the
unit interval I = [0, 1]. The elements of D(I) are gen-
erally denoted by capital letters M,N, · · ·, and note that
M = [ML,MU ], where ML and MU are the lower and
the upper end points respectively. Especially, we denoted ,
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0 = [0, 0], 1 = [1, 1], and a=[a, a] for every a ∈ (0, 1). We
also note that

(i) (∀M,N ∈ D(I)) (M = N ⇔ ML = NL,MU =
NU ),

(ii) (∀M,N ∈ D(I)) (M ≤ N ⇔ ML ≤ NL,MU ≤
NU ).
For every M ∈ D(I), the complement of M , denoted by
M c, is defined by M c = 1−M = [1−MU , 1−ML](See
[8]).

Definition 1.1 [8, 11]. A mapping A : X → D(I) is
called an interval -valued fuzzy set (in short, IVS) in X
and is denoted by A = [AL, AU ]. Thus for each x ∈ X ,
A(x) = [AL(x), AU (x)], where AL(x)[resp. AU (x)] is
called the lower [resp. upper ] end point of x toA. For any
[a, b] ∈ D(I), the interval-valued fuzzy set A in X defined
by A(x) = [a, b] for each x ∈ X is denoted by ˜[a, b] and if
a = b, then the IVS ˜[a, b] is denoted by simply ã. In partic-
ular, 0̃ and 1̃ denote the interval -valued fuzzy empty set
and the interval -valued fuzzy whole set in X , respec-
tively.

We will denote the set of all IVSs in X as D(I)X . It is
clear that set A = [AL, AU ] ∈ D(I)X for each A ∈ IX .

Definition 1.2 [8]. Let A,B ∈ D(I)X and let {Aα}α∈Γ ⊂
D(I)X . Then

(a) A ⊂ B iff AL ≤ BL and AU ≤ BU .
(b) A = B iff A ⊂ B and B ⊂ A.
(c) Ac = [1−AU , 1−AL].
(d) A ∪B = [AL ∨BL, AU ∨BU ].
(d)′

⋃
α∈Γ

Aα = [
∨
α∈Γ

ALα,
∨
α∈Γ

AUα ].

(e) A ∩B = [AL ∧BL, AU ∧BU ].
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(e)′
⋂
α∈Γ

Aα = [
∧
α∈Γ

ALα,
∧
α∈Γ

AUα ].

Result 1.A [8, Theorem 1]. Let A,B,C ∈ D(I)X and let
{Aα}α∈Γ ⊂ D(I)X . Then

(a) 0̃ ⊂ A ⊂ 1̃.
(b) A ∪B = B ∪A , A ∩B = B ∩A.
(c) A ∪ (B ∪ C) = (A ∪B) ∪ C ,
A ∩ (B ∩ C) = (A ∩B) ∩ C.

(d) A,B ⊂ A ∪B , A ∩B ⊂ A,B.
(e) A ∩ (

⋃
α∈Γ

Aα) =
⋃
α∈Γ

(A ∩Aα).

(f) A ∪ (
⋂
α∈Γ

Aα) =
⋂
α∈Γ

(A ∪Aα).

(g) (0̃)c = 1̃ , (1̃)c = 0̃.
(h) (Ac)c = A.
(i) (

⋃
α∈Γ

Aα)c =
⋂
α∈Γ

Acα , (
⋂
α∈Γ

Aα)c =
⋃
α∈Γ

Acα.

Definition 1.3 [7]. Let A be an IVS in a set X and let
[λ, µ] ∈ D(I). Then the set A[λ,µ] = {x ∈ X : AL(x) ≥
λ and AU (x) ≥ µ} is called a [λ, µ]-level subset of A.

Definition 1.4 [8]. Let [λ, µ] ∈ D(I). Then an interval -
valued fuzzy point(in short, IVP) x[λ,µ] of X is the IVS in
X defined as follows : For each y ∈ X ,

x[λ,µ](y) =

{
[λ, µ], if y = x;
0̃, otherwise.

In this case, x is called the support of x[λ,µ] and, λ and µ
are called the value and nonvalue of x[λ,µ], respectively.
In particular, if λ = µ, then it is also denoted by xλ. An
IVP xM is said to belong to an IVS A in X , denoted by
xM ∈ A if ML ≤ AL(x) and MU ≤ AU (x).

It is clear that A = ∪xM∈AxM and xM ∈ A if and only
if xML ∈ AL and xMU ∈ AU , for each A ∈ P (I)X .

We will denote the set of all IVPs in X as IVP(X).

The following is the immediate result of Definition 1.2
and 1.4.

Theorem 1.5. Let A,B ∈ D(I)X . Then A ⊂ B if and
only if for each xM ∈ IVP(X), xM ∈ A implies xM ∈ B.

Definition 1.6 [7]. Let (X, ·) be a groupoid and let A,B ∈
D(I)X . Then the interval -valued fuzzy product of A and
B, A ◦B is defined as follows : For each x ∈ X ,

A ◦B(x)

=


[
∨
x=yz

(AL(y) ∧BL(z)),∨
x=yz

(AU (y) ∧BU (z))], if x = yz;

0̃, orherwise.

Result 1.B [7, Proposition 3.2]. Let (X, ·) be a groupoid,
let ”◦” be the same as above, let xM , yN ∈ IVP(X) and let
A,B ∈ D(I)X . Then

(a) xM ◦ yN = (xy)M∩N .
(b) A ◦B =

⋃
xM∈A,yN∈B xM ◦ yN .

Definition 1.7 [1]. Let G be a group and let A ∈ D(I)G.
Then A is called an interval -valued fuzzy subgroup(in
short, IVG) of G if it satisfies the following conditions :

(a) AL(xy) ≥ AL(x)∧AL(y) and AU (xy) ≥ AU (x)∧
AU (y) for any x, y ∈ G.

(b)AL(x−1) ≥ AL(x) andAU (x−1) ≥ AU (x) for each
x ∈ G.

We will denote the set of all IVGs as IVG(G).

Result 1.C [1, Proposition 3.1]. Let A be an IVG of
a group G with identity e. Then A(x−1) = A(x) and
AL(x) ≥ AL(e), AU (x) ≥ AU (e) for each x ∈ G.

Definition 1.8 [7]. Let (R,+, ·) be a ring and let
0̃ 6= A ∈ D(I)R. Then A is called an interval -
valued fuzzy subring(in short, IVR) of R if it satisfies fol-
lowing conditions :

(a) A is an IVG with respect to the operation ” + ”.
(b) AL(xy) ≥ AL(x) ∧ AL(y) and AU (xy) ≥

AU (x) ∧AU (y) for any x, y ∈ R.

We will denote the set of all IVRs as IVR(R).

2. Interval-valued fuzzy ideals

Definition 2.1 [7]. Let A be a non-empty IVR of a ring R.
Then A is called an :

(i) interval -valued fuzzy left ideal (in short, IVLI) ofR
if AL(xy) ≥ AL(y) and AU (xy) ≥ AU (y) for any x, y ∈
R.

(ii) interval -valued fuzzy right ideal (in short, IVRI) of
R if AL(xy) ≥ AL(x) and AU (xy) ≥ AU (x) for any
x, y ∈ R.

(iii) interval -valued fuzzy ideal (in short, IVRI) of R if
it is an IVLI and an IVRI of R .

We will denote the set of all IVRIs [resp. IVLIs and
IVIs] of R as IVRI(R) [resp. IVLI(R) and IVI(R) ].

Result 2.A [7, Proposition 6.6]. Let R be a ring. Then A
is an ideal [resp. a left ideal and a right ideal ] of R if and
any of [χA, χA] ∈ IVI(R) [resp. IVLI(R) and IVRI(R)].

Result 2.B [7, Proposition 6.5]. Let R be a ring and let
0̃ 6= A ∈ D(I)R. Then A ∈ IVI(R)[resp. IVLI(R) and
IVRI(R)] if and only if for any x, y ∈ R,
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(i) AL(x − y) ≥ AL(x) ∧ AL(y) and AU (x − y) ≥
AU (x) ∧AU (y).

(ii) AL(xy) ≥ AL(x) ∧ AL(y) and AU (xy) ≥
AU (x) ∧ AU (y) [resp. AL(xy) ≥ AL(y) and
AU (xy) ≥ AU (y), AL(xy) ≥ AL(x) and
AU (xy) ≥ AU (x)].

Lemma 2.2. Let R be a ring and let A,B ∈ D(I)R.
(a) If A,B ∈ IVLI(R) [resp. IVRI(R) and IVI(R)], then

A ∩B ∈ IVLI(R) [resp. IVRI(R) and IVI(R)].
(b) If A ∈ IVRI(R) and B ∈ IVLI(R), then

A ◦B ⊂ A ∩B.

Proof. (a) SupposeA,B ∈ IVLI(R) and let x, y ∈ R. Then

(A ∩B)L(x− y)

=AL(x− y) ∧BL(x− y)

≥(AL(x) ∧AL(y)) ∧ (BL(x) ∧BL(y))

=(A ∩B)
L

(x) ∧ (A ∩B)
L

(y).

Similarly, we have (A ∩B)
U

(x − y) ≥ (A ∩B)
U

(x) ∧
(A ∩B)

U
(y). Also

(A ∩B)L(xy)

=AL(xy) ∧BL(xy)

≥AL(y) ∧BL(y) (Since A,B ∈ IVLI(R))

=(A ∩B)
L

(y).

Similarly, we have (A ∩B)
U

(xy) ≥ (A ∩B)
U

(y).
Hence, by Result 2.B, A ∩ B ∈ IVLI(R). Similarly, we
can easily see the rest.

(b) Let x ∈ G and suppose A ◦ B(x) = [0, 0]. Then
there is nothing to show. Suppose A ◦B(x) 6= [0, 0]. Then
A ◦ B(x) = [

∨
x=yz(A

L(y) ∧ BL(z)),
∨
x=yz(A

U (y) ∧
BU (z))]. Since A ∈ IVRI(R) and B ∈ IVLI(R),

AL(y) ≤ AL(yz) = AL(x), AU (y) ≤ AU (yz) = AU (x)

and

BL(z) ≤ BL(yz) = BL(x), BU (z) ≤ BU (yz) = BU (x).

Thus

(A ◦B)
L

(x) =
∨
x=yz

(AL(y) ∧BL(z))

≤ AL(x) ∧BL(x) = (A ∩B)
L

(x).

Similarly, we have (A ◦B)
U

(x) ≤ (A ∩B)
U

(x). Hence
A ◦B ⊂ A ∩B. This completes the proof.

A ring R is said to be regular if for each a ∈ R there
exists an x ∈ R such that a = axa.

Result 2.C [2, Theorem 9.4]. A ring R is regular if and
only if JM = J ∩M for each right ideal J and left ideal
M of R.

Theorem 2.3. A ring R is regular if and only if for each
A ∈ IVRI(R) and each B ∈ IVLI(R), A ◦B = A ∩B.

Proof. (⇒) : Suppose R is regular. From Lemma 2.2(b),
it is clear that A ◦ B ⊂ A ∩ B. Thus it is sufficient to
show that A ∩ B ⊂ A ◦ B. Let a ∈ R. Then, by the
hypothesis, there exists an x ∈ R such that a = axa. Thus
AL(a) = AL(axa) ≥ AL(ax) ≥ AL(a) and AU (a) =
AU (axa) ≥ AU (ax) ≥ AU (a). So A(ax) = A(a).
On the other hand,

(A ◦B)
L

(a) =
∨
a=yz

(AL(y) ∧BL(z))

≥ AL(ax) ∧BL(a) (Since a = axa)

= AL(a) ∧BL(a) = (A ∩B)
L

(a).

Similarly, we have (A ◦B)
U

(a) ≥ (A ∩B)
U

(a). Thus
A ∩B ⊂ A ◦B. Hence A ◦B = A ∩B.

(⇐) : Suppose the necessary condition holds. Let J and
M be right and left ideals of R, respectively. Then, by
Result 2.A, [χJ , χJ ] ∈ IVRI(R) and [χM , χM ] ∈ IVLI(R).
Let a ∈ J ∩ M and let A = [χJ , χJ ], B = [χM , χM ].
Then, by the hypothesis, (A◦B)(a) = (A∩B)(a) = [1, 1].
Thus

(A ◦B)L(a) =
∨

a=a1a2

(AL(a1) ∧BL(a2))

=
∨

a=a1a2

(χJ(a1) ∧ χM (a2))

= 1.

Similarly, we have (A ◦B)
U

(a) = 1. So there exist
b1, b2 ∈ R such that χJ(b1) = 1 and χM (b2) = 1 with
a = b1b2. Thus a ∈ JM , i.e., J ∩ M ⊂ JM . Since
JM ⊂ J ∩M , JM = J ∩M . Hence, by Result 2.C, R is
regular. This completes the proof.

3. Interval-valued fuzzy prime ideals

Definition 3.1. Let P be an IVI of a ring R. Then P is
said to be prime if P is not a constant mapping and for
any A,B ∈ IVI(R), A ◦ B ⊂ P implies either A ⊂ P or
B ⊂ P .

We will denote the set of all interval-valued fuzzy prime
ideals of R as IVPI(R).

Theorem 3.2. Let J be an ideal of a ring R such that
J 6= R. Then J is a prime ideal of R if and only if
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[χJ , χJ ] ∈ IVPI(R).

Proof. (⇒) : Suppose J is a prime ideal of R and let
P = [χJ , χJ ]. Since J 6= R, P is not a constant mapping
on R. Assume that there exist A,B ∈ IVI(R) such that
A ◦ B ⊂ P and A 6⊂ P and B 6⊂ P . Then there exist
x, y ∈ R such that

AL(x) > PL(x) = χJ(x), AU (x) > PU (x) = χJ(x)

and

BL(y) > PL(y) = χJ(y), BU (y) > PU (y) = χJ(y).

ThusAL(x) 6= 0,AU (x) 6= 0 andBL(y) 6= 0,BU (y) 6= 0.
But χJ(x) = 0 and χJ(y) = 0. So x /∈ J and y /∈ J .
Since J is a prime ideal ofR, by the process of the proof of
Theorem 2 in [9], there exist an r ∈ R such that xry /∈ J .
Let a = xry. Then clearly, χJ(a) = 0. Thus

A ◦B(a) = [0, 0]. (3.1)

On the other hand,

(A ◦B)
L

(a) =
∨
a=cd

(AL(c) ∧BL(d))

≥ AL(x) ∧BL(ry) (Since a = xry)

= AL(x) ∧BL(y) (Since B ∈ IVI(R))
> 0. (Since AL(x) 6= 0 and BL(y) 6= 0)

Similarly, we have (A ◦B)
U

(a) > 0. Then A ◦B(a) 6= 0̃.
This contradicts (3.1). So P satisfies the second condition
of Definition 3.1. Hence P = [χJ , χJ ] ∈ IVPI(R).

(⇐) : Suppose P = [χJ , χJ ] ∈ IVPI(R). Since P is
not a constant mapping on R, J 6= R. Let A and B be
two ideals of R such that AB ⊂ J . Let Ã, B̃ ∈ IVI(R).
Consider the product Ã ◦ B̃. Let x ∈ R.

Suppose Ã ◦ B̃(x) = [0, 0]. Then clearly Ã ◦ B̃ ⊂ P .

Suppose Ã ◦ B̃(x) 6= [0, 0]. Then (Ã ◦ B̃)
L

(x) =∨
x=yz(χA(y) ∧ χB(z)) 6= 0. Similarly, we have

(Ã ◦ B̃)
U

(x) 6= 0. Thus there exist y, z ∈ R with x = yz
such that χA(y) 6= 0 and χB(z) 6= 0. So χA(y) = 1
and χB(z) = 1. This implies y ∈ A and z ∈ B. Thus
x = yz ∈ AB ⊂ J . So χJ(x) = 1. It follows that
Ã ◦ B̃ ⊂ P . Since P ∈ IVPI(R), either Ã ⊂ P or B̃ ⊂ P .
Thus either A ⊂ J or B ⊂ J . Hence J is a prime ideal of
R. This completes the proof.

Proposition 3.3. Let P be an interval-valued fuzzy prime
ideals of a ring R and let RP = {x ∈ R : P (x) = P (0)}.
Then RP is a prime ideal of R.

Proof. Let x, y ∈ RP . Then P (x) = P (0) and P (y) =
P (0). Thus PL(x − y) ≥ PL(x) ∧ PL(y) = PL(0).
Similarly, we have PU (x−y) ≥ PU (0). SinceP ∈ IVI(R),

PL(0) = PL(0(x− y)) ≥ PL(x− y).

Similarly, we have PU (0) ≥ PU (x− y). So x− y ∈ RP .
Now let r ∈ R and let x ∈ RP . Then

PL(rx) ≥ PL(x) = PL(0) andPU (rx) ≥ PU (x) = PU (0).

By Result 1.C, P (rx) = P (0). So rx ∈ RP . Similarly we
have xr ∈ RP . Hence RP is an ideal of R.

Let J and M be two ideals of R such that JM ⊂
RP . We define two mappings A,B : R → D(I) by
A = P (0)[χJ , χJ ] and B = P (0)[χM , χM ], respectively,
where P (0)[χJ , χJ ] = [PL(0)χJ , P

U (0)χJ ]. Then we
can easily prove that A,B ∈ IVI(R). Let x ∈ R.

Suppose A ◦B(x) = [0, 0]. Then A ◦B ⊂ P .
Suppose A ◦ B(x) 6= [0, 0]. Then (A ◦B)

L
(x) =∨

x=yz(A
L(y) ∧ BL(z)) =

∨
x=yz(P

L(0)χJ(y) ∧
PL(0)χM (z)) 6= 0. Similarly, we have (A ◦B)

U
(x) 6= 0.

Thus there exist y, z ∈ R with x = yz such that

PL(0)χJ(y) ∧ PL(0)χM (z) 6= 0

and
PU (0)χJ(y) ∧ PU (0)χM (z) 6= 0.

So χJ(y) = 1 and χM (z) = 1. Thus y ∈ J and z ∈ M ,
i.e., x = yz ∈ JM ⊂ RP . So P (x) = P (0), i.e.,
A ◦ B ⊂ P . Since P ∈ IVPI(R) and A,B ∈ IVI(R),
either A ⊂ P or B ⊂ P . Suppose A ⊂ P . Then
P (0)[χJ , χJ ] ⊂ P . Assume that J ⊂ RP . Then there
exists an a ∈ J such that a /∈ RP . Thus P (a) 6= P (0). By
Result 1.C, PL(a) < PL(0) and PU (a) < PU (0). Then
AL(a) = PL(0)χJ(a) = PL(0) > PL(a). Similarly, we
have AU (a) > PU (a). This contradicts the assumption
that A ⊂ P . So J ⊂ RP . By the similar arguments, we
can show that if B ⊂ P , then M ⊂ RP . Hence RP is a
prime ideal of R. This completes the proof.

Remark 3.4. Let P ∈ IVI(Z). Then, by Proposition 3.3,
RP is an ideal of Z. Hence there exists an integer n ≥ 0
such that RP = nZ.

Proposition 3.5. Let P ∈ IVI(Z) with RP = nZ 6= (0).
Then P can take at most r values, where r is the number
of distinct positive divisors of n.

Proof . Let a ∈ Z and let d = (a, n). Then there exist
r, s ∈ Z such that d = ar + ns. Thus

PL(d) = PL(ar+ns) ≥ PL(ar)∧PL(ns) ≥ PL(a)∧PL(n).

Similarly, we have PU (d) ≥ PU (a) ∧ PU (n). Since n ∈
RP = nZ, by Result 1.C,

PL(n) = PL(0) ≥ PL(a) and PU (n) = PU (0) ≥ PU (a).

Thus PL(d) ≥ PL(a) and PU (d) ≥ PU (a). Since d is a
divisor of a, there exists a t ∈ Z such that a = dt. Then
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PL(a) = PL(dt) ≥ PL(d) and PU (a) = PU (dt) ≥
PU (d).
So P (a) = P (d). Moreover, by Result 1.C,
P (x) = P (−x) for each x ∈ R. Hence for each
a ∈ Z there exists a positive divisor d of n such that
P (a) = P (d). This completes the proof.

The following result gives a complete characterization
of interval-valued fuzzy prime ideals of Z :

Theorem 3.6. Let P ∈ IVPI(Z) with ZP 6= (0). Then P
has two distinct values. Conversely, if P ∈ D(I)Z such
that P (n) = [λ1, µ1] when p | n and P (n) = [λ2, µ2]
when p - n, where p is a fixed prime, λ1 > λ2 and
µ1 > µ2, then P ∈ IVPI(Z) with ZP 6= (0).

Proof. Suppose P ∈ IVPI(Z) with ZP = nZ 6= (0). Then,
by Proposition 3.3, ZP is a prime ideal of Z. Thus n is a
prime integer. Since n has two distinct positive integers, by
Proposition 3.5, P has at most two distinct values. On the
other hand, an interval-valued fuzzy prime ideals cannot be
a constant mapping. Hence P has two distinct values.

Conversely, let P be an IVS in Z satisfying the given
conditions. Let a, b ∈ Z.

Case(i): Suppose p | (a− b). Then P (a− b) = [λ1, µ1].
Thus λ1 = PL(a− b) ≥ PL(a) ∧ PL(b) (Since λ1 > λ2)
and µ1 = PU (a− b) ≥ PU (a) ∧ PU (b) (Since µ1 > µ2).

Case(ii): Suppose p - (a − b). Then p - a or p - b.
Thus either P (a) = [λ2, µ2] or P (b) = [λ2, µ2]. So λ2 =
PL(a − b) ≥ PL(a) ∧ PL(b) and µ2 = PU (a − b) ≥
PU (a) ∧ PU (b).

Case(iii): Suppose p | ab. Then clearly PL(ab) ≥
PL(b) and PU (ab) ≥ PU (b).

Case(iv): Suppose p - ab. Then p - a and p - b.
Thus PL(ab) ≥ PL(b) and PU (ab) ≥ PU (b). Conse-
quently, by Result 1.C, P ∈ IVI(Z) with ZP = pZ 6= (0).
Moreover, by the similar arguments of the proof of Propo-
sition 3.2, we can see that P ∈ IVPI(Z). This completes
the proof.

Proposition 3.7. Let R be a ring with 1. If every IVI of R
has finite values, then R is a Noetherian ring.

Proof . Let {Ji}i∈Z+ be a sequence of ideals ofR such that
J1 ⊂ J2 ⊂ J3 ⊂ · · · and let J =

⋃
i∈Z+ Ji. Then clearly

J is an ideal of R. We define a mapping P : R→ D(I) as
follows : For each x ∈ R,

P (x) =

 0, if x 6∈ J ;

[
1

i1
,

1

i1
], if x ∈ J .

where i1 = minimum of i such that x ∈ Ji. Then it is clear
that P ∈ IVI(R) from the definition of P . Moreover, we
can easily see that P ∈ IVI(R). If the chain does not termi-
nate, then P takes infinitely many values. This contradicts

the hypothesis. Thus the chain terminates. Hence R is a
Noetherian ring. This completes the proof.

Proposition 3.8. Let A : Z → D(I) be the mapping such
that

(a) A(x) = A(−x) for each x ∈ Z.
(b) AL(x + y) ≥ AL(x) ∧ AL(y) and AU (x + y) ≥

AU (x) ∧AU (y) for any x, y ∈ Z.
If there exists a non-zero integer m such that
A(m) = A(0), then A can take at most finitely many
values.

Proof. It is clear that A ∈ D(I)Z from the definition of A.
Moreover, we can easily show that A ∈ IVI(Z) such that
ZA 6= (0). Hence, by Proposition 3.5, A can take at most
finitely many values.

4. Interval-valued fuzzy completely prime
ideals

Definition 4.1. Let P be an IVI of a ring R. Then P is
called an interval-valued fuzzy completely prime ideals(in
short, IVCPI) of R if it satisfies the following conditions :

(a) P is not a constant mapping.
(b) For any xM , yN ∈ IVP(R), xM ◦ yN ∈ P implies

either xM ∈ P or yN ∈ P .
We will denote the set of all IVCPIs of R as IVCPI(G).

Proposition 4.2. (a) Let R be a ring. Then IVCPI(R) ⊂
IVPI(R).

(b) Let R be a commutative ring. Then IVPI(R) ⊂
IVCPI(R). Hence IVCPI(R) = IVPI(R).

Proof . (a) Let P ∈ IVCPI(R) and let A,B ∈ IVI(R) such
that A ◦ B ⊂ P . Suppose A 6⊂ P . Then, by Theorem
1.5, there exists an x[λ,µ] ∈ IVP(R) such that x[λ,µ] ∈ P
but x[λ,µ] 6∈ P . Let y[t,s] ∈ B. Then, by Result 1.B(a),
x[λ,µ] ◦ y[t,s] = (xy)[λ∧t,µ∧s]. On the other hand,

PL(xy) ≥ (A ◦B)L(xy) ≥ AL(x) ∧BL(y)

= λ ∧ t = (x[λ,µ] ◦ y[t,s])
L

(xy).

Similarly, we have PU (xy) ≥ (x[λ,µ] ◦ y[t,s])
U

(xy).

Let z ∈ R such that x 6= xy. Then clearly [x[λ,µ] ◦
y[t,s]](z) = [0, 0]. Thus x[λ,µ] ◦ y[t,s] ∈ P . Since P ∈
IVCPI(R), x[λ,µ] ∈ P or y[t,s] ∈ P . Since x[λ,µ] 6∈ P ,
y[t,s] ∈ P . So, by Theorem 1.5, B ⊂ P . Hence P ∈
IVPI(R).

(b) Let P ∈ IVPI(R) and let x[λ,µ], y[t,s] ∈ IVP(R) such
that x[λ,µ] ◦ y[t,s] ∈ P . Then (x[λ,µ] ◦ y[t,s])

L
(xy) ≤

PL(xy) and (x[λ,µ] ◦ y[t,s])
U

(xy) ≤ PU (xy).
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Thus, by Result 1.B(a),

λ ∧ t ≤ PL(xy) and µ ∧ s ≤ PU (xy). (4.1)

We define two mappings A,B : R → D(I) as follows :
For each z ∈ R,

A(z) =

{
[λ, µ], if z ∈ (x);
[0, 0], otherwise.

and

B(z) =

{
[t, s], if z ∈ (y);
[0, 0], otherwise,

where (x) is the ideal generated by x. Then clearly A,B ∈
D(I)R from the definitions of A and B. It is easily seen
that if z is not expressible in the form z = uv for some
u ∈ (x) and v ∈ (y), then A ◦ B(z) = [0, 0]. Suppose
there exist u ∈ (x) and v ∈ (y) such that z = uv. Then

(A ◦B)
L

(z) =
∨

z=uv,u∈(x),v∈(y)

(AL(u)∧BL(v)) = λ∧ t

and

(A ◦B)
U

(z) =
∨

z=uv,u∈(x),v∈(y)

(AU (u)∧BU (v)) = µ∧s.

Since R is commutative and u ∈ (x), there exist n ∈ Z
and b ∈ R such that u = nx + xb. Since v ∈ (y), there
exist m ∈ Z and c ∈ R such that v = my + yc. Since
R is commutative, uv = (nx + xb)(my + yc) = xyd +
mnxy for some d ∈ R. Then

PL(uv) ≥ PL(xy) (Since P ∈ IVI(R))
≥ λ ∧ t. (By (4.1))

Similarly, we have that PU (uv) ≥ PU (xy) ≥ µ ∧ s. Thus
z[λ∧t,µ∧s] = u[λ,µ] ◦ v[t,s] ∈ P . So, in all, A ◦B ⊂ P . On
the other hand, from the definitions of A and B, we can
easily prove thatA,B ∈ IVI(R). Since P ∈ IVPI(R), either
A ⊂ P or B ⊂ P . Thus either x[λ,µ] ∈ P or y[t,s] ∈ P .
Hence P ∈ IVCPI(R). This completes the proof.

Proposition 4.3. Let P be a non-constant IVI of a ring R.
(a) If P is an IVPI [resp. IVCPI] of R, then
(i)RP is a prime [resp. completely prime] ideal of R.
(ii) ImP consists of exactly two points of D(I).
(b) If P (0) = [1, 1] and P satisfies the conditions (i) and

(ii), then P ∈ IVPI(R) [resp. IVCPI(R)].

Proof . (a) We shall confirm our proof to the case of
interval-valued fuzzy prime ideals. An analogous proof
can be given by for interval-valued fuzzy completely prime
ideals. Suppose P ∈ IVPI(R). Then, by Proposition 3.3,
RP is a prime ideal of R. Assume that ImP contains
more than two values. Then there exist x, y ∈ R \ RP

such that P (x) 6= P (y). Suppose without loss of gener-
ality that PL(x) < PL(y) and PU (x) < PU (y). Since
P ∈ IVI(R) and A(y) 6= A(0), by Result 1.C, PL(x) <
PL(y) < PL(0) and PU (x) < PU (y) < PU (0). Let
[λ, µ], [t, s] ∈ D(I) be chosen such that

PL(x) < λ < PL(y) < t < PL(0)

and

PU (x) < µ < PU (y) < s < PU (0).

(4.2)

Let (x) and (y) denote respectively the ideals generated by
x and y. We define two mappings A,B : R → D(I) as
follows: A = [λχ(x), µχ(x)] and B = [tχ(y), sχ(y)]. Then
it is easily seen that A,B ∈ IVI(R) from the definitions of
A andB. Let z ∈ R which cannot be expressed in the from
z = uv for u ∈ (x) and v ∈ (y). Then A ◦ B(z) = [0, 0].
Thus A ◦ B ⊂ P . Now let z ∈ R. Suppose there exist
u ∈ (x) and v ∈ (y) such that z = uv for some u ∈ (x)
and v ∈ (y). Then

(A ◦B)
L

(z) =
∨

z=uv,u∈(x),v∈(y)

(AL(u)∧BL(v)) = λ∧t = λ.

Similarly, we have (A ◦B)
U

(z) = µ. Since u ∈ (x),
there exist m ∈ Z and ri ∈ R(i = 1, 2, 3, 4) such that u =
mx+ r1x+ xr2 + r3xr4. Similarly, there exist n ∈ Z and
si ∈ R(i = 1, 2, 3, 4) such that v = ny+s1y+ys2+s3ys4.
Since P ∈ IVI(R), by Result 1.C,

PL(z) = PL(uv) ≥ PL(x) ∧ PL(y) > λ

and

PU (z) = PU (uv) ≥ PU (x) ∧ PU (y) > µ.

Thus (A ◦B)
L

(z) ≤ PL(z) and (A ◦B)
U

(z) ≤ PU (z).
So A ◦ B ⊂ P . Since P ∈ IVPI(R), either A ⊂ P or
B ⊂ P . Then either AL(x) = λ ≤ PL(x), AU (x) = µ ≤
PU (x) or BL(y) = t ≤ PL(y), BU (y) = s ≤ PU (y).
This contradicts (4.2). Hence ImP consists of exactly two
points of D(I).

(b) Suppose P (0) = [1, 1] and P satisfies the conditions
(i) and (ii). Then, by the similar arguments of proof of
Theorem 3.2, we can see that P ∈ IVPI(R). This completes
the proof.

Corollary 4.3. Let P be an interval-valued fuzzy com-
pletely prime ideal of a ring R. Then for any x, y ∈ R,
P (xy) = [PL(x) ∧ PL(y), PU (x) ∧ PU (y)].

Remark 4.4. Proposition 4.3 generalizes Proposition 3.5.

Definition 4.5. Let A be a non-constant IVI of
a ring R. Then A is called an interval-valued
fuzzy weakly completely prime ideal of R if for any
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x, y ∈ R,A(xy) = [AL(x) ∧AL(y), AU (x) ∧AU (y)].

The following is the immediate result of Definitions 4.1
and 4.5.

Proposition 4.6. Let A be an interval-valued fuzzy
weakly completely prime ideal of a ring R. Then for
each [λ, µ] ∈ D(I), x[λ,µ] ◦ y[t,s] ∈ A implies that
either x[λ,µ] ∈ A or y[t,s] ∈ A. Furthermore, for each
[λ, µ] ∈ D(I) such that λ + µ ≤ 1, λ < AL(0) and
µ < AU (0), A[λ,µ] is a completely prime ideal of R. In
particular, A[0,0] is a completely prime ideal of R. Con-
versely if for each [λ, µ] ∈ D(I), A[λ,µ] is a completely
prime ideal then A is an interval-valued fuzzy weakly
completely prime ideal.

The following is the example that an interval-valued
fuzzy weakly completely prime ideal need not be an
interval-valued fuzzy completely prime ideal.

Example 4.7. Let R = Z × Z, let S = {0} × Z and let
T = (2) × Z. We define a mapping A : R → D(I) as
follows : For each x ∈ R,

A(x) =

 [1, 1], if x ∈ S;
( 1

2 ,
1
3 ), if x ∈ T\S;

[0, 0], if x ∈ R\T .

Then clearly A ∈ D(I)R from the definition of A.
Moreover, we can easily show that A is an interval-valued
fuzzy weakly completely prime ideal but, by Proposition
4.2, A is not an interval-valued fuzzy weakly completely
prime ideal.
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