Interval-Valued Fuzzy Ideals of a Ring

Keon Chang Lee ${ }^{1}$, Kul Hur ${ }^{2}$ and Pyung Ki Lim ${ }^{3}$
${ }^{1}$ Department of Computer Science, Dongshin University, Naju, Cheonnam, Korea 520-714
${ }^{2,3}$ Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University, Iksan, Chonbuk, Korea 570-749

Abstract

We introduce the notions of interval-valued fuzzy prime ideals, interval-valued fuzzy completely prime ideals and intervalvalued fuzzy weakly completely prime ideals. And we give a characterization of interval-valued fuzzy ideals and establish relationships between interval-valued fuzzy completely prime ideals and interval-valued fuzzy weakly completely prime ideals.

Key Words: interval-valued fuzzy set, interval-valued fuzzy subring. interval-valued fuzzy ideal, interval-valued fuzzy prime ideal, interval-valued fuzzy completely prime ideal, interval-valued fuzzy weakly completely prime ideal.

1. Introduction and Preliminaries

In 1975, Zadeh[11] introduced the concept of intervalvalued fuzzy sets as a generalization of fuzzy sets introduced by himself[10]. After then, Biswas[1] applied the notion of interval-valued fuzzy sets to group theory. Moreover, Gorzalczany[4] applied it to a method of inference in approximate reasoning, and Montal and Samanta[8] applied it to topology. Recently, Hur et al.[5] introduced the concept of an interval-valued fuzzy relations and obtained some of it's properties. Also, Choi et al.[3] applied it to topology in the sense of \check{S} ostak, Kang and Hur[7], and Kang[6] applied it to algebra.

In this paper, we introduce the notions of interval-valued fuzzy prime ideals, interval-valued fuzzy completely prime ideals and interval-valued fuzzy weakly completely prime ideals. And we give a characterization of interval-valued fuzzy ideals and establish relationships between intervalvalued fuzzy completely prime ideals and interval-valued fuzzy weakly completely prime ideals.

Now, we will list some basic concepts and well-known results which are needed in the later sections.

Let $D(I)$ be the set of all closed subintervals of the unit interval $I=[0,1]$. The elements of $D(I)$ are generally denoted by capital letters M, N, \cdots, and note that $M=\left[M^{L}, M^{U}\right]$, where M^{L} and M^{U} are the lower and the upper end points respectively. Especially, we denoted,

[^0]$\mathbf{0}=[0,0], \mathbf{1}=[1,1]$, and $\boldsymbol{a}=[a, a]$ for every $a \in(0,1)$. We also note that
(i) $(\forall M, N \in D(I))\left(M=N \Leftrightarrow M^{L}=N^{L}, M^{U}=\right.$ N^{U}),
(ii) $(\forall M, N \in D(I))\left(M \leq N \Leftrightarrow M^{L} \leq N^{L}, M^{U} \leq\right.$ N^{U}).
For every $M \in D(I)$, the complement of M, denoted by M^{c}, is defined by $M^{c}=1-M=\left[1-M^{U}, 1-M^{L}\right]$ (See [8]).

Definition 1.1 [8, 11]. A mapping $A: X \rightarrow D(I)$ is called an interval-valued fuzzy set (in short, IVS) in X and is denoted by $A=\left[A^{L}, A^{U}\right]$. Thus for each $x \in X$, $A(x)=\left[A^{L}(x), A^{U}(x)\right]$, where $A^{L}(x)\left[\right.$ resp. $\left.A^{U}(x)\right]$ is called the lower[resp. upper] end point of x to A. For any $[a, b] \in D(I)$, the interval-valued fuzzy set A in X defined by $A(x)=[a, b]$ for each $x \in X$ is denoted by $\widetilde{[a, b]}$ and if $a=b$, then the IVS $[a, b]$ is denoted by simply \widetilde{a}. In particular, $\tilde{0}$ and $\tilde{1}$ denote the interval-valued fuzzy empty set and the interval-valued fuzzy whole set in X, respectively.

We will denote the set of all IVSs in X as $D(I)^{X}$. It is clear that set $A=\left[A^{L}, A^{U}\right] \in D(I)^{X}$ for each $A \in I^{X}$.

Definition 1.2 [8]. Let $A, B \in D(I)^{X}$ and let $\left\{A_{\alpha}\right\}_{\alpha \in \Gamma} \subset$ $D(I)^{X}$. Then
(a) $A \subset B$ iff $A^{L} \leq B^{L}$ and $A^{U} \leq B^{U}$.
(b) $A=B$ iff $A \subset B$ and $B \subset A$.
(c) $A^{c}=\left[1-A^{U}, 1-A^{L}\right]$.
(d) $A \cup B=\left[A^{L} \vee B^{L}, A^{U} \vee B^{U}\right]$.
(d) $\bigcup_{\alpha \in \Gamma} A_{\alpha}=\left[\bigvee_{\alpha \in \Gamma} A_{\alpha}^{L}, \bigvee_{\alpha \in \Gamma} A_{\alpha}^{U}\right]$.
(e) $A \cap B=\left[A^{L} \wedge B^{L}, A^{U} \wedge B^{U}\right]$.
$(\mathrm{e})^{\prime} \bigcap_{\alpha \in \Gamma} A_{\alpha}=\left[\bigwedge_{\alpha \in \Gamma} A_{\alpha}^{L}, \bigwedge_{\alpha \in \Gamma} A_{\alpha}^{U}\right]$.
Result 1.A [8, Theorem 1]. Let $A, B, C \in D(I)^{X}$ and let $\left\{A_{\alpha}\right\}_{\alpha \in \Gamma} \subset D(I)^{X}$. Then
(a) $\tilde{0} \subset A \subset \tilde{1}$.
(b) $A \cup B=B \cup A, A \cap B=B \cap A$.
(c) $A \cup(B \cup C)=(A \cup B) \cup C$, $A \cap(B \cap C)=(A \cap B) \cap C$.
(d) $A, B \subset A \cup B, A \cap B \subset A, B$.
(e) $A \cap\left(\bigcup_{\alpha \in \Gamma} A_{\alpha}\right)=\bigcup_{\alpha \in \Gamma}\left(A \cap A_{\alpha}\right)$.
(f) $A \cup\left(\bigcap_{\alpha \in \Gamma} A_{\alpha}\right)=\bigcap_{\alpha \in \Gamma}\left(A \cup A_{\alpha}\right)$.
(g) $(\tilde{0})^{c}=\tilde{1},(\tilde{1})^{c}=\tilde{0}$.
(h) $\left(A^{c}\right)^{c}=A$.
(i) $\left(\bigcup_{\alpha \in \Gamma} A_{\alpha}\right)^{c}=\bigcap_{\alpha \in \Gamma} A_{\alpha}^{c},\left(\bigcap_{\alpha \in \Gamma} A_{\alpha}\right)^{c}=\bigcup_{\alpha \in \Gamma} A_{\alpha}^{c}$.

Definition 1.3 [7]. Let A be an IVS in a set X and let $[\lambda, \mu] \in D(I)$. Then the set $A^{[\lambda, \mu]}=\left\{x \in X: A^{L}(x) \geq\right.$ λ and $\left.A^{U}(x) \geq \mu\right\}$ is called a $[\lambda, \mu]$-level subset of A.

Definition 1.4 [8]. Let $[\lambda, \mu] \in D(I)$. Then an intervalvalued fuzzy point(in short, $I V P) x_{[\lambda, \mu]}$ of X is the IVS in X defined as follows : For each $y \in X$,

$$
x_{[\lambda, \mu]}(y)= \begin{cases}{[\lambda, \mu],} & \text { if } y=x \\ \tilde{0}, & \text { otherwise }\end{cases}
$$

In this case, x is called the support of $x_{[\lambda, \mu]}$ and, λ and μ are called the value and nonvalue of $x_{[\lambda, \mu]}$, respectively. In particular, if $\lambda=\mu$, then it is also denoted by $x_{\boldsymbol{\lambda}}$. An IVP x_{M} is said to belong to an IVS A in X, denoted by $x_{M} \in A$ if $M^{L} \leq A^{L}(x)$ and $M^{U} \leq A^{U}(x)$.

It is clear that $A=\cup_{x_{M} \in A} x_{M}$ and $x_{M} \in A$ if and only if $x_{M^{L}} \in A^{L}$ and $x_{M^{U}} \in A^{U}$, for each $A \in P(I)^{X}$.

We will denote the set of all IVPs in X as $\operatorname{IVP}(X)$.
The following is the immediate result of Definition 1.2 and 1.4.

Theorem 1.5. Let $A, B \in D(I)^{X}$. Then $A \subset B$ if and only if for each $x_{M} \in \operatorname{IVP}(\mathrm{X}), x_{M} \in A$ implies $x_{M} \in B$.

Definition 1.6 [7]. Let (X, \cdot) be a groupoid and let $A, B \in$ $D(I)^{X}$. Then the interval-valued fuzzy product of A and $B, A \circ B$ is defined as follows : For each $x \in X$,

$$
\begin{aligned}
& A \circ B(x) \\
= & \begin{cases}{\left[\bigvee_{x=y z}\left(A^{L}(y) \wedge B^{L}(z)\right),\right.} & \\
\left.\bigvee_{x=y z}\left(A^{U}(y) \wedge B^{U}(z)\right)\right], & \text { if } x=y z \\
\tilde{0}, & \text { orherwise. }\end{cases}
\end{aligned}
$$

Result 1.B [7, Proposition 3.2]. Let (X, \cdot) be a groupoid, let "o" be the same as above, let $x_{M}, y_{N} \in \operatorname{IVP}(\mathrm{X})$ and let $A, B \in D(I)^{X}$. Then
(a) $x_{M} \circ y_{N}=(x y)_{M \cap N}$.
(b) $A \circ B=\bigcup_{x_{M} \in A, y_{N} \in B} x_{M} \circ y_{N}$.

Definition 1.7 [1]. Let G be a group and let $A \in D(I)^{G}$. Then A is called an interval-valued fuzzy subgroup (in short, IVG) of G if it satisfies the following conditions :
(a) $A^{L}(x y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x y) \geq A^{U}(x) \wedge$ $A^{U}(y)$ for any $x, y \in G$.
(b) $A^{L}\left(x^{-1}\right) \geq A^{L}(x)$ and $A^{U}\left(x^{-1}\right) \geq A^{U}(x)$ for each $x \in G$.

We will denote the set of all IVGs as IVG(G).
Result 1.C [1, Proposition 3.1]. Let A be an IVG of a group G with identity e. Then $A\left(x^{-1}\right)=A(x)$ and $A^{L}(x) \geq A^{L}(e), A^{U}(x) \geq A^{U}(e)$ for each $x \in G$.
$\underset{\sim}{\text { Definition }} 1.8$ [7]. Let $(R,+, \cdot)$ be a ring and let $\widetilde{0} \neq A \in D(I)^{R}$. Then A is called an intervalvalued fuzzy subring(in short, IVR) of R if it satisfies following conditions :
(a) A is an IVG with respect to the operation " + ".
(b) $A^{L}(x y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x y) \geq$ $A^{U}(x) \wedge A^{U}(y)$ for any $x, y \in R$.

We will denote the set of all IVRs as $\operatorname{IVR}(\mathrm{R})$.

2. Interval-valued fuzzy ideals

Definition 2.1 [7]. Let A be a non-empty IVR of a ring R. Then A is called an :
(i) interval-valued fuzzy left ideal (in short, IVLI) of R if $A^{L}(x y) \geq A^{L}(y)$ and $A^{U}(x y) \geq A^{U}(y)$ for any $x, y \in$ R.
(ii) interval-valued fuzzy right ideal (in short, IVRI) of R if $A^{L}(x y) \geq A^{L}(x)$ and $A^{U}(x y) \geq A^{U}(x)$ for any $x, y \in R$.
(iii) interval-valued fuzzy ideal (in short, IVRI) of R if it is an IVLI and an IVRI of R.

We will denote the set of all IVRIs [resp. IVLIs and $\operatorname{IVIs}]$ of R as $\operatorname{IVRI}(\mathrm{R})[\operatorname{resp} . \operatorname{IVLI}(\mathrm{R})$ and $\operatorname{IVI}(\mathrm{R})]$.

Result 2.A [7, Proposition 6.6]. Let R be a ring. Then A is an ideal [resp. a left ideal and a right ideal] of R if and any of $\left[\chi_{A}, \chi_{A}\right] \in \operatorname{IVI}(\mathrm{R})[\operatorname{resp} . \operatorname{IVLI}(\mathrm{R})$ and $\operatorname{IVRI}(\mathrm{R})]$.

Result 2.B [7, Proposition 6.5]. Let R be a ring and let $\tilde{0} \neq A \in D(I)^{R}$. Then $A \in \operatorname{IVI}(\mathrm{R})[$ resp. $\operatorname{IVLI}(\mathrm{R})$ and $\operatorname{IVRI}(\mathrm{R})]$ if and only if for any $x, y \in R$,
(i) $A^{L}(x-y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x-y) \geq$ $A^{U}(x) \wedge A^{U}(y)$.
(ii) $A^{L}(x y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x y) \geq$ $A^{U}(x) \wedge A^{U}(y)$ [resp. $A^{L}(x y) \geq A^{L}(y)$ and $A^{U}(x y) \geq A^{U}(y), A^{L}(x y) \geq A^{L}(x)$ and $\left.A^{U}(x y) \geq \bar{A}^{U}(x)\right]$.

Lemma 2.2. Let R be a ring and let $A, B \in D(I)^{R}$.
(a) If $A, B \in \operatorname{IVLI}(\mathrm{R})[\operatorname{resp} . \operatorname{IVRI}(\mathrm{R})$ and $\operatorname{IVI}(\mathrm{R})]$, then $A \cap B \in \operatorname{IVLI}(\mathrm{R})[$ resp. $\operatorname{IVRI}(\mathrm{R})$ and $\operatorname{IVI}(\mathrm{R})]$.
(b) If $A \in \operatorname{IVRI}(\mathrm{R})$ and $B \in \operatorname{IVLI}(\mathrm{R})$, then $A \circ B \subset A \cap B$.

Proof. (a) Suppose $A, B \in \operatorname{IVLI}(\mathrm{R})$ and let $x, y \in R$. Then

$$
\begin{aligned}
& (A \cap B)^{L}(x-y) \\
= & A^{L}(x-y) \wedge B^{L}(x-y) \\
\geq & \left(A^{L}(x) \wedge A^{L}(y)\right) \wedge\left(B^{L}(x) \wedge B^{L}(y)\right) \\
= & (A \cap B)^{L}(x) \wedge(A \cap B)^{L}(y) .
\end{aligned}
$$

Similarly, we have $(A \cap B)^{U}(x-y) \geq(A \cap B)^{U}(x) \wedge$ $(A \cap B)^{U}(y)$. Also

$$
\begin{aligned}
& (A \cap B)^{L}(x y) \\
= & A^{L}(x y) \wedge B^{L}(x y) \\
\geq & A^{L}(y) \wedge B^{L}(y) \quad(\text { Since } A, B \in \operatorname{IVLI}(\mathrm{R})) \\
= & (A \cap B)^{L}(y) .
\end{aligned}
$$

Similarly, we have $(A \cap B)^{U}(x y) \geq(A \cap B)^{U}(y)$. Hence, by Result 2.B, $A \cap B \in \operatorname{IVLI}(\mathrm{R})$. Similarly, we can easily see the rest.
(b) Let $x \in G$ and suppose $A \circ B(x)=[0,0]$. Then there is nothing to show. Suppose $A \circ B(x) \neq[0,0]$. Then $A \circ B(x)=\left[\bigvee_{x=y z}\left(A^{L}(y) \wedge B^{L}(z)\right), \bigvee_{x=y z}\left(A^{U}(y) \wedge\right.\right.$ $\left.\left.B^{U}(z)\right)\right]$. Since $A \in \operatorname{IVRI}(\mathrm{R})$ and $B \in \operatorname{IVLI}(\mathrm{R})$,
$A^{L}(y) \leq A^{L}(y z)=A^{L}(x), A^{U}(y) \leq A^{U}(y z)=A^{U}(x)$
and
$B^{L}(z) \leq B^{L}(y z)=B^{L}(x), B^{U}(z) \leq B^{U}(y z)=B^{U}(x)$.
Thus

$$
\begin{aligned}
(A \circ B)^{L}(x) & =\bigvee_{x=y z}\left(A^{L}(y) \wedge B^{L}(z)\right) \\
& \leq A^{L}(x) \wedge B^{L}(x)=(A \cap B)^{L}(x)
\end{aligned}
$$

Similarly, we have $(A \circ B)^{U}(x) \leq(A \cap B)^{U}(x)$. Hence $A \circ B \subset A \cap B$. This completes the proof.

A ring R is said to be regular if for each $a \in R$ there exists an $x \in R$ such that $a=a x a$.

Result 2.C [2, Theorem 9.4]. A ring R is regular if and only if $J M=J \cap M$ for each right ideal J and left ideal M of R.

Theorem 2.3. A ring R is regular if and only if for each $A \in \operatorname{IVRI}(\mathrm{R})$ and each $B \in \operatorname{IVLI}(\mathrm{R}), A \circ B=A \cap B$.

Proof. (\Rightarrow) : Suppose R is regular. From Lemma 2.2(b), it is clear that $A \circ B \subset A \cap B$. Thus it is sufficient to show that $A \cap B \subset A \circ B$. Let $a \in R$. Then, by the hypothesis, there exists an $x \in R$ such that $a=a x a$. Thus $A^{L}(a)=A^{L}(a x a) \geq A^{L}(a x) \geq A^{L}(a)$ and $A^{U}(a)=$ $A^{U}(a x a) \geq A^{U}(a x) \geq A^{U}(a)$. So $A(a x)=A(a)$.
On the other hand,

$$
\begin{aligned}
(A \circ B)^{L}(a) & =\bigvee_{a=y z}\left(A^{L}(y) \wedge B^{L}(z)\right) \\
& \geq A^{L}(a x) \wedge B^{L}(a) \quad(\text { Since } a=a x a) \\
& =A^{L}(a) \wedge B^{L}(a)=(A \cap B)^{L}(a) .
\end{aligned}
$$

Similarly, we have $(A \circ B)^{U}(a) \geq(A \cap B)^{U}(a)$. Thus $A \cap B \subset A \circ B$. Hence $A \circ B=A \cap B$.
(\Leftarrow) : Suppose the necessary condition holds. Let J and M be right and left ideals of R, respectively. Then, by Result 2.A, $\left[\chi_{J}, \chi_{J}\right] \in \operatorname{IVRI}(\mathrm{R})$ and $\left[\chi_{M}, \chi_{M}\right] \in \operatorname{IVLI}(\mathrm{R})$. Let $a \in J \cap M$ and let $A=\left[\chi_{J}, \chi_{J}\right], B=\left[\chi_{M}, \chi_{M}\right]$. Then, by the hypothesis, $(A \circ B)(a)=(A \cap B)(a)=[1,1]$. Thus

$$
\begin{aligned}
(A \circ B)^{L}(a) & =\bigvee_{a=a_{1} a_{2}}\left(A^{L}\left(a_{1}\right) \wedge B^{L}\left(a_{2}\right)\right) \\
& =\bigvee_{a=a_{1} a_{2}}\left(\chi_{J}\left(a_{1}\right) \wedge \chi_{M}\left(a_{2}\right)\right) \\
& =1
\end{aligned}
$$

Similarly, we have $(A \circ B)^{U}(a)=1$. So there exist $b_{1}, b_{2} \in R$ such that $\chi_{J}\left(b_{1}\right)=1$ and $\chi_{M}\left(b_{2}\right)=1$ with $a=b_{1} b_{2}$. Thus $a \in J M$, i.e., $J \cap M \subset J M$. Since $J M \subset J \cap M, J M=J \cap M$. Hence, by Result 2.C, R is regular. This completes the proof.

3. Interval-valued fuzzy prime ideals

Definition 3.1. Let P be an IVI of a ring R. Then P is said to be prime if P is not a constant mapping and for any $A, B \in \operatorname{IVI}(\mathrm{R}), A \circ B \subset P$ implies either $A \subset P$ or $B \subset P$.

We will denote the set of all interval-valued fuzzy prime ideals of R as $\operatorname{IVPI}(\mathrm{R})$.

Theorem 3.2. Let J be an ideal of a ring R such that $J \neq R$. Then J is a prime ideal of R if and only if
$\left[\chi_{J}, \chi_{J}\right] \in \operatorname{IVPI}(\mathrm{R})$.
Proof. (\Rightarrow) : Suppose J is a prime ideal of R and let $P=\left[\chi_{J}, \chi_{J}\right]$. Since $J \neq R, P$ is not a constant mapping on R. Assume that there exist $A, B \in \operatorname{IVI}(\mathrm{R})$ such that $A \circ B \subset P$ and $A \not \subset P$ and $B \not \subset P$. Then there exist $x, y \in R$ such that

$$
A^{L}(x)>P^{L}(x)=\chi_{J}(x), A^{U}(x)>P^{U}(x)=\chi_{J}(x)
$$

and

$$
B^{L}(y)>P^{L}(y)=\chi_{J}(y), B^{U}(y)>P^{U}(y)=\chi_{J}(y)
$$

Thus $A^{L}(x) \neq 0, A^{U}(x) \neq 0$ and $B^{L}(y) \neq 0, B^{U}(y) \neq 0$. But $\chi_{J}(x)=0$ and $\chi_{J}(y)=0$. So $x \notin J$ and $y \notin J$. Since J is a prime ideal of R, by the process of the proof of Theorem 2 in [9], there exist an $r \in R$ such that $x r y \notin J$. Let $a=x r y$. Then clearly, $\chi_{J}(a)=0$. Thus

$$
\begin{equation*}
A \circ B(a)=[0,0] . \tag{3.1}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
(A \circ B)^{L}(a) & =\bigvee_{a=c d}\left(A^{L}(c) \wedge B^{L}(d)\right) \\
& \geq A^{L}(x) \wedge B^{L}(r y)(\text { Since } a=x r y) \\
& =A^{L}(x) \wedge B^{L}(y)(\text { Since } B \in \mathrm{IVI}(\mathrm{R})) \\
& >0 .\left(\text { Since } A^{L}(x) \neq 0 \text { and } B^{L}(y) \neq 0\right)
\end{aligned}
$$

Similarly, we have $(A \circ B)^{U}(a)>0$. Then $A \circ B(a) \neq \widetilde{0}$. This contradicts (3.1). So P satisfies the second condition of Definition 3.1. Hence $P=\left[\chi_{J}, \chi_{J}\right] \in \operatorname{IVPI}(\mathrm{R})$.
(\Leftarrow) : Suppose $P=\left[\chi_{J}, \chi_{J}\right] \in \operatorname{IVPI}(\mathrm{R})$. Since P is not a constant mapping on $R, J \neq R$. Let A and B be two ideals of R such that $A B \subset J$. Let $\widetilde{A}, \widetilde{B} \in \operatorname{IVI}(\mathrm{R})$. Consider the product $\widetilde{A} \circ \widetilde{B}$. Let $x \in R$.

Suppose $\widetilde{A} \circ \widetilde{B}(x)=[0,0]$. Then clearly $\widetilde{A} \circ \widetilde{B} \subset P$.
Suppose $\widetilde{A} \circ \widetilde{B}(x) \neq[0,0]$. Then $(\widetilde{A} \circ \widetilde{B})^{L}(x)=$ $\bigvee_{x=y z}\left(\chi_{A}(y) \wedge \chi_{B}(z)\right) \neq 0$. Similarly, we have $(\widetilde{A} \circ \widetilde{B})^{U}(x) \neq 0$. Thus there exist $y, z \in R$ with $x=y z$ such that $\chi_{A}(y) \neq 0$ and $\chi_{B}(z) \neq 0$. So $\chi_{A}(y)=1$ and $\chi_{B}(z)=1$. This implies $y \in A$ and $z \in B$. Thus $x=y z \in A B \subset J$. So $\chi_{J}(x)=1$. It follows that $\widetilde{A} \circ \widetilde{B} \subset P$. Since $P \in \operatorname{IVPI}(\mathrm{R})$, either $\widetilde{A} \subset P$ or $\widetilde{B} \subset P$. Thus either $A \subset J$ or $B \subset J$. Hence J is a prime ideal of R. This completes the proof.

Proposition 3.3. Let P be an interval-valued fuzzy prime ideals of a ring R and let $R_{P}=\{x \in R: P(x)=P(0)\}$. Then R_{P} is a prime ideal of R.

Proof. Let $x, y \in R_{P}$. Then $P(x)=P(0)$ and $P(y)=$ $P(0)$. Thus $P^{L}(x-y) \geq P^{L}(x) \wedge P^{L}(y)=P^{L}(0)$. Similarly, we have $P^{U}(x-y) \geq P^{U}(0)$. Since $P \in \operatorname{IVI}(\mathrm{R})$,

$$
P^{L}(0)=P^{L}(0(x-y)) \geq P^{L}(x-y)
$$

Similarly, we have $P^{U}(0) \geq P^{U}(x-y)$. So $x-y \in R_{P}$. Now let $r \in R$ and let $x \in R_{P}$. Then
$P^{L}(r x) \geq P^{L}(x)=P^{L}(0)$ and $P^{U}(r x) \geq P^{U}(x)=P^{U}(0)$.
By Result 1.C, $P(r x)=P(0)$. So $r x \in R_{P}$. Similarly we have $x r \in R_{P}$. Hence R_{P} is an ideal of R.

Let J and M be two ideals of R such that $J M \subset$ R_{P}. We define two mappings $A, B: R \rightarrow D(I)$ by $A=P(0)\left[\chi_{J}, \chi_{J}\right]$ and $B=P(0)\left[\chi_{M}, \chi_{M}\right]$, respectively, where $P(0)\left[\chi_{J}, \chi_{J}\right]=\left[P^{L}(0) \chi_{J}, P^{U}(0) \chi_{J}\right]$. Then we can easily prove that $A, B \in \mathrm{IVI}(\mathrm{R})$. Let $x \in R$.

Suppose $A \circ B(x)=[0,0]$. Then $A \circ B \subset P$.
Suppose $A \circ B(x) \neq[0,0]$. Then $(A \circ B)^{L}(x)=$ $\bigvee_{x=y z}\left(A^{L}(y) \wedge B^{L}(z)\right)=\bigvee_{x=y z}\left(P^{L}(0) \chi_{J}(y) \wedge\right.$ $\left.P^{L}(0) \chi_{M}(z)\right) \neq 0$. Similarly, we have $(A \circ B)^{U}(x) \neq 0$. Thus there exist $y, z \in R$ with $x=y z$ such that

$$
P^{L}(0) \chi_{J}(y) \wedge P^{L}(0) \chi_{M}(z) \neq 0
$$

and

$$
P^{U}(0) \chi_{J}(y) \wedge P^{U}(0) \chi_{M}(z) \neq 0
$$

So $\chi_{J}(y)=1$ and $\chi_{M}(z)=1$. Thus $y \in J$ and $z \in M$, i.e., $x=y z \in J M \subset R_{P}$. So $P(x)=P(0)$, i.e., $A \circ B \subset P$. Since $P \in \operatorname{IVPI}(\mathrm{R})$ and $A, B \in \operatorname{IVI}(\mathrm{R})$, either $A \subset P$ or $B \subset P$. Suppose $A \subset P$. Then $P(0)\left[\chi_{J}, \chi_{J}\right] \subset P$. Assume that $J \subset R_{P}$. Then there exists an $a \in J$ such that $a \notin R_{P}$. Thus $P(a) \neq P(0)$. By Result 1.C, $P^{L}(a)<P^{L}(0)$ and $P^{U}(a)<P^{U}(0)$. Then $A^{L}(a)=P^{L}(0) \chi_{J}(a)=P^{L}(0)>P^{L}(a)$. Similarly, we have $A^{U}(a)>P^{U}(a)$. This contradicts the assumption that $A \subset P$. So $J \subset R_{P}$. By the similar arguments, we can show that if $B \subset P$, then $M \subset R_{P}$. Hence R_{P} is a prime ideal of R. This completes the proof.

Remark 3.4. Let $P \in \operatorname{IVI}(\mathbb{Z})$. Then, by Proposition 3.3, R_{P} is an ideal of \mathbb{Z}. Hence there exists an integer $n \geq 0$ such that $R_{P}=n \mathbb{Z}$.

Proposition 3.5. Let $P \in \operatorname{IVI}(\mathbb{Z})$ with $R_{P}=n \mathbb{Z} \neq(0)$. Then P can take at most r values, where r is the number of distinct positive divisors of n.

Proof . Let $a \in \mathbb{Z}$ and let $d=(a, n)$. Then there exist $r, s \in \mathbb{Z}$ such that $d=a r+n s$. Thus
$P^{L}(d)=P^{L}(a r+n s) \geq P^{L}(a r) \wedge P^{L}(n s) \geq P^{L}(a) \wedge P^{L}(n)$.
Similarly, we have $P^{U}(d) \geq P^{U}(a) \wedge P^{U}(n)$. Since $n \in$ $R_{P}=n \mathbb{Z}$, by Result 1.C,
$P^{L}(n)=P^{L}(0) \geq P^{L}(a)$ and $P^{U}(n)=P^{U}(0) \geq P^{U}(a)$.
Thus $P^{L}(d) \geq P^{L}(a)$ and $P^{U}(d) \geq P^{U}(a)$. Since d is a divisor of a, there exists a $t \in \mathbb{Z}$ such that $a=d t$. Then
$P^{L}(a)=P^{L}(d t) \geq P^{L}(d)$ and $P^{U}(a)=P^{U}(d t) \geq$ $P^{U}(d)$.
So $P(a)=P(d)$. Moreover, by Result 1.C, $P(x)=P(-x)$ for each $x \in R$. Hence for each $a \in \mathbb{Z}$ there exists a positive divisor d of n such that $P(a)=P(d)$. This completes the proof.

The following result gives a complete characterization of interval-valued fuzzy prime ideals of \mathbb{Z} :

Theorem 3.6. Let $P \in \operatorname{IVPI}(\mathbb{Z})$ with $\mathbb{Z}_{P} \neq(0)$. Then P has two distinct values. Conversely, if $P \in D(I)^{\mathbb{Z}}$ such that $P(n)=\left[\lambda_{1}, \mu_{1}\right]$ when $p \mid n$ and $P(n)=\left[\lambda_{2}, \mu_{2}\right]$ when $p \nmid n$, where p is a fixed prime, $\lambda_{1}>\lambda_{2}$ and $\mu_{1}>\mu_{2}$, then $P \in \operatorname{IVPI}(\mathbb{Z})$ with $\mathbb{Z}_{P} \neq(0)$.

Proof. Suppose $P \in \operatorname{IVPI}(\mathbb{Z})$ with $\mathbb{Z}_{P}=n \mathbb{Z} \neq(0)$. Then, by Proposition 3.3, \mathbb{Z}_{P} is a prime ideal of \mathbb{Z}. Thus n is a prime integer. Since n has two distinct positive integers, by Proposition 3.5, P has at most two distinct values. On the other hand, an interval-valued fuzzy prime ideals cannot be a constant mapping. Hence P has two distinct values.

Conversely, let P be an IVS in \mathbb{Z} satisfying the given conditions. Let $a, b \in \mathbb{Z}$.

Case(i): Suppose $p \mid(a-b)$. Then $P(a-b)=\left[\lambda_{1}, \mu_{1}\right]$. Thus $\lambda_{1}=P^{L}(a-b) \geq P^{L}(a) \wedge P^{L}(b)\left(\right.$ Since $\left.\lambda_{1}>\lambda_{2}\right)$ and $\mu_{1}=P^{U}(a-b) \geq P^{U}(a) \wedge P^{U}(b)\left(\right.$ Since $\left.\mu_{1}>\mu_{2}\right)$.

Case(ii): Suppose $p \nmid(a-b)$. Then $p \nmid a$ or $p \nmid b$. Thus either $P(a)=\left[\lambda_{2}, \mu_{2}\right]$ or $P(b)=\left[\lambda_{2}, \mu_{2}\right]$. So $\lambda_{2}=$ $P^{L}(a-b) \geq P^{L}(a) \wedge P^{L}(b)$ and $\mu_{2}=P^{U}(a-b) \geq$ $P^{U}(a) \wedge P^{U}(b)$.

Case(iii): Suppose $p \mid a b$. Then clearly $P^{L}(a b) \geq$ $P^{L}(b)$ and $P^{U}(a b) \geq P^{U}(b)$.

Case(iv): Suppose $p \nmid a b$. Then $p \nmid a$ and $p \nmid b$. Thus $P^{L}(a b) \geq P^{L}(b)$ and $P^{U}(a b) \geq P^{U}(b)$. Consequently, by Result 1.C, $P \in \operatorname{IVI}(\mathbb{Z})$ with $\mathbb{Z}_{P}=p \mathbb{Z} \neq(0)$. Moreover, by the similar arguments of the proof of Proposition 3.2, we can see that $P \in \operatorname{IVPI}(\mathbb{Z})$. This completes the proof.

Proposition 3.7. Let R be a ring with 1. If every IVI of R has finite values, then R is a Noetherian ring.

Proof. Let $\left\{J_{i}\right\}_{i \in \mathbb{Z}^{+}}$be a sequence of ideals of R such that $J_{1} \subset J_{2} \subset J_{3} \subset \cdots$ and let $J=\bigcup_{i \in \mathbb{Z}^{+}} J_{i}$. Then clearly J is an ideal of R. We define a mapping $P: R \rightarrow D(I)$ as follows : For each $x \in R$,

$$
P(x)= \begin{cases}\mathbf{0}, & \text { if } x \notin J \\ {\left[\frac{1}{i_{1}}, \frac{1}{i_{1}}\right],} & \text { if } x \in J .\end{cases}
$$

where $i_{1}=$ minimum of i such that $x \in J_{i}$. Then it is clear that $P \in \mathrm{IVI}(\mathrm{R})$ from the definition of P. Moreover, we can easily see that $P \in \operatorname{IVI}(\mathrm{R})$. If the chain does not terminate, then P takes infinitely many values. This contradicts
the hypothesis. Thus the chain terminates. Hence R is a Noetherian ring. This completes the proof.

Proposition 3.8. Let $A: \mathbb{Z} \rightarrow D(I)$ be the mapping such that
(a) $A(x)=A(-x)$ for each $x \in \mathbb{Z}$.
(b) $A^{L}(x+y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x+y) \geq$ $A^{U}(x) \wedge A^{U}(y)$ for any $x, y \in \mathbb{Z}$.
If there exists a non-zero integer m such that $A(m)=A(0)$, then A can take at most finitely many values.

Proof. It is clear that $A \in D(I)^{\mathbb{Z}}$ from the definition of A. Moreover, we can easily show that $A \in \operatorname{IVI}(\mathbb{Z})$ such that $\mathbb{Z}_{A} \neq(0)$. Hence, by Proposition 3.5, A can take at most finitely many values.

4. Interval-valued fuzzy completely prime ideals

Definition 4.1. Let P be an IVI of a ring R. Then P is called an interval-valued fuzzy completely prime ideals(in short, IVCPI) of R if it satisfies the following conditions :
(a) P is not a constant mapping.
(b) For any $x_{M}, y_{N} \in \operatorname{IVP}(\mathrm{R}), x_{M} \circ y_{N} \in P$ implies either $x_{M} \in P$ or $y_{N} \in P$.

We will denote the set of all IVCPIs of R as $\operatorname{IVCPI}(G)$.
Proposition 4.2. (a) Let R be a ring. Then $\operatorname{IVCPI}(R) \subset$ $\operatorname{IVPI}(R)$.
(b) Let R be a commutative ring. Then $\operatorname{IVPI}(R) \subset$ $\operatorname{IVCPI}(R)$. Hence $\operatorname{IVCPI}(R)=\operatorname{IVPI}(R)$.

Proof. (a) Let $P \in \operatorname{IVCPI}(R)$ and let $A, B \in \operatorname{IVI}(\mathrm{R})$ such that $A \circ B \subset P$. Suppose $A \not \subset P$. Then, by Theorem 1.5, there exists an $x_{[\lambda, \mu]} \in \operatorname{IVP}(R)$ such that $x_{[\lambda, \mu]} \in P$ but $x_{[\lambda, \mu]} \notin P$. Let $y_{[t, s]} \in B$. Then, by Result 1.B(a), $x_{[\lambda, \mu]} \circ y_{[t, s]}=(x y)_{[\lambda \wedge t, \mu \wedge s]}$. On the other hand,

$$
\begin{aligned}
P^{L}(x y) & \geq(A \circ B)^{L}(x y) \geq A^{L}(x) \wedge B^{L}(y) \\
& =\lambda \wedge t=\left(x_{[\lambda, \mu]} \circ y_{[t, s]}\right)^{L}(x y) .
\end{aligned}
$$

Similarly, we have $P^{U}(x y) \geq\left(x_{[\lambda, \mu]} \circ y_{[t, s]}\right)^{U}(x y)$.
Let $z \in R$ such that $x \neq x y$. Then clearly $\left[x_{[\lambda, \mu]} \circ\right.$ $\left.y_{[t, s]}\right](z)=[0,0]$. Thus $x_{[\lambda, \mu]} \circ y_{[t, s]} \in P$. Since $P \in$ $\operatorname{IVCPI}(R), x_{[\lambda, \mu]} \in P$ or $y_{[t, s]} \in P$. Since $x_{[\lambda, \mu]} \notin P$, $y_{[t, s]} \in P$. So, by Theorem 1.5, $B \subset P$. Hence $P \in$ $\operatorname{IVPI}(\mathrm{R})$.
(b) Let $P \in \operatorname{IVPI}(\mathrm{R})$ and let $x_{[\lambda, \mu]}, y_{[t, s]} \in \operatorname{IVP}(\mathrm{R})$ such that $x_{[\lambda, \mu]} \circ y_{[t, s]} \in P$. Then $\left(x_{[\lambda, \mu]} \circ y_{[t, s]}\right)^{L}(x y) \leq$ $P^{L}(x y)$ and $\left(x_{[\lambda, \mu]} \circ y_{[t, s]}\right)^{U}(x y) \leq P^{U}(x y)$.

Thus, by Result 1.B(a),

$$
\begin{equation*}
\lambda \wedge t \leq P^{L}(x y) \text { and } \mu \wedge s \leq P^{U}(x y) \tag{4.1}
\end{equation*}
$$

We define two mappings $A, B: R \rightarrow D(I)$ as follows : For each $z \in R$,

$$
A(z)= \begin{cases}{[\lambda, \mu],} & \text { if } z \in(x) \\ {[0,0],} & \text { otherwise }\end{cases}
$$

and

$$
B(z)= \begin{cases}{[t, s],} & \text { if } z \in(y) \\ {[0,0],} & \text { otherwise }\end{cases}
$$

where (x) is the ideal generated by x. Then clearly $A, B \in$ $D(I)^{R}$ from the definitions of A and B. It is easily seen that if z is not expressible in the form $z=u v$ for some $u \in(x)$ and $v \in(y)$, then $A \circ B(z)=[0,0]$. Suppose there exist $u \in(x)$ and $v \in(y)$ such that $z=u v$. Then

$$
(A \circ B)^{L}(z)=\bigvee_{z=u v, u \in(x), v \in(y)}\left(A^{L}(u) \wedge B^{L}(v)\right)=\lambda \wedge t
$$

and

$$
(A \circ B)^{U}(z)=\bigvee_{z=u v, u \in(x), v \in(y)}\left(A^{U}(u) \wedge B^{U}(v)\right)=\mu \wedge s
$$

Since R is commutative and $u \in(x)$, there exist $n \in \mathbb{Z}$ and $b \in R$ such that $u=n x+x b$. Since $v \in(y)$, there exist $m \in \mathbb{Z}$ and $c \in R$ such that $v=m y+y c$. Since R is commutative, $u v=(n x+x b)(m y+y c)=x y d+$ $m n x y$ for some $d \in R$. Then

$$
\begin{aligned}
P^{L}(u v) & \geq P^{L}(x y) & & (\text { Since } P \in \operatorname{IVI}(\mathrm{R})) \\
& \geq \lambda \wedge t . & & (\mathrm{By}(4.1))
\end{aligned}
$$

Similarly, we have that $P^{U}(u v) \geq P^{U}(x y) \geq \mu \wedge s$. Thus $z_{[\lambda \wedge t, \mu \wedge s]}=u_{[\lambda, \mu]} \circ v_{[t, s]} \in P$. So, in all, $A \circ B \subset P$. On the other hand, from the definitions of A and B, we can easily prove that $A, B \in \mathrm{IVI}(\mathrm{R})$. Since $P \in \mathrm{IVPI}(\mathrm{R})$, either $A \subset P$ or $B \subset P$. Thus either $x_{[\lambda, \mu]} \in P$ or $y_{[t, s]} \in P$. Hence $P \in \operatorname{IVCPI}(R)$. This completes the proof.

Proposition 4.3. Let P be a non-constant IVI of a ring R.
(a) If P is an IVPI [resp. IVCPI] of R, then
(i) R_{P} is a prime [resp. completely prime] ideal of R.
(ii) $\operatorname{Im} P$ consists of exactly two points of $D(I)$.
(b) If $P(0)=[1,1]$ and P satisfies the conditions (i) and (ii), then $P \in \operatorname{IVPI}(R)[\operatorname{resp} . \operatorname{IVCPI}(R)]$.

Proof . (a) We shall confirm our proof to the case of interval-valued fuzzy prime ideals. An analogous proof can be given by for interval-valued fuzzy completely prime ideals. Suppose $P \in \operatorname{IVPI}(\mathrm{R})$. Then, by Proposition 3.3, R_{P} is a prime ideal of R. Assume that $\operatorname{Im} P$ contains more than two values. Then there exist $x, y \in R \backslash R_{P}$
such that $P(x) \neq P(y)$. Suppose without loss of generality that $P^{L}(x)<P^{L}(y)$ and $P^{U}(x)<P^{U}(y)$. Since $P \in \operatorname{IVI}(\mathrm{R})$ and $A(y) \neq A(0)$, by Result 1.C, $P^{L}(x)<$ $P^{L}(y)<P^{L}(0)$ and $P^{U}(x)<P^{U}(y)<P^{U}(0)$. Let $[\lambda, \mu],[t, s] \in D(I)$ be chosen such that

$$
P^{L}(x)<\lambda<P^{L}(y)<t<P^{L}(0)
$$

and

$$
\begin{equation*}
P^{U}(x)<\mu<P^{U}(y)<s<P^{U}(0) . \tag{4.2}
\end{equation*}
$$

Let (x) and (y) denote respectively the ideals generated by x and y. We define two mappings $A, B: R \rightarrow D(I)$ as follows: $A=\left[\lambda \chi_{(x)}, \mu \chi_{(x)}\right]$ and $B=\left[t \chi_{(y)}, s \chi_{(y)}\right]$. Then it is easily seen that $A, B \in \operatorname{IVI}(\mathrm{R})$ from the definitions of A and B. Let $z \in R$ which cannot be expressed in the from $z=u v$ for $u \in(x)$ and $v \in(y)$. Then $A \circ B(z)=[0,0]$. Thus $A \circ B \subset P$. Now let $z \in R$. Suppose there exist $u \in(x)$ and $v \in(y)$ such that $z=u v$ for some $u \in(x)$ and $v \in(y)$. Then

$$
(A \circ B)^{L}(z)=\bigvee_{z=u v, u \in(x), v \in(y)}\left(A^{L}(u) \wedge B^{L}(v)\right)=\lambda \wedge t=\lambda .
$$

Similarly, we have $(A \circ B)^{U}(z)=\mu$. Since $u \in(x)$, there exist $m \in \mathbb{Z}$ and $r_{i} \in R(i=1,2,3,4)$ such that $u=$ $m x+r_{1} x+x r_{2}+r_{3} x r_{4}$. Similarly, there exist $n \in \mathbb{Z}$ and $s_{i} \in R(i=1,2,3,4)$ such that $v=n y+s_{1} y+y s_{2}+s_{3} y s_{4}$. Since $P \in \operatorname{IVI}(\mathrm{R})$, by Result 1.C,

$$
P^{L}(z)=P^{L}(u v) \geq P^{L}(x) \wedge P^{L}(y)>\lambda
$$

and

$$
P^{U}(z)=P^{U}(u v) \geq P^{U}(x) \wedge P^{U}(y)>\mu
$$

Thus $(A \circ B)^{L}(z) \leq P^{L}(z)$ and $(A \circ B)^{U}(z) \leq P^{U}(z)$. So $A \circ B \subset P$. Since $P \in \operatorname{IVPI}(\mathrm{R})$, either $A \subset P$ or $B \subset P$. Then either $A^{L}(x)=\lambda \leq P^{L}(x), A^{U}(x)=\mu \leq$ $P^{U}(x)$ or $B^{L}(y)=t \leq P^{L}(y), B^{U}(y)=s \leq P^{U}(y)$. This contradicts (4.2). Hence $\operatorname{Im} P$ consists of exactly two points of $D(I)$.
(b) Suppose $P(0)=[1,1]$ and P satisfies the conditions (i) and (ii). Then, by the similar arguments of proof of Theorem 3.2, we can see that $P \in \operatorname{IVPI}(\mathrm{R})$. This completes the proof.

Corollary 4.3. Let P be an interval-valued fuzzy completely prime ideal of a ring R. Then for any $x, y \in R$, $P(x y)=\left[P^{L}(x) \wedge P^{L}(y), P^{U}(x) \wedge P^{U}(y)\right]$.

Remark 4.4. Proposition 4.3 generalizes Proposition 3.5.
Definition 4.5. Let A be a non-constant IVI of a ring R. Then A is called an interval-valued fuzzy weakly completely prime ideal of R if for any
$x, y \in R, A(x y)=\left[A^{L}(x) \wedge A^{L}(y), A^{U}(x) \wedge A^{U}(y)\right]$.
The following is the immediate result of Definitions 4.1 and 4.5.

Proposition 4.6. Let A be an interval-valued fuzzy weakly completely prime ideal of a ring R. Then for each $[\lambda, \mu] \in D(I), x_{[\lambda, \mu]} \circ y_{[t, s]} \in A$ implies that either $x_{[\lambda, \mu]} \in A$ or $y_{[t, s]} \in A$. Furthermore, for each $[\lambda, \mu] \in D(I)$ such that $\lambda+\mu \leq 1, \lambda<A^{L}(0)$ and $\mu<A^{U}(0), A^{[\lambda, \mu]}$ is a completely prime ideal of R. In particular, $A^{[0,0]}$ is a completely prime ideal of R. Conversely if for each $[\lambda, \mu] \in D(I), A^{[\lambda, \mu]}$ is a completely prime ideal then A is an interval-valued fuzzy weakly completely prime ideal.

The following is the example that an interval-valued fuzzy weakly completely prime ideal need not be an interval-valued fuzzy completely prime ideal.

Example 4.7. Let $R=\mathbb{Z} \times \mathbb{Z}$, let $S=\{0\} \times \mathbb{Z}$ and let $T=(2) \times \mathbb{Z}$. We define a mapping $A: R \rightarrow D(I)$ as follows : For each $x \in R$,

$$
A(x)= \begin{cases}{[1,1],} & \text { if } x \in S ; \\ \left(\frac{1}{2}, \frac{1}{3}\right), & \text { if } x \in T \backslash S ; \\ {[0,0],} & \text { if } x \in R \backslash T .\end{cases}
$$

Then clearly $A \in D(I)^{R}$ from the definition of A. Moreover, we can easily show that A is an interval-valued fuzzy weakly completely prime ideal but, by Proposition 4.2, A is not an interval-valued fuzzy weakly completely prime ideal.

References

[1] R.Biswas, "Rosenfeld's fuzzy subgroups with interval-valued membership functions," Fuzzy set and systems, vol. 63, pp. 87-90, 1995.
[2] D.M.Burton, "A First Course in Rings and Ideals"(Addition-Wesley, 1970).
[3] J.Y.Choi, S.R.Kim and K.Hur, "Interval-valued smooth topological spaces," Honam Math.J., vol. 32, pp. 711-738, 2010.
[4] M.B. Gorzalczany, "A method of inference in approximate reasoning based on interval-valued fuzzy sets," Fuzzy Sets and Systems, vol. 21, pp. 1-17, 1987.
[5] K.Hur, J.G.Lee and J.Y.Choi, "Interval-valued fuzzy relations," J.Korean Institute of Intelligent systems, vol. 19, pp. 425-432, 2009.
[6] H.W.Kang, "Interval-valued fuzzy subgroups and homomorphisms," Honam Math. J., vol. 33, 2011.
[7] K.Hur and H.W.Kang, "Interval-valued fuzzy subgroups and rings," Honam Math.J., vol. 32, pp. 593617, 2010.
[8] T.K.Mondal and S.K.Samanta, "Topology of intervalvalued fuzzy sets," Indian J.Pure Appl.Math., vol. 30, pp. 20-38, 1999.
[9] T.K.Mukherjee and M.K.Sen, "On fuzzy ideals of a ring," Fuzzy sets and Systems, vol. 21, pp. 98-104, 1987.
[10] L.A.Zadeh, "Fuzzy sets," Inoform. and Centrol, vol. 8, pp. 338-353, 1965.
[11] L.A.Zadeh, "The concept of a linguistic variable and its application to approximate reasoning I," Inform.Sci, vol. 8, pp. 199-249, 1975.

Keon Chang Lee

Professor in Dongshin University
His research interests are Category Theory, Hyperspace and Topology.
E-mail : kclee@dsu.ac.kr

Kul Hur

Professor in Wonkwang University
His research interests are Category Theory, Hyperspace and Topology.
E-mail : kulhur@wonkwang.ac.kr

Pyung Ki Lim

Professor in Wonkwang University
His research interests are Category Theory, Hyperspace and Topology.
E-mail : pklim@wonkwang.ac.kr

[^0]: Manuscript received May. 23, 2012; revised Sep. 21, 2012; accepted Sep. 24, 2012.
 ${ }^{3}$ Corresponding Author : pklim@wonkwang.ac.kr
 2000 Mathematics Subject Classification. 54A40.
 (c)The Korean Institute of Intelligent Systems. All rights reserved.

