Interval-Valued Fuzzy Ideals of a Ring

Keon Chang Lee¹, Kul Hur² and Pyung Ki Lim³

¹Department of Computer Science, Dongshin University, Naju, Cheonnam, Korea 520-714 ^{2,3}Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University, Iksan, Chonbuk, Korea 570-749

Abstract

We introduce the notions of interval-valued fuzzy prime ideals, interval-valued fuzzy completely prime ideals and intervalvalued fuzzy weakly completely prime ideals. And we give a characterization of interval-valued fuzzy ideals and establish relationships between interval-valued fuzzy completely prime ideals and interval-valued fuzzy weakly completely prime ideals.

Key Words: interval-valued fuzzy set, interval-valued fuzzy subring. interval-valued fuzzy ideal, interval-valued fuzzy prime ideal, interval-valued fuzzy completely prime ideal, interval-valued fuzzy weakly completely prime ideal.

1. Introduction and Preliminaries

In 1975, Zadeh[11] introduced the concept of intervalvalued fuzzy sets as a generalization of fuzzy sets introduced by himself[10]. After then, Biswas[1] applied the notion of interval-valued fuzzy sets to group theory. Moreover, Gorzalczany[4] applied it to a method of inference in approximate reasoning, and Montal and Samanta[8] applied it to topology. Recently, Hur et al.[5] introduced the concept of an interval-valued fuzzy relations and obtained some of it's properties. Also, Choi et al.[3] applied it to topology in the sense of \check{S} ostak, Kang and Hur[7], and Kang[6] applied it to algebra.

In this paper, we introduce the notions of interval-valued fuzzy prime ideals, interval-valued fuzzy completely prime ideals and interval-valued fuzzy weakly completely prime ideals. And we give a characterization of interval-valued fuzzy ideals and establish relationships between intervalvalued fuzzy completely prime ideals and interval-valued fuzzy weakly completely prime ideals.

Now, we will list some basic concepts and well-known results which are needed in the later sections.

Let D(I) be the set of all closed subintervals of the unit interval I = [0, 1]. The elements of D(I) are generally denoted by capital letters M, N, \cdots , and note that $M = [M^L, M^U]$, where M^L and M^U are the lower and the upper end points respectively. Especially, we denoted,

2000 Mathematics Subject Classification. 54A40.

 $\mathbf{0} = [0, 0], \mathbf{1} = [1, 1], \text{ and } \mathbf{a} = [a, a] \text{ for every } a \in (0, 1).$ We also note that

(i) $(\forall M, N \in D(I))$ $(M = N \Leftrightarrow M^L = N^L, M^U = N^U)$,

(ii) ($\forall M, N \in D(I)$) ($M \le N \Leftrightarrow M^L \le N^L, M^U \le N^U$).

For every $M \in D(I)$, the *complement* of M, denoted by M^c , is defined by $M^c = 1 - M = [1 - M^U, 1 - M^L]$ (See [8]).

Definition 1.1 [8, 11]. A mapping $A : X \to D(I)$ is called an *interval-valued fuzzy set* (in short, *IVS*) in X and is denoted by $A = [A^L, A^U]$. Thus for each $x \in X$, $A(x) = [A^L(x), A^U(x)]$, where $A^L(x)$ [resp. $A^U(x)$] is called the *lower*[resp. *upper*] end point of x to A. For any $[a,b] \in D(I)$, the interval-valued fuzzy set A in X defined by A(x) = [a,b] for each $x \in X$ is denoted by $[\widehat{a,b}]$ and if a = b, then the IVS $[\widehat{a,b}]$ is denoted by simply \widetilde{a} . In particular, $\widetilde{0}$ and $\widetilde{1}$ denote the *interval-valued fuzzy empty set* and the *interval-valued fuzzy whole set* in X, respectively.

We will denote the set of all IVSs in X as $D(I)^X$. It is clear that set $A = [A^L, A^U] \in D(I)^X$ for each $A \in I^X$.

Definition 1.2 [8]. Let $A, B \in D(I)^X$ and let $\{A_\alpha\}_{\alpha \in \Gamma} \subset D(I)^X$. Then

(a) $A \subset B$ iff $A^L \leq B^L$ and $A^U \leq B^U$. (b) A = B iff $A \subset B$ and $B \subset A$. (c) $A^c = [1 - A^U, 1 - A^L]$. (d) $A \cup B = [A^L \vee B^L, A^U \vee B^U]$. (d)' $\bigcup_{\alpha \in \Gamma} A_\alpha = [\bigvee_{\alpha \in \Gamma} A_\alpha^L, \bigvee_{\alpha \in \Gamma} A_\alpha^U]$. (e) $A \cap B = [A^L \wedge B^L, A^U \wedge B^U]$.

Manuscript received May. 23, 2012; revised Sep. 21, 2012; accepted Sep. 24, 2012.

³Corresponding Author : pklim@wonkwang.ac.kr

 $[\]textcircled{C}$ The Korean Institute of Intelligent Systems. All rights reserved.

(e)'
$$\bigcap_{\alpha \in \Gamma} A_{\alpha} = [\bigwedge_{\alpha \in \Gamma} A_{\alpha}^{L}, \bigwedge_{\alpha \in \Gamma} A_{\alpha}^{U}].$$

Result 1.A [8, Theorem 1]. Let $A, B, C \in D(I)^X$ and let $\{A_{\alpha}\}_{\alpha \in \Gamma} \subset D(I)^X$. Then

$$\begin{aligned} \text{(a)} & \tilde{0} \subset A \subset \tilde{1}. \\ \text{(b)} & A \cup B = B \cup A \text{, } A \cap B = B \cap A. \\ \text{(c)} & A \cup (B \cup C) = (A \cup B) \cup C \text{,} \\ & A \cap (B \cap C) = (A \cap B) \cap C. \\ \text{(d)} & A, B \subset A \cup B \text{, } A \cap B \subset A, B. \\ \text{(e)} & A \cap (\bigcup_{\alpha \in \Gamma} A_{\alpha}) = \bigcup_{\alpha \in \Gamma} (A \cap A_{\alpha}). \\ \text{(f)} & A \cup (\bigcap_{\alpha \in \Gamma} A_{\alpha}) = \bigcap_{\alpha \in \Gamma} (A \cup A_{\alpha}). \\ \text{(g)} & (\tilde{0})^c = \tilde{1} \text{, } (\tilde{1})^c = \tilde{0}. \\ \text{(h)} & (A^c)^c = A. \\ \text{(i)} & (\bigcup_{\alpha \in \Gamma} A_{\alpha})^c = \bigcap_{\alpha \in \Gamma} A^c_{\alpha} \text{, } (\bigcap_{\alpha \in \Gamma} A_{\alpha})^c = \bigcup_{\alpha \in \Gamma} A^c_{\alpha}. \end{aligned}$$

Definition 1.3 [7]. Let A be an IVS in a set X and let $[\lambda, \mu] \in D(I)$. Then the set $A^{[\lambda,\mu]} = \{x \in X : A^L(x) \ge \lambda \text{ and } A^U(x) \ge \mu\}$ is called a $[\lambda, \mu]$ -level subset of A.

Definition 1.4 [8]. Let $[\lambda, \mu] \in D(I)$. Then an *interval*valued fuzzy point(in short, *IVP*) $x_{[\lambda,\mu]}$ of X is the IVS in X defined as follows : For each $y \in X$,

$$x_{[\lambda,\mu]}(y) = \begin{cases} [\lambda,\mu], & \text{if } y = x;\\ \tilde{0}, & \text{otherwise.} \end{cases}$$

In this case, x is called the support of $x_{[\lambda,\mu]}$ and, λ and μ are called the value and nonvalue of $x_{[\lambda,\mu]}$, respectively. In particular, if $\lambda = \mu$, then it is also denoted by x_{λ} . An IVP x_M is said to belong to an IVS A in X, denoted by $x_M \in A$ if $M^L \leq A^L(x)$ and $M^U \leq A^U(x)$.

It is clear that $A = \bigcup_{x_M \in A} x_M$ and $x_M \in A$ if and only if $x_{M^L} \in A^L$ and $x_{M^U} \in A^U$, for each $A \in P(I)^X$.

We will denote the set of all IVPs in X as IVP(X).

The following is the immediate result of Definition 1.2 and 1.4.

Theorem 1.5. Let $A, B \in D(I)^X$. Then $A \subset B$ if and only if for each $x_M \in IVP(X), x_M \in A$ implies $x_M \in B$.

Definition 1.6 [7]. Let (X, \cdot) be a groupoid and let $A, B \in D(I)^X$. Then the *interval-valued fuzzy product* of A and $B, A \circ B$ is defined as follows : For each $x \in X$,

$$\begin{split} &A \circ B(x) \\ &= \begin{cases} &[\bigvee_{x=yz} (A^{U}(y) \wedge B^{L}(z)), \\ &\bigvee_{x=yz} (A^{U}(y) \wedge B^{U}(z))], & \text{if } x=yz; \\ &\tilde{0}, & \text{orherwise.} \end{cases} \end{split}$$

Result 1.B [7, Proposition 3.2]. Let (X, \cdot) be a groupoid, let " \circ " be the same as above, let $x_M, y_N \in IVP(X)$ and let $A, B \in D(I)^X$. Then

(a) $x_M \circ y_N = (xy)_{M \cap N}$. (b) $A \circ B = \bigcup_{x_M \in A, y_N \in B} x_M \circ y_N$.

Definition 1.7 [1]. Let G be a group and let $A \in D(I)^G$. Then A is called an *interval-valued fuzzy subgroup*(in short, IVG) of G if it satisfies the following conditions :

(a) $A^L(xy) \ge A^L(x) \wedge A^L(y)$ and $A^U(xy) \ge A^U(x) \wedge A^U(y)$ for any $x, y \in G$.

(b) $A^L(x^{-1}) \ge A^L(x)$ and $A^U(x^{-1}) \ge A^U(x)$ for each $x \in G$.

We will denote the set of all IVGs as IVG(G).

Result 1.C [1, Proposition 3.1]. Let A be an IVG of a group G with identity e. Then $A(x^{-1}) = A(x)$ and $A^{L}(x) \ge A^{L}(e), A^{U}(x) \ge A^{U}(e)$ for each $x \in G$.

Definition 1.8 [7]. Let $(R, +, \cdot)$ be a ring and let $\tilde{0} \neq A \in D(I)^R$. Then A is called an *interval-valued fuzzy subring*(in short, *IVR*) of R if it satisfies following conditions :

(a) A is an IVG with respect to the operation " + ". (b) $A^L(xy) \ge A^L(x) \wedge A^L(y)$ and $A^U(xy) \ge A^U(x) \wedge A^U(y)$ for any $x, y \in R$.

We will denote the set of all IVRs as IVR(R).

2. Interval-valued fuzzy ideals

Definition 2.1 [7]. Let A be a non-empty IVR of a ring R. Then A is called an :

(i) interval-valued fuzzy left ideal (in short, IVLI) of R if $A^L(xy) \ge A^L(y)$ and $A^U(xy) \ge A^U(y)$ for any $x, y \in R$.

(ii) interval-valued fuzzy right ideal (in short, *IVRI*) of R if $A^{L}(xy) \geq A^{L}(x)$ and $A^{U}(xy) \geq A^{U}(x)$ for any $x, y \in R$.

(iii) interval-valued fuzzy ideal (in short, IVRI) of R if it is an IVLI and an IVRI of R.

We will denote the set of all IVRIs [resp. IVLIs and IVIs] of R as IVRI(R) [resp. IVLI(R) and IVI(R)].

Result 2.A [7, Proposition 6.6]. Let *R* be a ring. Then *A* is an ideal [resp. a left ideal and a right ideal] of *R* if and any of $[\chi_A, \chi_A] \in IVI(R)$ [resp. IVLI(R) and IVRI(R)].

Result 2.B [7, Proposition 6.5]. Let R be a ring and let $\tilde{0} \neq A \in D(I)^R$. Then $A \in IVI(R)$ [resp. IVLI(R) and IVRI(R)] if and only if for any $x, y \in R$,

 $\begin{array}{ll} (\mathbf{i}) \ A^L(x-y) \geq A^L(x) \wedge A^L(y) \ \text{and} \ A^U(x-y) \geq \\ A^U(x) \wedge A^U(y). \\ (\mathbf{i}) \ A^L(xy) \geq A^L(x) \wedge A^L(y) \ \text{and} \ A^U(xy) \geq \\ A^U(x) \wedge A^U(y) \ [\text{resp.} \ A^L(xy) \geq A^L(y) \ \text{and} \\ A^U(xy) \geq A^U(y), \ A^L(xy) \geq A^L(x) \ \text{and} \\ A^U(xy) \geq A^U(x). \end{array}$

Lemma 2.2. Let R be a ring and let $A, B \in D(I)^R$.

(a) If $A, B \in IVLI(R)$ [resp. IVRI(R) and IVI(R)], then $A \cap B \in IVLI(R)$ [resp. IVRI(R) and IVI(R)].

(b) If $A \in \text{IVRI}(\mathbb{R})$ and $B \in \text{IVLI}(\mathbb{R})$, then $A \circ B \subset A \cap B$.

Proof. (a) Suppose $A, B \in IVLI(\mathbb{R})$ and let $x, y \in \mathbb{R}$. Then

$$(A \cap B)^{L}(x - y)$$

= $A^{L}(x - y) \wedge B^{L}(x - y)$
 $\geq (A^{L}(x) \wedge A^{L}(y)) \wedge (B^{L}(x) \wedge B^{L}(y))$
= $(A \cap B)^{L}(x) \wedge (A \cap B)^{L}(y).$

Similarly, we have $(A \cap B)^U(x - y) \ge (A \cap B)^U(x) \land (A \cap B)^U(y)$. Also

$$(A \cap B)^{L}(xy)$$

= $A^{L}(xy) \wedge B^{L}(xy)$
 $\geq A^{L}(y) \wedge B^{L}(y)$ (Since $A, B \in \text{IVLI(R)}$)
= $(A \cap B)^{L}(y)$.

Similarly, we have $(A \cap B)^U(xy) \ge (A \cap B)^U(y)$. Hence, by Result 2.B, $A \cap B \in \text{IVLI(R)}$. Similarly, we can easily see the rest.

(b) Let $x \in G$ and suppose $A \circ B(x) = [0,0]$. Then there is nothing to show. Suppose $A \circ B(x) \neq [0,0]$. Then $A \circ B(x) = [\bigvee_{x=yz} (A^L(y) \wedge B^L(z)), \bigvee_{x=yz} (A^U(y) \wedge B^U(z))]$. Since $A \in IVRI(R)$ and $B \in IVLI(R)$,

$$A^{L}(y) \le A^{L}(yz) = A^{L}(x), A^{U}(y) \le A^{U}(yz) = A^{U}(x)$$

and

$$B^{L}(z) \le B^{L}(yz) = B^{L}(x), B^{U}(z) \le B^{U}(yz) = B^{U}(x).$$

Thus

$$(A \circ B)^{L}(x) = \bigvee_{x=yz} (A^{L}(y) \wedge B^{L}(z))$$
$$\leq A^{L}(x) \wedge B^{L}(x) = (A \cap B)^{L}(x).$$

Similarly, we have $(A \circ B)^U(x) \leq (A \cap B)^U(x)$. Hence $A \circ B \subset A \cap B$. This completes the proof. \Box

A ring R is said to be *regular* if for each $a \in R$ there exists an $x \in R$ such that a = axa.

Result 2.C [2, Theorem 9.4]. A ring R is regular if and only if $JM = J \cap M$ for each right ideal J and left ideal M of R.

Theorem 2.3. A ring R is regular if and only if for each $A \in IVRI(\mathbb{R})$ and each $B \in IVLI(\mathbb{R})$, $A \circ B = A \cap B$.

Proof. (\Rightarrow) : Suppose *R* is regular. From Lemma 2.2(b), it is clear that $A \circ B \subset A \cap B$. Thus it is sufficient to show that $A \cap B \subset A \circ B$. Let $a \in R$. Then, by the hypothesis, there exists an $x \in R$ such that a = axa. Thus $A^{L}(a) = A^{L}(axa) \geq A^{L}(ax) \geq A^{L}(a)$ and $A^{U}(a) = A^{U}(axa) \geq A^{U}(ax) \geq A^{U}(a)$. So A(ax) = A(a). On the other hand,

$$\begin{aligned} (A \circ B)^{L}(a) &= \bigvee_{a=yz} (A^{L}(y) \wedge B^{L}(z)) \\ &\geq A^{L}(ax) \wedge B^{L}(a) \quad (\text{Since } a = axa) \\ &= A^{L}(a) \wedge B^{L}(a) = (A \cap B)^{L}(a). \end{aligned}$$

Similarly, we have $(A \circ B)^U(a) \ge (A \cap B)^U(a)$. Thus $A \cap B \subset A \circ B$. Hence $A \circ B = A \cap B$.

 (\Leftarrow) : Suppose the necessary condition holds. Let J and M be right and left ideals of R, respectively. Then, by Result 2.A, $[\chi_J, \chi_J] \in IVRI(R)$ and $[\chi_M, \chi_M] \in IVLI(R)$. Let $a \in J \cap M$ and let $A = [\chi_J, \chi_J], B = [\chi_M, \chi_M]$. Then, by the hypothesis, $(A \circ B)(a) = (A \cap B)(a) = [1, 1]$. Thus

$$(A \circ B)^{L}(a) = \bigvee_{a=a_{1}a_{2}} (A^{L}(a_{1}) \wedge B^{L}(a_{2}))$$
$$= \bigvee_{a=a_{1}a_{2}} (\chi_{J}(a_{1}) \wedge \chi_{M}(a_{2}))$$
$$= 1$$

Similarly, we have $(A \circ B)^U(a) = 1$. So there exist $b_1, b_2 \in R$ such that $\chi_J(b_1) = 1$ and $\chi_M(b_2) = 1$ with $a = b_1b_2$. Thus $a \in JM$, i.e., $J \cap M \subset JM$. Since $JM \subset J \cap M$, $JM = J \cap M$. Hence, by Result 2.C, R is regular. This completes the proof.

3. Interval-valued fuzzy prime ideals

Definition 3.1. Let P be an IVI of a ring R. Then P is said to be *prime* if P is not a constant mapping and for any $A, B \in IVI(R), A \circ B \subset P$ implies either $A \subset P$ or $B \subset P$.

We will denote the set of all interval-valued fuzzy prime ideals of R as IVPI(R).

Theorem 3.2. Let J be an ideal of a ring R such that $J \neq R$. Then J is a prime ideal of R if and only if

 $[\chi_J, \chi_J] \in \text{IVPI}(\mathbf{R}).$

Proof. (\Rightarrow) : Suppose *J* is a prime ideal of *R* and let $P = [\chi_J, \chi_J]$. Since $J \neq R$, *P* is not a constant mapping on *R*. Assume that there exist $A, B \in IVI(R)$ such that $A \circ B \subset P$ and $A \notin P$ and $B \notin P$. Then there exist $x, y \in R$ such that

$$A^{L}(x) > P^{L}(x) = \chi_{J}(x), \ A^{U}(x) > P^{U}(x) = \chi_{J}(x)$$

and

$$B^{L}(y) > P^{L}(y) = \chi_{J}(y), \ B^{U}(y) > P^{U}(y) = \chi_{J}(y).$$

Thus $A^L(x) \neq 0$, $A^U(x) \neq 0$ and $B^L(y) \neq 0$, $B^U(y) \neq 0$. But $\chi_J(x) = 0$ and $\chi_J(y) = 0$. So $x \notin J$ and $y \notin J$. Since J is a prime ideal of R, by the process of the proof of Theorem 2 in [9], there exist an $r \in R$ such that $xry \notin J$. Let a = xry. Then clearly, $\chi_J(a) = 0$. Thus

$$A \circ B(a) = [0, 0]. \tag{3.1}$$

On the other hand,

$$\begin{aligned} (A \circ B)^{L}(a) &= \bigvee_{a=cd} (A^{L}(c) \wedge B^{L}(d)) \\ &\geq A^{L}(x) \wedge B^{L}(ry) \text{ (Since } a = xry) \\ &= A^{L}(x) \wedge B^{L}(y) \text{ (Since } B \in \text{IVI(R))} \\ &> 0. \text{ (Since } A^{L}(x) \neq 0 \text{ and } B^{L}(y) \neq 0 \end{aligned}$$

Similarly, we have $(A \circ B)^U(a) > 0$. Then $A \circ B(a) \neq \tilde{0}$. This contradicts (3.1). So *P* satisfies the second condition of Definition 3.1. Hence $P = [\chi_J, \chi_J] \in \text{IVPI(R)}$.

 (\Leftarrow) : Suppose $P = [\chi_J, \chi_J] \in \text{IVPI}(\mathbb{R})$. Since P is not a constant mapping on $R, J \neq R$. Let A and B be two ideals of R such that $AB \subset J$. Let $\widetilde{A}, \widetilde{B} \in \text{IVI}(\mathbb{R})$. Consider the product $\widetilde{A} \circ \widetilde{B}$. Let $x \in R$.

Suppose $A \circ B(x) = [0,0]$. Then clearly $\widetilde{A} \circ \widetilde{B} \subset P$.

Suppose $\widetilde{A} \circ \widetilde{B}(x) \neq [0,0]$. Then $(\widetilde{A} \circ \widetilde{B})^L(x) = \bigvee_{x=yz}(\chi_A(y) \land \chi_B(z)) \neq 0$. Similarly, we have $(\widetilde{A} \circ \widetilde{B})^U(x) \neq 0$. Thus there exist $y, z \in R$ with x = yz such that $\chi_A(y) \neq 0$ and $\chi_B(z) \neq 0$. So $\chi_A(y) = 1$ and $\chi_B(z) = 1$. This implies $y \in A$ and $z \in B$. Thus $x = yz \in AB \subset J$. So $\chi_J(x) = 1$. It follows that $\widetilde{A} \circ \widetilde{B} \subset P$. Since $P \in \text{IVPI}(R)$, either $\widetilde{A} \subset P$ or $\widetilde{B} \subset P$. Thus either $A \subset J$ or $B \subset J$. Hence J is a prime ideal of R. This completes the proof. \Box

Proposition 3.3. Let P be an interval-valued fuzzy prime ideals of a ring R and let $R_P = \{x \in R : P(x) = P(0)\}$. Then R_P is a prime ideal of R.

Proof. Let $x, y \in R_P$. Then P(x) = P(0) and P(y) = P(0). Thus $P^L(x - y) \ge P^L(x) \land P^L(y) = P^L(0)$. Similarly, we have $P^U(x-y) \ge P^U(0)$. Since $P \in IVI(\mathbb{R})$,

$$P^{L}(0) = P^{L}(0(x-y)) \ge P^{L}(x-y)$$

Similarly, we have $P^U(0) \ge P^U(x-y)$. So $x - y \in R_P$. Now let $r \in R$ and let $x \in R_P$. Then

$$P^{L}(rx) \ge P^{L}(x) = P^{L}(0) \text{ and } P^{U}(rx) \ge P^{U}(x) = P^{U}(0)$$

By Result 1.C, P(rx) = P(0). So $rx \in R_P$. Similarly we have $xr \in R_P$. Hence R_P is an ideal of R.

Let J and M be two ideals of R such that $JM \subset R_P$. We define two mappings $A, B : R \to D(I)$ by $A = P(0)[\chi_J, \chi_J]$ and $B = P(0)[\chi_M, \chi_M]$, respectively, where $P(0)[\chi_J, \chi_J] = [P^L(0)\chi_J, P^U(0)\chi_J]$. Then we can easily prove that $A, B \in IVI(\mathbb{R})$. Let $x \in R$.

Suppose $A \circ B(x) = [0, 0]$. Then $A \circ B \subset P$.

Suppose $A \circ B(x) \neq [0,0]$. Then $(A \circ B)^{L}(x) = \bigvee_{x=yz} (A^{L}(y) \land B^{L}(z)) = \bigvee_{x=yz} (P^{L}(0)\chi_{J}(y) \land P^{L}(0)\chi_{M}(z)) \neq 0$. Similarly, we have $(A \circ B)^{U}(x) \neq 0$. Thus there exist $y, z \in R$ with x = yz such that

$$P^L(0)\chi_J(y) \wedge P^L(0)\chi_M(z) \neq 0$$

and

$$P^U(0)\chi_J(y) \wedge P^U(0)\chi_M(z) \neq 0.$$

So $\chi_J(y) = 1$ and $\chi_M(z) = 1$. Thus $y \in J$ and $z \in M$, i.e., $x = yz \in JM \subset R_P$. So P(x) = P(0), i.e., $A \circ B \subset P$. Since $P \in IVPI(R)$ and $A, B \in IVI(R)$, either $A \subset P$ or $B \subset P$. Suppose $A \subset P$. Then $P(0)[\chi_J, \chi_J] \subset P$. Assume that $J \subset R_P$. Then there exists an $a \in J$ such that $a \notin R_P$. Thus $P(a) \neq P(0)$. By Result 1.C, $P^L(a) < P^L(0)$ and $P^U(a) < P^U(0)$. Then $A^L(a) = P^L(0)\chi_J(a) = P^L(0) > P^L(a)$. Similarly, we have $A^U(a) > P^U(a)$. This contradicts the assumption that $A \subset P$. So $J \subset R_P$. By the similar arguments, we can show that if $B \subset P$, then $M \subset R_P$. Hence R_P is a prime ideal of R. This completes the proof. \Box

Remark 3.4. Let $P \in IVI(\mathbb{Z})$. Then, by Proposition 3.3, R_P is an ideal of \mathbb{Z} . Hence there exists an integer $n \ge 0$ such that $R_P = n\mathbb{Z}$.

Proposition 3.5. Let $P \in IVI(\mathbb{Z})$ with $R_P = n\mathbb{Z} \neq (0)$. Then P can take at most r values, where r is the number of distinct positive divisors of n.

Proof. Let $a \in \mathbb{Z}$ and let d = (a, n). Then there exist $r, s \in \mathbb{Z}$ such that d = ar + ns. Thus

$$P^{L}(d) = P^{L}(ar + ns) \ge P^{L}(ar) \land P^{L}(ns) \ge P^{L}(a) \land P^{L}(n).$$

Similarly, we have $P^U(d) \ge P^U(a) \land P^U(n)$. Since $n \in R_P = n\mathbb{Z}$, by Result 1.C,

$$P^{L}(n) = P^{L}(0) \ge P^{L}(a)$$
 and $P^{U}(n) = P^{U}(0) \ge P^{U}(a)$.

Thus $P^{L}(d) \geq P^{L}(a)$ and $P^{U}(d) \geq P^{U}(a)$. Since d is a divisor of a, there exists a $t \in \mathbb{Z}$ such that a = dt. Then

 $P^{L}(a) = P^{L}(dt) \ge P^{L}(d)$ and $P^{U}(a) = P^{U}(dt) \ge$ $P^U(d)$. So P(a) = P(d). Moreover, by Result 1.C, P(x) = P(-x) for each $x \in R$. Hence for each $a \in \mathbb{Z}$ there exists a positive divisor d of n such that P(a) = P(d). This completes the proof.

The following result gives a complete characterization of interval-valued fuzzy prime ideals of \mathbb{Z} :

Theorem 3.6. Let $P \in \text{IVPI}(\mathbb{Z})$ with $\mathbb{Z}_P \neq (0)$. Then P has two distinct values. Conversely, if $P \in D(I)^{\mathbb{Z}}$ such that $P(n) = [\lambda_1, \mu_1]$ when $p \mid n$ and $P(n) = [\lambda_2, \mu_2]$ when $p \nmid n$, where p is a fixed prime, $\lambda_1 > \lambda_2$ and $\mu_1 > \mu_2$, then $P \in IVPI(\mathbb{Z})$ with $\mathbb{Z}_P \neq (0)$.

Proof. Suppose $P \in \text{IVPI}(\mathbb{Z})$ with $\mathbb{Z}_P = n\mathbb{Z} \neq (0)$. Then, by Proposition 3.3, \mathbb{Z}_P is a prime ideal of \mathbb{Z} . Thus n is a prime integer. Since *n* has two distinct positive integers, by Proposition 3.5, P has at most two distinct values. On the other hand, an interval-valued fuzzy prime ideals cannot be a constant mapping. Hence P has two distinct values.

Conversely, let P be an IVS in \mathbb{Z} satisfying the given conditions. Let $a, b \in \mathbb{Z}$.

Case(i): Suppose $p \mid (a - b)$. Then $P(a - b) = [\lambda_1, \mu_1]$. Thus $\lambda_1 = P^L(a-b) \ge P^L(a) \land P^L(b)$ (Since $\lambda_1 > \lambda_2$) and $\mu_1 = P^U(a-b) \ge P^U(a) \land P^U(b)$ (Since $\mu_1 > \mu_2$).

Case(ii): Suppose $p \nmid (a - b)$. Then $p \nmid a$ or $p \nmid b$. Thus either $P(a) = [\lambda_2, \mu_2]$ or $P(b) = [\lambda_2, \mu_2]$. So $\lambda_2 =$ $P^L(a-b) \geq P^L(a) \wedge P^L(b)$ and $\mu_2 = P^U(a-b) \geq$ $P^{U}(a) \wedge P^{U}(b).$

Case(iii): Suppose $p \mid ab$. Then clearly $P^{L}(ab) \geq$ $P^{L}(b)$ and $P^{U}(ab) \geq P^{U}(b)$.

Case(iv): Suppose $p \nmid ab$. Then $p \nmid a$ and $p \nmid b$. Thus $P^L(ab) \geq P^L(b)$ and $P^U(ab) \geq P^U(b)$. Consequently, by Result 1.C, $P \in IVI(\mathbb{Z})$ with $\mathbb{Z}_P = p\mathbb{Z} \neq (0)$. Moreover, by the similar arguments of the proof of Proposition 3.2, we can see that $P \in IVPI(\mathbb{Z})$. This completes the proof. \square

Proposition 3.7. Let R be a ring with 1. If every IVI of Rhas finite values, then R is a Noetherian ring.

Proof. Let $\{J_i\}_{i \in \mathbb{Z}^+}$ be a sequence of ideals of R such that $J_1 \subset J_2 \subset J_3 \subset \cdots$ and let $J = \bigcup_{i \in \mathbb{Z}^+} J_i$. Then clearly J is an ideal of R. We define a mapping $P: R \to D(I)$ as follows : For each $x \in R$,

$$P(x) = \begin{cases} \mathbf{0}, & \text{if } x \notin J; \\ [\frac{1}{i_1}, \frac{1}{i_1}], & \text{if } x \in J. \end{cases}$$

where $i_1 = \text{minimum of } i$ such that $x \in J_i$. Then it is clear that $P \in IVI(\mathbb{R})$ from the definition of P. Moreover, we can easily see that $P \in IVI(\mathbb{R})$. If the chain does not terminate, then P takes infinitely many values. This contradicts

the hypothesis. Thus the chain terminates. Hence R is a Noetherian ring. This completes the proof. \square

Proposition 3.8. Let $A : \mathbb{Z} \to D(I)$ be the mapping such that

(a) A(x) = A(-x) for each $x \in \mathbb{Z}$.

(b) $A^L(x+y) \geq A^L(x) \wedge A^L(y)$ and $A^U(x+y) \geq$ $A^U(x) \wedge A^U(y)$ for any $x, y \in \mathbb{Z}$.

If there exists a non-zero integer m such that A(m) = A(0), then A can take at most finitely many values.

Proof. It is clear that $A \in D(I)^{\mathbb{Z}}$ from the definition of A. Moreover, we can easily show that $A \in IVI(\mathbb{Z})$ such that $\mathbb{Z}_A \neq (0)$. Hence, by Proposition 3.5, A can take at most finitely many values.

4. Interval-valued fuzzy completely prime ideals

Definition 4.1. Let P be an IVI of a ring R. Then P is called an interval-valued fuzzy completely prime ideals(in short, IVCPI) of R if it satisfies the following conditions :

(a) P is not a constant mapping.

(b) For any $x_M, y_N \in IVP(\mathbb{R}), x_M \circ y_N \in P$ implies either $x_M \in P$ or $y_N \in P$.

We will denote the set of all IVCPIs of R as IVCPI(G).

Proposition 4.2. (a) Let R be a ring. Then $IVCPI(R) \subset$ IVPI(R).

(b) Let R be a commutative ring. Then $IVPI(R) \subset$ IVCPI(R). Hence IVCPI(R) = IVPI(R).

Proof. (a) Let $P \in IVCPI(R)$ and let $A, B \in IVI(R)$ such that $A \circ B \subset P$. Suppose $A \not\subset P$. Then, by Theorem 1.5, there exists an $x_{[\lambda,\mu]} \in IVP(R)$ such that $x_{[\lambda,\mu]} \in P$ but $x_{[\lambda,\mu]} \notin P$. Let $y_{[t,s]} \in B$. Then, by Result 1.B(a), $x_{[\lambda,\mu]} \circ y_{[t,s]} = (xy)_{[\lambda \wedge t, \mu \wedge s]}$. On the other hand,

$$P^{L}(xy) \ge (A \circ B)^{L}(xy) \ge A^{L}(x) \wedge B^{L}(y)$$
$$= \lambda \wedge t = (x_{[\lambda,\mu]} \circ y_{[t,s]})^{L}(xy).$$

Similarly, we have $P^U(xy) \ge (x_{[\lambda,\mu]} \circ y_{[t,s]})^U(xy)$. Let $z \in R$ such that $x \ne xy$. Then clearly $[x_{[\lambda,\mu]} \circ$ $y_{[t,s]}](z) = [0,0]$. Thus $x_{[\lambda,\mu]} \circ y_{[t,s]} \in P$. Since $P \in$ IVCPI(R), $x_{[\lambda,\mu]} \in P$ or $y_{[t,s]} \in P$. Since $x_{[\lambda,\mu]} \notin P$, $y_{[t,s]} \in P$. So, by Theorem 1.5, $B \subset P$. Hence $P \in$ IVPI(R).

(b) Let $P \in IVPI(\mathbb{R})$ and let $x_{[\lambda,\mu]}, y_{[t,s]} \in IVP(\mathbb{R})$ such that $x_{[\lambda,\mu]} \circ y_{[t,s]} \in P$. Then $(x_{[\lambda,\mu]} \circ y_{[t,s]})^L(xy) \leq C$ $P^L(xy)$ and $(x_{[\lambda,\mu]} \circ y_{[t,s]})^U(xy) \leq P^U(xy).$

(4.2)

Thus, by Result 1.B(a),

$$\lambda \wedge t \leq P^L(xy) \text{ and } \mu \wedge s \leq P^U(xy).$$
 (4.1)

We define two mappings $A, B : R \to D(I)$ as follows : For each $z \in R$,

$$A(z) = \begin{cases} [\lambda, \mu], & \text{if } z \in (x);\\ [0, 0], & \text{otherwise.} \end{cases}$$

and

$$B(z) = \begin{cases} [t,s], & \text{if } z \in (y);\\ [0,0], & \text{otherwise,} \end{cases}$$

where (x) is the ideal generated by x. Then clearly $A, B \in D(I)^R$ from the definitions of A and B. It is easily seen that if z is not expressible in the form z = uv for some $u \in (x)$ and $v \in (y)$, then $A \circ B(z) = [0, 0]$. Suppose there exist $u \in (x)$ and $v \in (y)$ such that z = uv. Then

$$(A \circ B)^{L}(z) = \bigvee_{z=uv, u \in (x), v \in (y)} (A^{L}(u) \wedge B^{L}(v)) = \lambda \wedge t$$

and

$$(A \circ B)^U(z) = \bigvee_{z=uv, u \in (x), v \in (y)} (A^U(u) \wedge B^U(v)) = \mu \wedge s.$$

Since R is commutative and $u \in (x)$, there exist $n \in \mathbb{Z}$ and $b \in R$ such that u = nx + xb. Since $v \in (y)$, there exist $m \in \mathbb{Z}$ and $c \in R$ such that v = my + yc. Since R is commutative, uv = (nx + xb)(my + yc) = xyd + mnxy for some $d \in R$. Then

$$P^{L}(uv) \geq P^{L}(xy) \qquad (\text{Since } P \in \text{IVI(R)}) \\ \geq \lambda \wedge t. \qquad (\text{By } (4.1))$$

Similarly, we have that $P^U(uv) \ge P^U(xy) \ge \mu \land s$. Thus $z_{[\lambda \land t, \mu \land s]} = u_{[\lambda,\mu]} \circ v_{[t,s]} \in P$. So, in all, $A \circ B \subset P$. On the other hand, from the definitions of A and B, we can easily prove that $A, B \in IVI(\mathbb{R})$. Since $P \in IVPI(\mathbb{R})$, either $A \subset P$ or $B \subset P$. Thus either $x_{[\lambda,\mu]} \in P$ or $y_{[t,s]} \in P$. Hence $P \in IVCPI(R)$. This completes the proof. \Box

Proposition 4.3. Let *P* be a non-constant IVI of a ring *R*. (a) If *P* is an IVPI [resp. IVCPI] of *R*, then

(i) R_P is a prime [resp. completely prime] ideal of R.

(ii) Im P consists of exactly two points of D(I).

(b) If P(0) = [1, 1] and P satisfies the conditions (i) and (ii), then $P \in IVPI(R)$ [resp. IVCPI(R)].

Proof. (a) We shall confirm our proof to the case of interval-valued fuzzy prime ideals. An analogous proof can be given by for interval-valued fuzzy completely prime ideals. Suppose $P \in \text{IVPI(R)}$. Then, by Proposition 3.3, R_P is a prime ideal of R. Assume that ImP contains more than two values. Then there exist $x, y \in R \setminus R_P$

such that $P(x) \neq P(y)$. Suppose without loss of generality that $P^L(x) < P^L(y)$ and $P^U(x) < P^U(y)$. Since $P \in IVI(\mathbb{R})$ and $A(y) \neq A(0)$, by Result 1.C, $P^L(x) < P^L(y) < P^L(0)$ and $P^U(x) < P^U(y) < P^U(0)$. Let $[\lambda, \mu], [t, s] \in D(I)$ be chosen such that

 $P^L(x) < \lambda < P^L(y) < t < P^L(0)$

and

$$P^{U}(x) < \mu < P^{U}(y) < s < P^{U}(0).$$

Let (x) and (y) denote respectively the ideals generated by x and y. We define two mappings $A, B : R \to D(I)$ as follows: $A = [\lambda \chi_{(x)}, \mu \chi_{(x)}]$ and $B = [t\chi_{(y)}, s\chi_{(y)}]$. Then it is easily seen that $A, B \in IVI(R)$ from the definitions of A and B. Let $z \in R$ which cannot be expressed in the from z = uv for $u \in (x)$ and $v \in (y)$. Then $A \circ B(z) = [0, 0]$. Thus $A \circ B \subset P$. Now let $z \in R$. Suppose there exist $u \in (x)$ and $v \in (y)$ such that z = uv for some $u \in (x)$ and $v \in (y)$. Then

$$(A \circ B)^{L}(z) = \bigvee_{z=uv, u \in (x), v \in (y)} (A^{L}(u) \wedge B^{L}(v)) = \lambda \wedge t = \lambda$$

Similarly, we have $(A \circ B)^U(z) = \mu$. Since $u \in (x)$, there exist $m \in \mathbb{Z}$ and $r_i \in R(i = 1, 2, 3, 4)$ such that $u = mx + r_1x + xr_2 + r_3xr_4$. Similarly, there exist $n \in \mathbb{Z}$ and $s_i \in R(i = 1, 2, 3, 4)$ such that $v = ny + s_1y + ys_2 + s_3ys_4$. Since $P \in IVI(\mathbb{R})$, by Result 1.C,

$$P^{L}(z) = P^{L}(uv) \ge P^{L}(x) \land P^{L}(y) > \lambda$$

and

$$P^U(z) = P^U(uv) \ge P^U(x) \land P^U(y) > \mu$$

Thus $(A \circ B)^L(z) \leq P^L(z)$ and $(A \circ B)^U(z) \leq P^U(z)$. So $A \circ B \subset P$. Since $P \in IVPI(\mathbb{R})$, either $A \subset P$ or $B \subset P$. Then either $A^L(x) = \lambda \leq P^L(x)$, $A^U(x) = \mu \leq P^U(x)$ or $B^L(y) = t \leq P^L(y)$, $B^U(y) = s \leq P^U(y)$. This contradicts (4.2). Hence ImP consists of exactly two points of D(I).

(b) Suppose P(0) = [1, 1] and P satisfies the conditions (i) and (ii). Then, by the similar arguments of proof of Theorem 3.2, we can see that $P \in IVPI(R)$. This completes the proof.

Corollary 4.3. Let P be an interval-valued fuzzy completely prime ideal of a ring R. Then for any $x, y \in R$, $P(xy) = [P^L(x) \land P^L(y), P^U(x) \land P^U(y)].$

Remark 4.4. Proposition 4.3 generalizes Proposition 3.5.

Definition 4.5. Let A be a non-constant IVI of a ring R. Then A is called an *interval-valued* fuzzy weakly completely prime ideal of R if for any International Journal of Fuzzy Logic and Intelligent Systems, vol.12, no. 3, September 2012

$$x, y \in R, A(xy) = [A^L(x) \land A^L(y), A^U(x) \land A^U(y)].$$

The following is the immediate result of Definitions 4.1 and 4.5.

Proposition 4.6. Let A be an interval-valued fuzzy weakly completely prime ideal of a ring R. Then for each $[\lambda,\mu] \in D(I), x_{[\lambda,\mu]} \circ y_{[t,s]} \in A$ implies that either $x_{[\lambda,\mu]} \in A$ or $y_{[t,s]} \in A$. Furthermore, for each $[\lambda,\mu] \in D(I)$ such that $\lambda + \mu \leq 1, \lambda < A^L(0)$ and $\mu < A^U(0), A^{[\lambda,\mu]}$ is a completely prime ideal of R. In particular, $A^{[0,0]}$ is a completely prime ideal of R. Conversely if for each $[\lambda,\mu] \in D(I), A^{[\lambda,\mu]}$ is a completely prime ideal fuzzy weakly completely prime ideal.

The following is the example that an interval-valued fuzzy weakly completely prime ideal need not be an interval-valued fuzzy completely prime ideal.

Example 4.7. Let $R = \mathbb{Z} \times \mathbb{Z}$, let $S = \{0\} \times \mathbb{Z}$ and let $T = (2) \times \mathbb{Z}$. We define a mapping $A : R \to D(I)$ as follows : For each $x \in R$,

$$A(x) = \begin{cases} [1,1], & \text{if } x \in S;\\ (\frac{1}{2},\frac{1}{3}), & \text{if } x \in T \backslash S;\\ [0,0], & \text{if } x \in R \backslash T. \end{cases}$$

Then clearly $A \in D(I)^R$ from the definition of A. Moreover, we can easily show that A is an interval-valued fuzzy weakly completely prime ideal but, by Proposition 4.2, A is not an interval-valued fuzzy weakly completely prime ideal.

References

- [1] R.Biswas, "Rosenfeld's fuzzy subgroups with interval-valued membership functions," *Fuzzy set and systems*, vol. 63, pp. 87-90, 1995.
- [2] D.M.Burton, "A First Course in Rings and Ideals" (Addition-Wesley, 1970).
- [3] J.Y.Choi, S.R.Kim and K.Hur, "Interval-valued smooth topological spaces," *Honam Math.J.*, vol. 32, pp. 711-738, 2010.

- [4] M.B. Gorzalczany, "A method of inference in approximate reasoning based on interval-valued fuzzy sets," *Fuzzy Sets and Systems*, vol. 21, pp. 1-17, 1987.
- [5] K.Hur, J.G.Lee and J.Y.Choi, "Interval-valued fuzzy relations," *J.Korean Institute of Intelligent systems*, vol. 19, pp. 425-432, 2009.
- [6] H.W.Kang, "Interval-valued fuzzy subgroups and homomorphisms," *Honam Math. J.*, vol. 33, 2011.
- [7] K.Hur and H.W.Kang, "Interval-valued fuzzy subgroups and rings," *Honam Math.J.*, vol. 32, pp. 593-617, 2010.
- [8] T.K.Mondal and S.K.Samanta, "Topology of intervalvalued fuzzy sets," *Indian J.Pure Appl.Math.*, vol. 30, pp. 20-38, 1999.
- [9] T.K.Mukherjee and M.K.Sen, "On fuzzy ideals of a ring," *Fuzzy sets and Systems*, vol. 21, pp. 98-104, 1987.
- [10] L.A.Zadeh, "Fuzzy sets," *Inoform. and Centrol*, vol. 8, pp. 338-353, 1965.
- [11] L.A.Zadeh, "The concept of a linguistic variable and its application to approximate reasoning I," *Inform.Sci*, vol. 8, pp. 199-249, 1975.

Keon Chang Lee

Professor in Dongshin University His research interests are Category Theory, Hyperspace and Topology. E-mail : kclee@dsu.ac.kr

Kul Hur

Professor in Wonkwang University His research interests are Category Theory, Hyperspace and Topology. E-mail : kulhur@wonkwang.ac.kr

Pyung Ki Lim

Professor in Wonkwang University His research interests are Category Theory, Hyperspace and Topology. E-mail : pklim@wonkwang.ac.kr