• 제목/요약/키워드: commutative ideal

검색결과 209건 처리시간 0.018초

2-absorbing δ-semiprimary Ideals of Commutative Rings

  • Celikel, Ece Yetkin
    • Kyungpook Mathematical Journal
    • /
    • 제61권4호
    • /
    • pp.711-725
    • /
    • 2021
  • Let R be a commutative ring with nonzero identity, 𝓘(𝓡) the set of all ideals of R and δ : 𝓘(𝓡) → 𝓘(𝓡) an expansion of ideals of R. In this paper, we introduce the concept of 2-absorbing δ-semiprimary ideals in commutative rings which is an extension of 2-absorbing ideals. A proper ideal I of R is called 2-absorbing δ-semiprimary ideal if whenever a, b, c ∈ R and abc ∈ I, then either ab ∈ δ(I) or bc ∈ δ(I) or ac ∈ δ(I). Many properties and characterizations of 2-absorbing δ-semiprimary ideals are obtained. Furthermore, 2-absorbing δ1-semiprimary avoidance theorem is proved.

ON WEAKLY 2-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Badawi, Ayman;Tekir, Unsal;Yetkin, Ece
    • 대한수학회지
    • /
    • 제52권1호
    • /
    • pp.97-111
    • /
    • 2015
  • Let R be a commutative ring with $1{\neq}0$. In this paper, we introduce the concept of weakly 2-absorbing primary ideal which is a generalization of weakly 2-absorbing ideal. A proper ideal I of R is called a weakly 2-absorbing primary ideal of R if whenever a, b, $c{\in}R$ and $0{\neq}abc{\in}I$, then $ab{\in}I$ or $ac{\in}\sqrt{I}$ or $bc{\in}\sqrt{I}$. A number of results concerning weakly 2-absorbing primary ideals and examples of weakly 2-absorbing primary ideals are given.

AN ANDERSON'S THEOREM ON NONCOMMUTATIVE RINGS

  • Huh, Chan;Kim, Nam-Kyun;Lee, Yang
    • 대한수학회보
    • /
    • 제45권4호
    • /
    • pp.797-800
    • /
    • 2008
  • Let R be a ring and I be a proper ideal of R. For the case of R being commutative, Anderson proved that (*) there are only finitely many prime ideals minimal over I whenever every prime ideal minimal over I is finitely generated. We in this note extend the class of rings that satisfies the condition (*) to noncommutative rings, so called homomorphically IFP, which is a generalization of commutative rings. As a corollary we obtain that there are only finitely many minimal prime ideals in the polynomial ring over R when every minimal prime ideal of a homomorphically IFP ring R is finitely generated.

ON S-MULTIPLICATION RINGS

  • Mohamed Chhiti;Soibri Moindze
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.327-339
    • /
    • 2023
  • Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. In this article we introduce a new class of ring, called S-multiplication rings which are S-versions of multiplication rings. An R-module M is said to be S-multiplication if for each submodule N of M, sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for instance [4, Definition 1]). An ideal I of R is called S-multiplication if I is an S-multiplication R-module. A commutative ring R is called an S-multiplication ring if each ideal of R is S-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and S-P IR. Moreover, we generalize some properties of multiplication rings to S-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.

ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS

  • Badawi, Ayman;Tekir, Unsal;Yetkin, Ece
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1163-1173
    • /
    • 2014
  • Let R be a commutative ring with $1{\neq}0$. In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a,b,c{\in}R$ and $abc{\in}I$, then $ab{\in}I$ or $ac{\in}\sqrt{I}$ or $bc{\in}\sqrt{I}$. A number of results concerning 2-absorbing primary ideals and examples of 2-absorbing primary ideals are given.

IMPLICATIVE SOFT IDEALS AND IMPLICATIVE IDEALISTIC SOFT BCK-ALGEBRAS

  • Lee, Kyoung-Ja;Jun, Young-Bae;Park, Chul-Hwan
    • 대한수학회논문집
    • /
    • 제26권2호
    • /
    • pp.183-196
    • /
    • 2011
  • Molodtsov [5] introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. In this paper we apply the notion of soft sets by Molodtsov to an implicative ideal of BCK-algebras. The notion of implicative soft ideals in BCK-algebras and implicative idealistic soft BCK-algebras is introduced, and related properties are investigated. Relations between implicative soft ideals and commutative (resp. positive implicative) soft ideals are discussed. Also, relations between implicative idealistic soft BCK-algebras and commutative (resp. positive implicative) idealistic soft BCK-algebras are provided.

On the Relationship between Zero-sums and Zero-divisors of Semirings

  • Hetzel, Andrew J.;Lufi, Rebeca V. Lewis
    • Kyungpook Mathematical Journal
    • /
    • 제49권2호
    • /
    • pp.221-233
    • /
    • 2009
  • In this article, we generalize a well-known result of Hebisch and Weinert that states that a finite semidomain is either zerosumfree or a ring. Specifically, we show that the class of commutative semirings S such that S has nonzero characteristic and every zero-divisor of S is nilpotent can be partitioned into zerosumfree semirings and rings. In addition, we demonstrate that if S is a finite commutative semiring such that the set of zero-divisors of S forms a subtractive ideal of S, then either every zero-sum of S is nilpotent or S must be a ring. An example is given to establish the existence of semirings in this latter category with both nontrivial zero-sums and zero-divisors that are not nilpotent.

ON PSEUDO 2-PRIME IDEALS AND ALMOST VALUATION DOMAINS

  • Koc, Suat
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.897-908
    • /
    • 2021
  • In this paper, we introduce the notion of pseudo 2-prime ideals in commutative rings. Let R be a commutative ring with a nonzero identity. A proper ideal P of R is said to be a pseudo 2-prime ideal if whenever xy ∈ P for some x, y ∈ R, then x2n ∈ Pn or y2n ∈ Pn for some n ∈ ℕ. Various examples and properties of pseudo 2-prime ideals are given. We also characterize pseudo 2-prime ideals of PID's and von Neumann regular rings. Finally, we use pseudo 2-prime ideals to characterize almost valuation domains (AV-domains).