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ON PSEUDO 2-PRIME IDEALS AND

ALMOST VALUATION DOMAINS

Suat Koç

Abstract. In this paper, we introduce the notion of pseudo 2-prime

ideals in commutative rings. Let R be a commutative ring with a nonzero
identity. A proper ideal P of R is said to be a pseudo 2-prime ideal if

whenever xy ∈ P for some x, y ∈ R, then x2n ∈ Pn or y2n ∈ Pn

for some n ∈ N. Various examples and properties of pseudo 2-prime

ideals are given. We also characterize pseudo 2-prime ideals of PID’s and

von Neumann regular rings. Finally, we use pseudo 2-prime ideals to
characterize almost valuation domains (AV-domains).

1. Introduction

Throughout the paper, we focus only on commutative rings with a nonzero
identity. Let R will always denote such a ring. Assume that P is an ideal of
R. Then we say that P is proper if P 6= R. For any proper ideal P of R, the
radical

√
P is defined as

√
P := {a ∈ R : an ∈ P for some n ∈ N}. Also for

each nonempty subset K of R and each ideal P of R, the residual of P by K
is denoted by (P : K) = {a ∈ R : aK ⊆ P}.

The notion of prime ideals and its generalizations play a central role in
multiplicative ideal theory since they are used in classifying certain classes of
rings such as Dedekind domains, valuation domains, divided domains and etc.
The set of all maximal ideals and prime ideals of R will be designated by
Max(R) and Spec(R), respectively. Recall from [19] that an integral domain
R with quotient field K is said to be a valuation domain if for each x ∈ K,
then either x ∈ R or x−1 ∈ R. Note that an integral domain R is a valuation
domain if and only if the lattice of all ideals L(R) of R is totally ordered by
inclusion if and only if for each x, y ∈ R − {0}, either x divides y or y divides
x. In 2016, Beddani and Messirdi defined the concept of 2-prime ideals and
they characterized valuation domains in terms of this concept. A proper ideal
P of R is said to be a 2-prime ideal if whenever xy ∈ P for some x, y ∈ R,
then x2 ∈ P or y2 ∈ P [9]. Note that every prime ideal is 2-prime but the

Received July 17, 2020; Accepted January 15, 2021.
2010 Mathematics Subject Classification. Primary 13A15, 13F30, 13G05.
Key words and phrases. Prime ideal, 2-prime ideal, pseudo 2-prime ideal, valuation do-

main, almost valuation domain.

c©2021 Korean Mathematical Society

897



898 S. KOÇ

converse is not true. For example, P = (X2, XY, Y 2) is not a prime ideal of
R = k[X,Y ], where k is a field, while it is a 2-prime ideal of R. Afterwards,
Koç et al. in [18] gave a generalization of 2-prime ideals and they used it to
characterize divided domains. Recall from [12] that a prime ideal P of R is
said to be a divided prime ideal if for each x ∈ R − P , we have P ⊂ Rx. In
particular, an integral domain R is said to be a divided domain if its each prime
ideal is divided prime. It is well known that an integral domain R is a divided
domain if and only if for every elements x, y ∈ R−{0}, either y divides x or x
divides yn for some n ∈ N. For more information on divided domains, we refer
[5], [6], [8] and [22] to the reader. A proper ideal P of R is said to be a strongly
quasi primary ideal if whenever xy ∈ P for some x, y ∈ R, then x2 ∈ P or
yn ∈ P (xn ∈ P or y2 ∈ P ) for some n ∈ N. The authors in [18, Theorem 2.2]
showed that an integral domain R is a divided domain if and only if its each
proper ideal is strongly quasi primary.

Another generalization of valuation domain is that almost valuation domain
firstly defined by Anderson and Zafrullah in [3]. An integral domain R is
said to be an almost valuation domain (briefly, AV-domain) if for each x, y ∈
R − {0}, then there exists n ∈ N such that either xn divides yn or yn divides
xn. Equivalently, an integral domain R with quotient field K is an AV-domain
if and only if for each x ∈ K, there exists n ∈ N, either xn ∈ R or x−n ∈ R.
Recently, valuation domains and AV-domains have been center of interest and
studied by many authors. See, for example, [13], [16] and [20]. The purpose
of the paper is to introduce pseudo 2-prime ideals which is a generalization
of prime ideals in commutative rings and to use them to characterize almost
valuation domains. A proper ideal P of R is said to be a pseudo 2-prime ideal
if whenever xy ∈ P for some x, y ∈ R, then either x2n ∈ Pn or y2n ∈ Pn for
some n ∈ N. Among many results in this paper, we investigate the relations
between pseudo 2-prime ideal and other classical ideals such as prime ideal,
2-prime ideal, quasi primary ideal (i.e., an ideal whose radical is prime [14]), 2-
absorbing ideal, 2-absorbing primary ideal and irreducible ideal (See, Theorem
2.1, Example 2.2, Example 2.3 and Proposition 2.5). Also, we investigate
the stability of pseudo 2-prime ideals under homomorphism, in factor ring, in
cartesian product of rings, under localization of rings and in trivial extension
RnM of a unital R-module M (See, Theorem 2.6, Corollary 2.7, Proposition
2.9, Theorem 2.13, Theorem 2.14, Theorem 2.16). Also, we determine pseudo
2-prime ideals in certain commutative rings such as von Neumann regular rings
and Principal ideal domains (PID’s) (See, Theorem 2.11 and Proposition 2.12).
Furthermore, we prove pseudo 2-prime avodiance theorem (See, Theorem 2.17
and Theorem 2.18). Finally, we characterize AV-domains in terms of pseudo
2-prime ideals (See, Theorem 2.15).
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2. Characterizations of pseudo 2-prime ideals

Definition. Let R be a ring and P be a proper ideal of R. P is said to be
pseudo 2-prime ideal of R if whenever xy ∈ P for some x, y ∈ R, then either
x2n ∈ Pn or y2n ∈ Pn for some n ∈ N.

In 2007, Badawi in his celebrated paper [7], defined the concept of 2-absorb-
ing ideals and used them to characterize Dedekind domains. Recall from [7]
that a nonzero proper ideal P of R is said to be a 2-absorbing ideal if whenever
xyz ∈ P for some x, y, z ∈ R, then either xy ∈ P or xz ∈ P or yz ∈ P . Also, a
proper ideal P of R is called a 2-absorbing primary ideal if for some x, y, z ∈ R
with xyz ∈ P , then either xy ∈ P or xz ∈

√
P or yz ∈

√
P [10]. Note that

every 2-absorbing ideal is also a 2-absorbing primary ideal but the converse is
not true in general. For instance, P = (12) is a 2-absorbing primary ideal of
the ring Z of integers which is not 2-absorbing since 2.2.3 ∈ P but 2.2 /∈ P and
2.3 /∈ P .

Theorem 2.1. Let R be a ring and P a proper ideal of R. The following
statements are satisfied.

(i) Every pseudo 2-prime ideal P of R is a quasi primary ideal of R, that is,√
P is a prime ideal of R.
(ii) Every 2-prime ideal P of R is a pseudo 2-prime ideal of R. In particular,

every prime ideal is pseudo 2-prime.
(iii) Every pseudo 2-prime ideal P of R is a 2-absorbing primary ideal of R.

Proof. (i) Let P be a pseudo 2-prime ideal of R. Take x, y ∈ R such that

xy ∈
√
P . Then there exists k ∈ N such that (xy)k = xkyk ∈ P . Since P is a

pseudo 2-prime ideal of R, we conclude that x2kn ∈ Pn or y2kn ∈ Pn, which
implies that x ∈

√
Pn =

√
P or y ∈

√
P .

(ii) Suppose that P is a 2-prime ideal of R. Choose x, y ∈ R such that
xy ∈ P . As P is a 2-prime ideal of R, we conclude that x2 ∈ P or y2 ∈ P ,
which implies that x2n ∈ Pn or y2n ∈ Pn. Therefore, P is a pseudo 2-prime
ideal of R.

(iii) Note that by (i),
√
P is a prime ideal of R. The rest is clear by [10,

Theorem 2.8]. �

The converses of Theorem 2.1(i) and (ii) need not be true in general. See
the following examples.

Example 2.2 (A pseudo 2-prime ideal which is not 2-prime ideal). Consider
the ring R = k[X,Y ]/P , where k is a field and P = (X6, XY, Y 6). Let Q =
(X3, XY, Y 3)/P . Then note that

√
Q = (X,Y )/P is a prime ideal of R and√

Q
6

= (0), where 0 = 0 + P . Note that xy ∈ Q and x2, y2 /∈ Q, where
x = X + P and y = Y + P . Thus, Q is not a 2-prime ideal of R. Now, we
will show that it is a pseudo 2-prime ideal. To see this, take ab ∈ Q ⊆

√
Q

for some a, b ∈ R. Since
√
Q is a prime ideal, we have a ∈

√
Q or b ∈

√
Q.
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As
√
Q

6
= (0), we have a12 ∈ Q6 = (0) or b12 ∈ Q6 = (0). Therefore, Q is a

pseudo 2-prime ideal of R.

Example 2.3 (A quasi-primary ideal that is not pseudo 2-prime ideal). Let
R = k[X,Y ], where k is a field and consider the ideal P = (X3, XY, Y 3) of

R. Then
√
P = (X,Y ) is a maximal ideal so that P is quasi primary. Since

XY ∈ P but X2n /∈ Pn and Y 2n /∈ Pn, we have P is not a pseudo 2-prime ideal
of R. Also, note that P is a 2-absorbing primary ideal of R by [10, Theorem
2.8], and hence the converse of Theorem 2.1(iii) is not true.

Recall from [4] that a proper ideal P of R is said to be a primary ideal if

whenever ab ∈ P for some a, b ∈ R, then either a ∈ P or b ∈
√
P . It is clear

that if P is a primary ideal, then it is a quasi primary ideal of R. Note that
the concepts of primary ideals and pseudo 2-prime ideals are different. See, the
following example.

Example 2.4. (i) Take the ring R and the ideal P as in Example 2.3. Then√
P = (X,Y ) is a maximal ideal of R, so P is primary. But P is not a pseudo

2-prime ideal of R.
(ii) Take the ring R as in Example 2.3. Let P = (X2, XY ). Then note that√
P = (X) is a prime ideal of R with

√
P

2
= (X2) ⊆ P . Then one can easily

see that P is a pseudo 2-prime ideal of R. Since XY ∈ P , X /∈ P and Y /∈
√
P ,

it follows that P is not primary.

By above theorem and examples, the following diagram clarifies the place of
pseudo 2-prime ideals in the lattice of all ideals L(R) of R.

prime ideal

2-absorbing ideal primary ideal 2-prime ideal

pseudo 2-prime idealquasi primary ideal2-absorbing primary ideal

Figure 1. Pseudo 2-prime ideals vs other classical ideals

Now, we investigate the conditions under which pseudo 2-prime ideals, 2-
prime ideals and quasi primary ideals are coincide.
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Proposition 2.5. (i) Let P be a proper ideal of R such that
√
P

2 ⊆ P . Then,
P is a 2-prime ideal ⇔ P is a pseudo 2-prime ideal ⇔ P is a quasi primary
ideal.

(ii) Let P be a 2-absorbing ideal of R. Then P is a 2-prime ideal of R if and
only if P is a pseudo 2-prime ideal of R.

(iii) Let R be a ring. Then the zero ideal is a quasi primary ideal of R if
and only if it is a pseudo 2-prime ideal of R.

(iv) Let R be a ring and P a proper ideal of R. If Pn is irreducible and
(Pn : x2n) = (Pn : x2n−1) for some n ∈ N and each x ∈ R − P , then P is a
pseudo 2-prime ideal of R.

Proof. (i) Let P be a proper ideal of R with
√
P

2 ⊆ P . The implications “P is
a 2-prime ideal ⇒ P is a pseudo 2-prime ideal ⇒ P is a quasi primary ideal”
follows from Theorem 2.1. Now, we will show that the other directions. Let
P be a quasi primary ideal of R. It is sufficient to show that P is a 2-prime
ideal of R. To see this, let xy ∈ P ⊆

√
P for some x, y ∈ R. Since

√
P is

a prime ideal, we have x ∈
√
P or y ∈

√
P . As

√
P

2 ⊆ P , we conclude that

x2 ∈
√
P

2 ⊆ P or y2 ∈
√
P

2 ⊆ P . Therefore, P is a 2-prime ideal of R.

(ii) Since P is a 2-absorbing ideal of R, by [7, Theorem 2.4],
√
P

2 ⊆ P . The
rest follows from (i).

(iii) If the zero ideal is a pseudo 2-prime ideal, then by Theorem 2.1, so is
quasi-primary. For the converse, assume that the zero ideal is a quasi primary
ideal. Let x, y ∈ R such that xy = 0. As (0) is quasi-primary, we conclude that

x ∈
√

0 or y ∈
√

0 implying that x2k ∈ (0)k = (0) or y2k ∈ (0)k. Therefore, the
zero ideal is a pseudo 2-prime ideal of R.

(iv) Suppose that Pn is an irreducible ideal and (Pn : x2n) = (Pn : x2n−1)
for some n ∈ N and each x ∈ R − P . Let ab ∈ P for some a, b ∈ R. Now, we
will show that a2n ∈ Pn or b2n ∈ Pn. Suppose to the contrary. Then we have
a2n /∈ Pn and b2n /∈ Pn. Now, take z ∈ (Pn + Ra2n) ∩ (Pn + Rb2n). Then
we can write z = c + ra2n = d + sb2n for some c, d ∈ Pn and r, s ∈ R. Then
we have za2n = ca2n + ra4n = da2n + s(ab)2n ∈ Pn, which implies ra4n ∈ Pn.
Since a ∈ R − P , by assumption, we get ra2n ∈ (Pn : a2n) = (Pn : a2n−1),
which yields that ra4n−1 ∈ Pn. If we continue in this manner, we can get
ra ∈ (Pn : a2n) = (Pn : a2n−1) and so we have ra2n ∈ Pn. Then we have
z = c+ ra2n ∈ Pn implying that (Pn +Ra2n) ∩ (Pn +Rb2n) = Pn which is a
contradiction. Therefore, a2n ∈ Pn or b2n ∈ Pn, namely, P is a pseudo 2-prime
ideal of R. �

Theorem 2.6. Let f : R→ S be a ring epimorphism and P a proper ideal of
R. The following statements are satisfied.

(i) If P is a pseudo 2-prime ideal of R containing Ker(f), then f(P ) is a
pseudo 2-prime ideal of S.

(ii) If f(P ) is a pseudo 2-prime ideal of S such that Ker(f) ⊆ Pn for each
n ∈ N, then P is a pseudo 2-prime ideal of R.
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Proof. (i) Let yz ∈ f(P ) for some y, z ∈ S. Since f is surjective, there exist
a, b ∈ R such that f(a) = y and f(b) = z. Then we have yz = f(ab) ∈ f(P ).
As Ker(f) ⊆ P , we have ab ∈ P . Since P is a pseudo 2-prime ideal of R,
there exists n ∈ N such that either a2n ∈ Pn or b2n ∈ Pn. This yields that
y2n = f(a2n) ∈ f(P )n or z2n = f(b2n) ∈ f(P )n. Hence, f(P ) is a pseudo
2-prime ideal of S.

(ii) Let ab ∈ P for some a, b ∈ R. Then we have f(a)f(b) = f(ab) ∈ f(P ).
As f(P ) is a pseudo 2-prime ideal of R, there exists n ∈ N such that f(a)2n =
f(a2n) ∈ f(Pn) or f(b)2n = f(b2n) ∈ f(Pn). Since Pn ⊇ Ker(f), we conclude
that a2n ∈ Pn or b2n ∈ Pn. Therefore, P is a pseudo 2-prime ideal of R. �

Corollary 2.7. (i) Let P be a pseudo 2-prime ideal of R and I ⊆ P be an
ideal of R. Then P/I is a pseudo 2-prime ideal of R/I.

(ii) Let P/I be a pseudo 2-prime ideal of R/I, where I is an ideal of R such
that I ⊆ Pn for each n ∈ N. Then P is a pseudo 2-prime ideal of R.

Proof. (i) Consider the surjective homomorphism π : R → R/I defined by
π(a) = a + I for each a ∈ R. Then note that Ker(π) = I ⊆ P . If P is a
pseudo 2-prime ideal, then by Theorem 2.6, π(P ) = P/I is a pseudo 2-prime
ideal R/I.

(ii) By applying Theorem 2.6, one can prove the claim. �

The conditions “I ⊆ Pn” and “Ker(f) ⊆ Pn” in Corollary 2.7(ii) and
Theorem 2.6(ii) are necessary. See the following example.

Example 2.8. Consider the ring R = k[X,Y ] and the ideal P = (X3, XY, Y 3)
= I as in Example 2.3. Then note that I * Pn for each n ≥ 2. By Example

2.3, we know that P is not a pseudo 2-prime ideal of R. Also note that
√
P/I =

(X,Y )/I is a prime ideal of R/I, so by Proposition 2.5, the zero ideal P/I is a
pseudo 2-prime ideal of R/I.

Let R be a ring and P a proper ideal of R. Then we denote the set {x ∈ R :
xy ∈ P for some y ∈ R− P} by ZR(P ).

Proposition 2.9. Let R be a ring and S be a multiplicatively closed set of R.
(i) If P is a pseudo 2-prime ideal of R with P ∩ S = ∅, then S−1P is a

pseudo 2-prime ideal of S−1R.
(ii) If S−1P is a pseudo 2-prime ideal of S−1R with S ∩ ZR(Pn) = ∅ for

each n ∈ N, then P is a pseudo 2-prime ideal of R.

Proof. (i) Let a
s
b
t ∈ S

−1P for some a, b ∈ R; s, t ∈ S. Then we have u(ab) =
(ua)b ∈ P for some u ∈ S. As P is a pseudo 2-prime ideal, then there exists
n ∈ N such that (ua)2n = u2na2n ∈ Pn or b2n ∈ Pn. This yields that (a

s )2n =
a2n

s2n = u2na2n

u2ns2n ∈ S
−1(Pn) = (S−1P )n or ( b

t )2n = b2n

t2n ∈ (S−1P )n. Thus S−1P

is a pseudo 2-prime ideal of S−1R.
(ii) Let ab ∈ P for some a, b ∈ R. Then we have ab

1 = a
1
b
1 ∈ S

−1P . As S−1P

is a pseudo 2-prime ideal, there exists n ∈ N such that either (a
1 )2n = a2n

1 ∈
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(S−1P )n = S−1(Pn) or b2n

1 ∈ S−1(Pn). Then we get either sa2n ∈ Pn or

s′b2n ∈ Pn for some s, s′ ∈ S. Without loss of generality we may assume that
sa2n ∈ Pn. If a2n /∈ Pn, then we have s ∈ ZR(Pn)∩S which is a contradiction.
So that we have a2n ∈ Pn. Therefore, P is a pseudo 2-prime ideal of R. �

The following example shows that we can not drop the condition “S ∩
ZR(Pn) = ∅” in Proposition 2.9.

Example 2.10. Consider the ring R = Z of integers and the ideal P = (6) of
R. Choose the multiplicatively closed set S = R −M , where M = (3). Then
it is easy to see that PM = MM is a prime ideal of RM , so is a pseudo 2-prime
ideal by Theorem 2.1. Also note that 2n ∈ ZR(Pn) ∩ S since 2n · 3n ∈ Pn

and 3n /∈ Pn for each n ∈ N. However, P is not a pseudo 2-prime ideal since
2 · 3 ∈ P , 22n /∈ Pn and 32n /∈ Pn for each n ∈ N.

Now, we determine all pseudo 2-prime ideals in principal ideal domains.

Theorem 2.11. Let R be a principal ideal domain and P a nonzero proper
ideal of R. The following statements are equivalent.

(i) P is a pseudo 2-prime ideal of R.
(ii) P = (pn) for some irreducible element p ∈ R and n ∈ N.
(iii) P is a primary ideal of R.
(iv) P is a quasi primary ideal of R.
(v) P is a 2-prime ideal of R.

Proof. (i)⇒(ii): Let P be a pseudo 2-prime ideal of a principal ideal domain
R. Suppose that P is nonzero. Then we can write P = (x), where x =
pn1

1 pn2
2 · · · pnm

m and pi’s are irreducible elements of R. If m = 1, then we are
done. So assume that m > 1 and all pi’s are not associates. Now, put a = pn1

1

and b = pn2
2 pn3

3 · · · pnm
m . Since ab ∈ P and P is a pseudo 2-prime ideal, there

exists k ∈ N such that a2k ∈ P k = (xk) or b2k ∈ P k = (xk). In the former

case, we have p2kn1
1 = cpkn1

1 pkn2
2 · · · pknm

m for some c ∈ R, which implies that

pkn1
1 = cpkn2

2 · · · pknm
m . Since p1 | pkn1

1 = cpkn2
2 · · · pknm

m and p1 is a prime
element, we conclude that p1 divides pj for some j 6= 1, and thus we have p1, pj
are associates, a contradiction. In the later case, we have p2kn2

2 p2kn3
3 · · · p2knm

m =

cpkn1
1 pkn2

2 · · · pknm
m for some c ∈ R, which implies that pkn2

2 · · · pknm
m = cpkn1

1 .
Similar argument shows that p1, pj are associates, again a contradiction. Thus
we have m = 1 and so P = (pn) for some irreducible element p ∈ R and n ∈ N.

(ii)⇒(iii): Since
√
P = (p) is a maximal ideal, P is primary.

(iii)⇒(iv)⇒(v): Follows from [21, Theorem 2.3].
(v)⇒(i): Follows from Theorem 2.1. �

Recall from [23] that a ring R is said to be a von Neumann regular ring if
for each x ∈ R, there exists y ∈ R such that x = x2y. In that case the principal
ideal (x) is generated by an idempotent element e ∈ R. It is well known that
a ring R is a von Neumann regular ring if and only if for each ideal I of R and
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n ∈ N, I = In if and only I =
√
I for each ideal I of R if and only if R is

reduced and every prime ideal is maximal. The notion of von Neumann regular
rings and its generalizations have an important place in commutative algebra
and have been widely studied by many authors. See, for example, [1], [11] and
[17].

Proposition 2.12. Let R be a von Neumann regular ring and P a proper ideal
of R. The following statements are equivalent.

(i) P is a maximal ideal.
(ii) P is a prime ideal.
(iii) P is a primary ideal.
(iv) P is a 2-prime ideal.
(v) P is a pseudo 2-prime ideal.
(vi) P is a quasi primary ideal.

Proof. (i)⇔(ii)⇔(iii)⇔(vi): The proofs follow from the fact that I =
√
I for

each ideal I of R and every prime ideal is maximal in von Neumann regular
ring.

(iv)⇔(v)⇔(vi): The proofs follow from the fact that
√
P

2
= P 2 ⊆ P in von

Neumman regular ring and Proposition 2.5. �

Theorem 2.13. Let R1, R2 be two commutative rings and P1, P2 be ideals of
R1 and R2, respectively. Suppose that R = R1 × R2 and P = P1 × P2. The
following statements are equivalent.

(i) P is a pseudo 2-prime ideal of R.
(ii) P1 = R1 and P2 is a pseudo 2-prime ideal of R2 or P2 = R2 and P1 is

a pseudo 2-prime ideal of R1.

Proof. (i)⇒(ii): Let P be a pseudo 2-prime ideal of R. Since (1, 0)(0, 1) =
(0, 0) ∈ P , there exists an n ∈ N such that either (1, 0)2n = (1, 0) ∈ Pn ⊆ P or
(0, 1)2n = (0, 1) ∈ Pn ⊆ P . This implies either P1 = R1 or P2 = R2. Without
loss of generality, we may assume that P1 = R1. Now, we will show that P2

is a pseudo 2-prime ideal of R2. To see this, take ab ∈ P2 for some a, b ∈ R2.
Then we have (0, ab) = (0, a)(0, b) ∈ P . As P is a pseudo 2-prime ideal, there
exists m ∈ N such that (0, a)2m = (0, a2m) ∈ Pm or (0, b)2m = (0, b2m) ∈ Pm.
Then we get either a2m ∈ Pm

2 or b2m ∈ Pm
2 . Thus P2 is a pseudo 2-prime ideal

of R2.
(ii)⇒(i): Without loss of generality, we may assume that P1 = R1 and

P2 is a pseudo 2-prime ideal of R2. Let (x, y)(z, t) = (xz, yt) ∈ P for some
x, z ∈ R1; y, t ∈ R2. This implies that yt ∈ P2. As P2 is a pseudo 2-prime
ideal, there exists m ∈ N such that y2m ∈ Pm

2 or t2m ∈ Pm
2 . This gives

(x, y)2m = (x2m, y2m) ∈ Pm or (z, t)2m = (z2m, t2m) ∈ Pm. Hence, P is a
pseudo 2-prime ideal of R. �
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Theorem 2.14. Let R1, R2, . . . , Rn be commutative rings and Pi be an ideal
of Ri for each i = 1, 2, . . . , n. Suppose that R = R1 × R2 × · · · × Rn and
P = P1 × P2 × · · · × Pn. The following statements are equivalent.

(i) P is a pseudo 2-prime ideal of R.
(ii) Pi is a pseudo 2-prime ideal of Ri for some i ∈ {1, 2, . . . , n} and Pj = Rj

for each i 6= j.

Proof. We use induction on n. If n = 1, the claim is obvious. If n = 2, the
claim follows from Theorem 2.13. So assume that the claim is true for all k < n.
Now, let R′ = R1 ×R2 × · · · ×Rn−1 and P ′ = P1 × P2 × · · · × Pn−1. Then by
Theorem 2.13, P is a pseudo 2-prime ideal of R if and only if P ′ is a pseudo
2-prime ideal of R′ and Pn = Rn or P ′ = R′ and Pn is a pseudo 2-prime ideal
of Rn. The rest follows from induction hypothesis. �

Now, we characterize AV-domains in terms of pseudo 2-prime ideals.

Theorem 2.15. Let R be an integral domain. The following statements are
equivalent.

(i) R is an AV-domain.
(ii) Every proper ideal is a pseudo 2-prime ideal.
(iii) Every proper principal ideal is a pseudo 2-prime ideal.

Proof. (i)⇒(ii): Let R be an AV-domain. Suppose that P is a proper ideal
of R and xy ∈ P for some x, y ∈ R − {0}. Since R is an AV-domain, there
exists n ∈ N such that either xn | yn or yn | xn. If xn | yn, then we can write
yn = rxn. As xy ∈ P , then we have y2n = rxnyn = r(xy)n ∈ Pn. In other
case, we have x2n ∈ Pn. Thus P is a pseudo 2-prime ideal of R.

(ii)⇒(iii): It is clear.
(iii)⇒(i): Suppose that x, y ∈ R − {0}. If x or y is unit, then we are done.

So assume that x and y are not units of R. Thus (xy) is a proper principal
ideal, so by assumption, (xy) is a pseudo 2-prime ideal. Since xy ∈ (xy), there
exists n ∈ N such that x2n ∈ (xy)n = (xnyn) or y2n ∈ (xnyn). If x2n ∈ (xnyn),
then there exists a ∈ R such that x2n = axnyn. As R is an integral domain,
we have xn = ayn, namely, yn | xn. For the other case, one can conclude that
xn|yn. Thus R is an AV-domain. �

Let R be a ring and M be a unital R-module. Trivial extension R nM =
R⊕M of an R-module M is a commutative ring with componentwise addition
and multiplication defined by (a,m)(b,m′) = (ab, am′ + bm) for each a, b ∈
R; m,m′ ∈ M [2]. If I is an ideal of R and N is a submodule of M . Then
I nN is an ideal of RnM if and only if IM ⊆ N [2,15]. Now, we investigate
pseudo 2-prime ideals of trivial extension RnM of M .

Theorem 2.16. Let R be a ring and M be a unital R-module. Suppose that P
is an ideal of R and N is a submodule of M such that PM ⊆ N . The following
statements are satisfied.
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(i) If P nN is a pseudo 2-prime ideal of RnM , then P is a pseudo 2-prime
ideal of R.

(ii) If P is a pseudo 2-prime ideal of R and (Pn : x2n) = (Pn : x2n−1) for
each x ∈ R− P and n ∈ N, then P nN is a pseudo 2-prime ideal of RnM .

(iii) Assume that (Pn : x2n) = (Pn : x2n−1) for each x ∈ R− P and n ∈ N.
Then P nN is a pseudo 2-prime ideal of R nM if and only if P is a pseudo
2-prime ideal of R.

Proof. (i) Let xy ∈ P for some x, y ∈ R. Then we have (x, 0)(y, 0) ∈ P n N .
As P n N is a pseudo 2-prime ideal of R nM , we conclude either (x, 0)2n =
(x2n, 0) ∈ (P n N)n or (y, 0)2n = (y2n, 0) ∈ (P n N)n for some n ∈ N. Also
note that (P n N)n ⊆ Pn n Pn−1N . Then we get x2n ∈ Pn or y2n ∈ Pn.
Therefore, P is a pseudo 2-prime ideal of R.

(ii) First note that (Pn n PnM) = (P n PM)n ⊆ (P nN)n. Let

(x,m)(y,m′) = (xy, xm′ + ym) ∈ P nN

for some x, y ∈ R; m,m′ ∈ M . This implies that xy ∈ P . Since P is a
pseudo 2-prime ideal of R, we get either x2n ∈ Pn or y2n ∈ Pn for some
n ∈ N. Without loss of generality, we may assume that x2n ∈ Pn. If x ∈
P , then we have (x,m)2n = (x2n, (2n)x2n−1m) ∈ P 2n n P 2n−1M ⊆ Pn n
PnM ⊆ (P n N)n which completes the proof. So assume that x /∈ P . Since
x2n ∈ Pn, by assumption, we have x2n−1 ∈ Pn, which implies that (x,m)2n =
(x2n, (2n)x2n−1m) ∈ Pn n PnM ⊆ (P n N)n. Therefore, P n N is a pseudo
2-prime ideal of RnM .

(iii) It follows from (i) and (ii). �

Theorem 2.17. Let I ⊆
n⋃

i=1

Pi be an efficient covering of ideals of R. Suppose

that I ∩
√
Pk * I ∩

√
Pm for each k 6= m. Then no Pi is a pseudo 2-prime ideal

for each i ∈ {1, 2, . . . , n}.

Proof. Suppose that I ⊆
n⋃

i=1

Pi is an efficient covering of ideals of R and I ∩
√
Pk * I ∩

√
Pm for each k 6= m. Assume that P1 is a pseudo 2-prime ideal

of R. Then by Theorem 2.1,
√
P1 is a prime ideal of R. Since the covering

is efficient, we have I ∩
n⋂

i=2

Pi ⊆ I ∩ P1. Also, by assumption, there exists

xj ∈ I ∩
√
Pj −

√
P1 for each j = 2, 3, . . . , n. Then there exists tj ∈ N

such that x
tj
j ∈ I ∩ Pj . Now, put m = max{t2, t3, . . . , tn}. This implies that

xmj ∈ I ∩ Pj . Let a = x2 and b = x3x4 · · ·xn. Since
√
P1 is a prime ideal and

x3, x4, . . . , xn /∈
√
P1, we have b2nm /∈ Pn

1 for all n ∈ N. Otherwise, we would
have b = x3x4 · · ·xn ∈

√
Pn

1 =
√
P1, which implies that xi ∈

√
P1 for some

i ≥ 3, a contradiction. On the other hand, since P1 is a pseudo 2-prime ideal
and ambm ∈ P1, we have a2nm = x2nm

2 ∈ Pn
1 for some n ∈ N, which implies
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that x2 ∈
√
Pn

1 =
√
P1, again a contradiction. Therefore, no Pi is a pseudo

2-prime ideal of R. �

Now, we prove that pseudo 2-prime avoidance theorem for commutative
rings.

Theorem 2.18 (Pseudo 2-Prime Avoidance Theorem). Let I ⊆
n⋃

i=1

Pi for

some ideals I, P1, P2, . . . , Pn of R, where at most two of Pi’s are not pseudo
2-prime ideals of R. Suppose that I ∩

√
Pk * I ∩

√
Pm for each k 6= m. Then

I ⊆ Pi for some i ∈ {1, 2, . . . , n}.

Proof. We can reduce the covering to efficient one. So suppose that the covering

I ⊆
n⋃

i=1

Pi is an efficient, where at least n− 2 of Pi’s are pseudo 2-prime ideals

of R. If n ≥ 3, then we get a contradiction by using Theorem 2.17. Thus we
have n ≤ 2. The rest is clear. �
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285–309. https://doi.org/10.1016/0021-8693(91)90309-V
[4] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-

Wesley Publishing Co., Reading, MA, 1969.

[5] A. Ayache and D. E. Dobbs, Strongly divided pairs of integral domains, in Advances
in commutative algebra, 63–92, Trends Math, Birkhäuser/Springer, Singapore, 2019.
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