• 제목/요약/키워드: college mathematics education

검색결과 841건 처리시간 0.022초

NUMBER THEORETICAL PROPERTIES OF ROMIK'S DYNAMICAL SYSTEM

  • Cha, Byungchul;Kim, Dong Han
    • 대한수학회보
    • /
    • 제57권1호
    • /
    • pp.251-274
    • /
    • 2020
  • We study a dynamical system that was originally defined by Romik in 2008 using an old theorem of Berggren concerning Pythagorean triples. Romik's system is closely related to the Farey map on the unit interval which generates an additive continued fraction algorithm. We explore some number theoretical properties of the Romik system. In particular, we prove an analogue of Lagrange's theorem in the case of the Romik system on the unit quarter circle, which states that a point possesses an eventually periodic digit expansion if and only if the point is defined over a real quadratic extension field of rationals.

SPECTRAL PROPERTIES OF k-QUASI-2-ISOMETRIC OPERATORS

  • SHEN, JUNKI;ZUO, FEI
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제22권3호
    • /
    • pp.275-283
    • /
    • 2015
  • Let T be a bounded linear operator on a complex Hilbert space H. For a positive integer k, an operator T is said to be a k-quasi-2-isometric operator if T∗k(T∗2T2 − 2TT + I)Tk = 0, which is a generalization of 2-isometric operator. In this paper, we consider basic structural properties of k-quasi-2-isometric operators. Moreover, we give some examples of k-quasi-2-isometric operators. Finally, we prove that generalized Weyl’s theorem holds for polynomially k-quasi-2-isometric operators.

Derivations on Semiprime Rings and Banach Algebras, I

  • Kim, Byung-Do;Lee, Yang-Hi
    • 충청수학회지
    • /
    • 제7권1호
    • /
    • pp.165-182
    • /
    • 1994
  • The aim of this paper is to give the partial answer of Vukman's conjecture [2]. From the partial answer we also generalize a classical result of Posner. We prove the following result: Let R be a prime ring with char$(R){\neq}2,3$, and 5. Suppose there exists a nonzero derivation $D:R{\rightarrow}R$ such that the mapping $x{\longmapsto}$ [[[Dx,x],x],x] is centralizing on R. Then R is commutative. Using this result and some results of Sinclair and Johnson, we generalize Yood's noncom-mutative extension of the Singer-Wermer theorem.

  • PDF

A NOTE ON GENERALIZED NET MODEL OF E-LEARNING EVALUATION ASSOCIATED WITH INTUITIONISTIC FUZZY ESTIMATIONS

  • Shannon, A.;Sotirova, E.;Atanassov, K.;Krawczak, M.;Melo-Pinto, P.;Kim, T.;Jang, L.C.;Kang, Dong-Jin;Rim, S.H.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.6-9
    • /
    • 2006
  • A generalized net is used to construct a model which describes the process of evaluation of the problems solved by students. The model utilizes the theory of intuitionistic fuzzy sets. The model can be used to simulate some processes, related to estimation of students' background.

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

  • Ki, U-Hang;Kim, Soo Jin;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.541-575
    • /
    • 2016
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor ${\phi}$, then M is a homogeneous real hypersurface of Type A provided that $TrR_{\xi}$ is constant.

COMMON COUPLED FIXED POINT RESULTS FOR HYBRID PAIR OF MAPPING UNDER GENERALIZED (𝜓, 𝜃, 𝜑)-CONTRACTION WITH APPLICATION

  • Handa, Amrish
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제26권3호
    • /
    • pp.111-131
    • /
    • 2019
  • We introduce (CLRg) property for hybrid pair $F:X{\times}X{\rightarrow}2^X$ and $g:X{\rightarrow}X$. We also introduce joint common limit range (JCLR) property for two hybrid pairs $F,G:X{\times}X{\rightarrow}2^X$ and $f,g:X{\rightarrow}X$. We also establish some common coupled fixed point theorems for hybrid pair of mappings under generalized (${\psi},{\theta},{\varphi}$)-contraction on a noncomplete metric space, which is not partially ordered. It is to be noted that to find coupled coincidence point, we do not employ the condition of continuity of any mapping involved therein. As an application, we study the existence and uniqueness of the solution to an integral equation. We also give an example to demonstrate the degree of validity of our hypothesis. The results we obtain generalize, extend and improve several recent results in the existing literature.

UNIQUENESS OF TOPOLOGICAL SOLUTIONS FOR THE GUDNASON MODEL

  • Kim, Soojung;Lee, Youngae
    • 대한수학회지
    • /
    • 제58권4호
    • /
    • pp.873-894
    • /
    • 2021
  • In this paper, we consider the Gudnason model of 𝒩 = 2 supersymmetric field theory, where the gauge field dynamics is governed by two Chern-Simons terms. Recently, it was shown by Han et al. that for a prescribed configuration of vortex points, there exist at least two distinct solutions for the Gudnason model in a flat two-torus, where a sufficient condition was obtained for the existence. Furthermore, one of these solutions has the asymptotic behavior of topological type. In this paper, we prove that such doubly periodic topological solutions are uniquely determined by the location of their vortex points in a weak-coupling regime.

DYNAMIC ANALYSIS FOR DELAYED HCV INFECTION IN VIVO WITH ANTI-RETRO VIRAL TREATMENT

  • Krishnapriya, P.;Hyun, Ho Geun
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권3호
    • /
    • pp.629-648
    • /
    • 2021
  • In this paper, we study a within-host mathematical model of HCV infection and carry out mathematical analysis of the global dynamics and bifurcations of the model in different parameter regimes. We explore the effect of reverse transcriptase inhibitors (RTI) on spontaneous HCV clearance. The model can produce all clinically observed patient profiles for realistic parameter values; it can also be used to estimate the efficacy and/or duration of treatment that will ensure permanent cure for a particular patient. From the results of the model, we infer possible measures that could be implemented in order to reduce the number of infected individuals.

ANALYTICAL AND APPROXIMATE SOLUTIONS FOR GENERALIZED FRACTIONAL QUADRATIC INTEGRAL EQUATION

  • Abood, Basim N.;Redhwan, Saleh S.;Abdo, Mohammed S.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권3호
    • /
    • pp.497-512
    • /
    • 2021
  • In this paper, we study the analytical and approximate solutions for a fractional quadratic integral equation involving Katugampola fractional integral operator. The existence and uniqueness results obtained in the given arrangement are not only new but also yield some new particular results corresponding to special values of the parameters 𝜌 and ϑ. The main results are obtained by using Banach fixed point theorem, Picard Method, and Adomian decomposition method. An illustrative example is given to justify the main results.

A NOTE ON THE INTEGRAL REPRESENTATIONS OF GENERALIZED RELATIVE ORDER (𝛼, 𝛽) AND GENERALIZED RELATIVE TYPE (𝛼, 𝛽) OF ENTIRE AND MEROMORPHIC FUNCTIONS WITH RESPECT TO AN ENTIRE FUNCTION

  • Biswas, Tanmay;Biswas, Chinmay
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제28권4호
    • /
    • pp.355-376
    • /
    • 2021
  • In this paper we wish to establish the integral representations of generalized relative order (𝛼, 𝛽) and generalized relative type (𝛼, 𝛽) of entire and meromorphic functions where 𝛼 and 𝛽 are continuous non-negative functions defined on (-∞, +∞). We also investigate their equivalence relation under some certain condition.