Browse > Article
http://dx.doi.org/10.22771/nfaa.2021.26.03.12

DYNAMIC ANALYSIS FOR DELAYED HCV INFECTION IN VIVO WITH ANTI-RETRO VIRAL TREATMENT  

Krishnapriya, P. (Department of Mathematics, Mary Matha College of Arts and Science)
Hyun, Ho Geun (Department of Mathematics Education, Kyungnam University)
Publication Information
Nonlinear Functional Analysis and Applications / v.26, no.3, 2021 , pp. 629-648 More about this Journal
Abstract
In this paper, we study a within-host mathematical model of HCV infection and carry out mathematical analysis of the global dynamics and bifurcations of the model in different parameter regimes. We explore the effect of reverse transcriptase inhibitors (RTI) on spontaneous HCV clearance. The model can produce all clinically observed patient profiles for realistic parameter values; it can also be used to estimate the efficacy and/or duration of treatment that will ensure permanent cure for a particular patient. From the results of the model, we infer possible measures that could be implemented in order to reduce the number of infected individuals.
Keywords
Bifurcation; delays; global stability; HCV infection; Lyapunov functionals;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl., 426(1) (2015), 563-584.   DOI
2 H. Smith and X. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47(9) (2001), 6169-6179.   DOI
3 E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33(5) (2002), 1144-1165.   DOI
4 H. Dahari, A. Lo, R.M. Ribeiro and A.S. Perelson, Modelling hepatitis C virus dynamics: liver regeneration and critical drug efficacy, J. Theor. Biol., 247(2) (2007), 371-381.   DOI
5 P. Krishnapriya, M. Pitchaimani and Tarynn M. Witten, Mathematical analysis of an influenza A epidemic model with discrete delay, J. Comput. and Appl. Math., 324 (2017), 155-172.   DOI
6 P. Krishnapriya and M. Pitchaimani, Analysis of time delay in viral infection model with immune impairment, J. Appl. Math. Comput., 55 (2017), 421-453.   DOI
7 P. Krishnapriya and M. Pitchaimani, Modeling and bifurcation analysis of a viral infection model with time delay and immune impairment, Japan J. Indust. Appl. Math., 34(1) (2017), 99-139.   DOI
8 P. Krishnapriya and M. Pitchaimani, Optimal control of mixed immunotherapy and chemotherapy of tumours with discrete delay, Int. J. Dynam. Cont., 5(3) (2017), 872-892.   DOI
9 X. Wei, S.K. Ghosh, M.E. Taylor, V.A. Johnson, E.A. Emini, P. Deutsch, J.D. Lifson, S. Bonhoeffer, M.A. Nowak, B.H. Hahn et. al., Viral dynamics in human immunodeficiency virus type 1, infection, Nature, 373(6510) (1995), 117-122.   DOI
10 M.C. Maheswari, P. Krishnapriya, K. Krishnan and M. Pitchaimani, A mathematical model of HIV-1 infection within host cell to cell viral transmissions with RTI and discrete delays, J. Appl. Math. Comput., 56(1) (2018), 151-178.   DOI
11 M. Pitchaimani, P. Krishnapriya and C. Monica Mathematical modeling of intra-venous glucose tolerance test model with two discrete delays, J. Bio. Syst., 23(4) (2015), 631-660.
12 A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard and D.D. Ho HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271(5255) (1996), 1582-1586.   DOI
13 N.S. Ravindran, M. Mohamed Sheriff and P. Krishnapriya Analysis of tumour-immune evasion with chemo-immuno therapeutic treatment with quadratic optimal control, J. Bio. Dyna., 11(1) (2017), 480-503.   DOI
14 R.Nagarajan, K.Krishnan and P. Krishnapriya, Optimal control of HIV-1 infection model with logistic growth using discrete delay, Nonlinear Funct. Anal. Appl., 22(2) (2017), 301-309.
15 P. Krishnapriya and M. Pitchaimani, Analysis of HIV-1 Model: Within Host Cell to Cell Viral Transmission with ART, Nonlinear Funct. Anal. Appl., 21(4) (2016), 597-612.
16 A.U. Neumann, N.P. Lam, H. Dahari, D.R. Gretch, T.E. Wiley, T.J. Layden and A.S. Perelson, Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science, 282(5386) (1998), 103-107.   DOI
17 A.S. Perelson, E. Herrmann, F. Micol and S. Zeuzem, New kinetic models for the hepatitis C virus, Hepatology, 42(4) (2005), 749-754.   DOI
18 H. Dahari, M. Major, X. Zhang, K. Mihalik, C.M. Rice, A.S. Perelson, S.M. Feinstone and A.U. Neumann, Mathematical modeling of primary hepatitis C infection: noncytolytic clearance and early blockage of virion production, Gastroenterology, 128(4) (2005), 1056-1066.   DOI
19 M.A. Nowak and R.M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, New York, 2000.
20 H. Dahari, R.M. Ribeiro and A.S. Perelson, Triphasic decline of hepatitis C virus RNA during antiviral therapy, Hepatology, 46(1) (2007), 16-21.   DOI
21 J. Hale and S.V. Lunel, Introduction to Functional Differential Equations, SpringerVerlag, New York, 1993.
22 A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41(1) (1999), 3-44.   DOI
23 K.A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data, Math. Biosci., 235(1) (2012), 98-109.   DOI
24 Ruthie Birger, Roger Kouyos, Jonathan Dushoff and Bryan Grenfell, Modeling the effect of HIV coinfection on clearance and sustained virologic response during treatment for hepatitis C virus, Epidemics, 12 (2015), 1-10.   DOI
25 N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge University, Cambridge, 1989.
26 J. Hale, Theory of Functional differential equations, Springer, New York, 1997.
27 Y. Kuang, Delay differential equations with applications in population dynamics, Math. Sci. Eng., Academic Press, Boston, 1993.
28 E. Avila-Vales, Noe Chan-Chi, Gerardo E. Garcia-Almeida a and Cruz Vargas-De-Leon, Stability and Hopf bifurcation in a delayed viral infection model with mitosis transmission, Appl. Math. Comput., 259 (2015), 293-312.   DOI