Derivations on Semiprime Rings and Banach Algebras, I

*BYUNG-DO KIM AND **YANG-HI LEE

ABSTRACT. The aim of this paper is to give the partial answer of Vukman's conjecture [2]. From the partial answer we also generalize a classical result of Posner. We prove the following result: Let R be a prime ring with $\operatorname{char}(R) \neq 2, 3$, and 5. Suppose there exists a nonzero derivation $D: R \longrightarrow R$ such that the mapping $x \mapsto [[[Dx, x], x], x]$ is centralizing on R. Then R is commutative. Using this result and some results of Sinclair and Johnson, we generalize Yood's noncommutative extension of the Singer-Wermer theorem.

1. Introduction

Throughout, R represents an associative ring with center Z(R). We shall write $\operatorname{char}(R)$ for the characteristic of ring R. We write [x,y] for xy-yx. Recall that R is prime if aRb=(0) implies that either a=0 or b=0, and is semiprime if aRa=(0) implies a=0. An additive mapping D from R to R is called a derivation if D(xy)=(Dx)y+xDy holds for all $x,y\in R$. An additive mapping D from R to R is called a Jordan derivation if $D(x^2)=(Dx)x+xDx$ holds for all $x\in R$. A mapping F from R to R is said to be commuting on R if [F(x),x]=0 holds for all $x\in R$, and is said to be centralizing on R if $[F(x),x]\in Z(R)$ holds for all $x\in R$. In 1990, J. Vukman [2] proved that in case there exists a nonzero derivation $D:R\longrightarrow R$, where R is a prime ring of characteristic different from 2, 3, such that the mapping $x\mapsto [[Dx,x],x]$ is centralizing on R, R is commutative.

Received by the editors on June 30, 1994.

1980 Mathematics subject classifications: Primary 16N60.

The main purpose of this paper is in solving Vukman's conjecture when n = 4. Hence we also generalize Theorem 2 and Theorem 3 in [3] in the same fashion.

2. Main Results

The following result is the partial answer of Vukman's conjecture [2].

THEOREM 2.1. Let R be a noncommutative prime ring with $char(R) \neq 2$, 3, and 5. Suppose there exists a derivation $D: R \longrightarrow R$ such that the mapping $x \longmapsto [[[Dx, x], x], x]$ is centralizing on R. Then we have D = 0.

PROOF. We define a mapping $B(\cdot,\cdot): R \times R \longrightarrow R$ by

$$B(x,y) = [Dx,y] + [Dy,x], \quad x,y \in R.$$

Then, $B(\cdot, \cdot)$ is symmetric and additive in both arguments. A calculation shows that the relation

$$B(xy,z) = B(x,z)y + xB(y,z) + (Dx)[y,z] + [x,z]Dy.$$
 (1)

holds for all $x, y, z \in R$. Now, let e(x) = 2Dx for all $x \in R$. And, we also introduce a mapping f from R to R by f(x) = B(x, x). We have

$$f(x) = [e(x), x], \quad x \in R.$$

Obviously, the mapping f satisfies the relation

$$f(x+y) = f(x) + f(y) + 2B(x,y), \quad x, y \in R.$$
 (3)

Throughout the proof, we use the mapping $B(\cdot,\cdot)$ and the relations (1), (2), and (3) without specific reference. The assumption of the theorem can now be written in the form

$$[[[f(x), x], x], x] \in Z(R), \quad x \in R.$$
 (4)

Conveniently, we will introduce the following arguments:

Let $F, G: R \longrightarrow R$ and $H: R \times R \longrightarrow R$ be the mappings such that $H(x,xy) = xH(x,y), \ H(x,yx) = H(x,y)x,$

(a)
$$F(x)H(x,y)G(x) = 0, \quad x,y \in R.$$

(LA):

Substituting xy for y in (a), one obtains

(b)
$$F(x)xH(x,y)G(x) = 0, \quad x,y \in R.$$

And, left multiplication of (a) by x gives

(c)
$$xF(x)H(x,y)G(x) = 0, \quad x,y \in R.$$

And so, subtracting (c) from (b), we have

$$[F(x), x]H(x, y)G(x) = 0, \quad x, y \in R.$$

By the similar method,

(RA):

$$F(x)H(x,y)[G(x),x] = 0, \quad x,y \in R.$$

First we intend to prove that the mappings $x \mapsto [[f(x), x], x]$ is commuting on R. In other words, we are going to prove that

$$[[[f(x), x], x], x] = 0, \quad x \in R.$$

The linearization of (4) gives

$$\begin{split} & [[[f(y),x],x],x] + 2[[[B(x,y),x],x],x] + [[[f(x),x],x],y] \\ & + [[[f(y),x],x],y] + 2[[[B(x,y),x],x],y] + [[[f(x),x],y],x] \\ & + [[[f(y),x],y],x] + 2[[[B(x,y),x],y],x] + [[[f(x),x],y],y] \\ & + [[[f(y),x],y],y] + 2[[[B(x,y),x],y],y] + [[[f(x),y],x],x] \\ & + [[[f(y),y],x],x] + 2[[[B(x,y),y],x],x] + [[[f(x),y],x],y] \\ & + [[[f(y),y],x],y] + 2[[[B(x,y),y],x],y] + [[[f(x),y],y],x] \\ & + [[[f(y),y],y],x] + 2[[[B(x,y),y],y],x] + [[[f(x),y],y],y] \\ & + 2[[[B(x,y),y],y],y] \in Z(R), \quad x,y \in R. \end{split}$$

Replacing -x for x in the above relation we have the new relation: and comparing the new relation with the above relation, we obtain

$$\begin{aligned} & [[[f(x), x], x], y] + [[[f(x), x], y], x] + [[[f(x), y], x], x] \\ & + [[[f(x), y], y], y] + [[[f(y), x], x], y] + [[[f(y), x], y], x] \\ & + [[[f(y), y], x], x] + 2[[[B(x, y), x], x], x] + 2[[[B(x, y), x], y], y] \\ & + 2[[[B(x, y), y], x], y] + 2[[[B(x, y), y], y], x] \in Z(R), \quad x, y \in R. \end{aligned}$$

Substituting 2x for x in (5) and then using the fact that $char(R) \neq 2$, we arrive at

$$4[[f(x), x], x], y] + 4[[f(x), x], y], x] + 4[[f(x), y], x], x]$$

$$+ [[f(x), y], y], y] + [[f(y), x], x], y] + [[f(y), x], y], x]$$

$$+ [[f(y), y], x], x] + 8[[f(x, y), x], x], x] + 2[[f(x, y), x], y], y]$$

$$+ 2[[f(x), y], y], x], y] + 2[[f(x, y), y], y], x] \in Z(R), x, y \in R.$$

$$(6)$$

And, subtracting (5) from (6), we get

$$3[[[f(x), x], x], y] + 3[[[f(x), x], y], x] + 3[[[f(x), y], x], x] + 6[[[B(x, y), x], x], x] \in Z(R), x, y \in R.$$

But since $char(R) \neq 3$, we have

$$[[[f(x), x], x], y] + [[[f(x), x], y], x] + [[[f(x), y], x], x] + 2[[[B(x, y), x], x], x] \in Z(R), \quad x, y \in R.$$

$$(7)$$

Replacing x^2 for y in (7), one obtains

$$5[[[f(x), x], x], x]x + 5x[[[f(x), x], x], x] \in Z(R), \quad x \in R,$$
 (8)

and also, since $char(R) \neq 5$, it follows from (8) that

$$[[[f(x), x], x], x]x + x[[[f(x), x], x], x] \in Z(R), \quad x \in R.$$
 (9)

But since $[[[f(x), x], x], x] \in Z(R), x \in R$ and $char(R) \neq 2$, we obtain from (9) that

$$[[[f(x), x], x], x]x \in Z(R), \quad x \in R$$
(10)

And so, it follows from (4) and (10) that

$$[[[f(x), x], x], x][x, y] = 0, \quad x, y \in R.$$
(11)

Now, substituting yz for y in (11), one obtains

$$[[[f(x), x], x], x]y[z, x] = 0, \quad x, y, z \in R.$$
(12)

And then, putting [[f(x), x], x] for z in (12), we have

$$[[[f(x), x], x], x]y[[[f(x), x], x], x] = 0, \quad x, y \in R.$$
 (13)

Therefore, by semiprimeness of R it is immediate from (13) that

$$[[[f(x), x], x], x] = 0, \quad x \in R.$$
(14)

From the linearization of (14), and using the assumption that $char(R) \neq 2, 3$, and 5, we arrive at

$$[[[f(x), x], x], y] + [[[f(x), x], y], x] + [[[f(x), y], x], x] + 2[[[B(x, y), x], x], x] = 0 x, y \in R,$$
(15)

in the same fashion that makes it possible to obtain (7) from (4). On the other hand, substituting xy for y in (15) we have

$$10[[f(x), x], x][y, x] + 10[f(x), x][[y, x], x] + 5f(x)[[[y, x], x], x] + e(x)[[[[y, x], x], x], x] = 0, \quad x, y \in R.$$
(16)

And also, replacing yx for y in (15) we arrive at

$$10[y,x][[f(x),x],x] + 10[[y,x],x][f(x),x] + 5[[[y,x],x],x]f(x) + [[[[y,x],x],x],x]e(x) = 0, \quad x,y \in R.$$
(17)

Subtracting $e(x)\times(17)$ from $(16)\times e(x)$, and using the condition that $\operatorname{char}(R)\neq 5$ we obtain

$$2[[f(x), x], x][y, x]e(x) - 2e(x)[y, x][[f(x), x], x] + 2[f(x), x][[y, x], x]e(x) - 2e(x)[[y, x], x][f(x), x] + f(x)[[[y, x], x], x]e(x) - e(x)[[[y, x], x], x]f(x)$$

$$= 0, \quad x, y \in R.$$
(18)

Now, applying (RA) to (18), and again doing (RA) to the relation so obtained, we get

$$2[[f(x), x], x][y, x][f(x), x] + 2[f(x), x][[y, x], x][f(x), x]$$

$$+ f(x)[[[y, x], x], x][f(x), x] - e(x)[[[y, x], x], x][[f(x), x], x]$$

$$= 0, \quad x, y \in R.$$

$$(19)$$

And again, applying (LA) to (18), and doing (LA) to the relation so obtained, one obtains

$$-2[f(x), x][y, x][[f(x), x], x] - 2[f(x), x][[y, x], x][f(x), x]$$

$$+ [[f(x), x], x][[[y, x], x], x]e(x) - [f(x), x][[[y, x], x], x]f(x)$$

$$= 0, \quad x, y \in R.$$
(20)

But, replacing yz for y in (16) it follows that

$$\begin{aligned} &10[[f(x),x],x]y[z,x] + 10[f(x),x]y[[z,x],x] + 20[f(x),x][y,x][z,x] \\ &+ 5f(x)y[[[z,x],x],x] + 15f(x)[y,x][[z,x],x] + 15f(x)[[y,x],x][z,x] \\ &+ e(x)y[[[[z,x],x],x],x] + 4e(x)[y,x][[[z,x],x],x] \\ &+ 6e(x)[[y,x],x][[z,x],x] + 4e(x)[[[y,x],x],x][z,x] \\ &= 0, \quad x,y,z \in R. \end{aligned} \tag{21}$$

Moreover, substituting [f(x), x] for z in (21) we have

$$10[[f(x), x], x]y[[f(x), x], x] + 20[f(x), x][y, x][[f(x), x], x]$$

$$+ 15f(x)[[y, x], x][[f(x), x], x] + 4e(x)[[[y, x], x], x][[f(x), x], x]$$

$$= 0, x, y \in R.$$

$$(22)$$

Putting e(x) instead of z in (21), after some calculations one obtains

$$\begin{aligned} &10[[f(x),x],x]yf(x) + 10[f(x),x]y[f(x),x] + 20[f(x),x][y,x]f(x) \\ &+ 5f(x)y[[f(x),x],x] + 15f(x)[y,x][f(x),x] + 15f(x)[[y,x],x]f(x) \\ &+ 4e(x)[y,x][[f(x),x],x] + 6e(x)[[y,x],x][f(x),x] + 4e(x)[[[y,x],x],x]f(x) \\ &= 0, \quad x,y \in R. \end{aligned} \tag{23}$$

Let us write zy instead of y in (17). Then we have

$$\begin{aligned} &10[z,x]y[[f(x),x],x] + 10[[z,x],x]y[f(x),x] + 20[z,x][y,x][f(x),x] \\ &+ 5[[[z,x],x],x]yf(x) + 15[[z,x],x][y,x]f(x) + 15[z,x][[y,x],x]f(x) \\ &+ [[[[z,x],x],x],x]ye(x) + 4[[[z,x],x],x][y,x]e(x) \\ &6[[z,x],x][[y,x],x]e(x) + 4[z,x][[[y,x],x],x]e(x) \\ &= 0, \quad x,y,z \in R. \end{aligned} \tag{24}$$

And also, substituting e(x) for z in (24) we get

$$10f(x)y[[f(x), x], x] + 10[f(x), x]y[f(x), x] + 20f(x)[y, x][f(x), x]$$

$$+ 5[[f(x), x], x]yf(x) + 15[f(x), x][y, x]f(x) + 15f(x)[[y, x], x]f(x)$$

$$+ 4[[f(x), x], x][y, x]e(x) + 6[f(x), x][[y, x], x]e(x)$$

$$+ 4f(x)[[[y, x], x], x]e(x) = 0, \quad x, y \in R.$$
(25)

Hence, taking (25) from (23), we obtain

$$\begin{split} &5[[f(x),x],x]yf(x)-5f(x)[y,x][f(x),x]+5[f(x),x][y,x]f(x)\\ &-5f(x)y[[f(x),x],x]+4e(x)[y,x][[f(x),x],x]-4[[f(x),x],x][y,x]e(x)\\ &+6e(x)[[y,x],x][f(x),x]-6[f(x),x][[y,x],x]e(x)\\ &+4e(x)[[[y,x],x],x]f(x)-4f(x)[[[y,x],x],x]e(x)=0,\quad x,y\in R.\ (26) \end{split}$$

Applying (RA) to (26), we arrive at

$$\begin{aligned} &5[[f(x),x],x]y[f(x),x] + 5[f(x),x][y,x][f(x),x] \\ &- 5f(x)[y,x][[f(x),x],x] - 4[[f(x),x],x][y,x]f(x) \\ &+ 6e(x)[[y,x],x][[f(x),x],x] - 6[f(x),x][[y,x],x]f(x) \\ &- 4f(x)[[[y,x],x],x]f(x) + 4e(x)[[[y,x],x],x][f(x),x] \\ &= 0, \quad x,y \in R. \end{aligned} \tag{27}$$

Similarly, applying (LA) to (26) one obtains

$$5[[f(x), x], x][y, x]f(x) - 5[f(x), x][y, x][f(x), x] - 5[f(x), x]y[[f(x), x], x]$$

$$+ 4f(x)[y, x][[f(x), x], x] + 6f(x)[[y, x], x][f(x), x]$$

$$- 6[[f(x), x], x][[y, x], x]e(x) + 4f(x)[[[y, x], x], x]f(x)$$

$$- 4[f(x), x][[[y, x], x], x]e(x) = 0, \quad x, y \in R.$$
(28)

Applying (RA) to (27), we get

$$5[[f(x), x], x]y[[f(x), x], x] + 5[f(x), x][y, x][[f(x), x], x]$$

$$-4[[f(x), x], x][y, x][f(x), x] - 6[f(x), x][[y, x], x][f(x), x]$$

$$-4f(x)[[[y, x], x], x][f(x), x] + 4e(x)[[[y, x], x], x][[f(x), x], x]$$

$$= 0, \quad x, y \in R.$$
(29)

But then, since 4e(x)[[[y,x],x],x][[f(x),x],x] = -10[[f(x),x],x] y[[f(x),x],x] - 20[f(x),x][y,x][[f(x),x],x] - 15f(x)[[y,x],x][[f(x),x],x]for all $x,y \in R$ from (22), we obtain from (29) that

$$\begin{aligned} &5[[f(x),x],x]y[[f(x),x],x] + 15[f(x),x][y,x][[f(x),x],x] \\ &+ 4[[f(x),x],x][y,x][f(x),x] + 6[f(x),x][[y,x],x][f(x),x] \\ &+ 15f(x)[[y,x],x][[f(x),x],x] + 4f(x)[[[y,x],x],x][f(x),x] \\ &= 0, \quad x,y \in R. \end{aligned} \tag{30}$$

On the other hand, applying (LA) to (28) we have

$$-5[[f(x), x], x][y, x][f(x), x] - 5[[f(x), x], x]y[[f(x), x], x]$$

$$+4[f(x), x][y, x][[f(x), x], x] + 6[f(x), x][[y, x], x][f(x), x]$$

$$+4[f(x), x][[[y, x], x], x]f(x) - 4[[f(x), x], x][[[y, x], x], x]e(x)$$

$$=0, \quad x, y \in R.$$

$$(31)$$

Substituting [f(x), x] for z in (24), we arrive at

$$10[[f(x), x], x]y[[f(x), x], x] + 20[[f(x), x], x][y, x][f(x), x]$$

$$+ 15[[f(x), x], x][[y, x], x]f(x) + 4[[f(x), x], x][[[y, x], x], x]e(x)$$

$$= 0, x, y \in R.$$
(32)

But, since 4[[f(x), x], x][[[y, x], x], x]e(x) = -10[[f(x), x], x] y[[f(x), x], x] - 20[[f(x), x], x][y, x][f(x), x] - 15[[f(x), x], x][[y, x], x]f(x)holds for all $x, y \in R$ from (32), we obtain from (31) that

$$5[[f(x), x], x]y[[f(x), x], x] + 15[[f(x), x], x][y, x][f(x), x]$$

$$+ 4[f(x), x][y, x][[f(x), x], x] + 6[f(x), x][[y, x], x][f(x), x]$$

$$+ 4[f(x), x][[[y, x], x], x]f(x) + 15[[f(x), x], x][[y, x], x]f(x)$$

$$= 0, \quad x, y \in R.$$

$$(33)$$

And, combining $4\times(19)$ with (22) it follows that

$$10[[f(x), x], x]y[[f(x), x], x] + 8[[f(x), x], x][y, x][f(x), x]$$

$$+ 8[f(x), x][[y, x], x][f(x), x] + 4f(x)[[[y, x], x], x][f(x), x]$$

$$+ 20[f(x), x][y, x][[f(x), x], x] + 15f(x)[[y, x], x][[f(x), x], x]$$

$$= 0, x, y \in R.$$

$$(34)$$

Subtracting (30) from (34), we have

$$5[[f(x), x], x]y[[f(x), x], x] + 4[[f(x), x], x][y, x][f(x), x]$$

$$+ 5[f(x), x][y, x][[f(x), x], x] + 2[f(x), x][[y, x], x][f(x), x]$$

$$= 0, \quad x, y \in R.$$
(35)

Applying (LA) to (23), we get

$$10[[f(x), x], x]y[f(x), x] + 20[[f(x), x], x][y, x]f(x)$$

$$+ 5[f(x), x]y[[f(x), x], x] + 15[f(x), x][y, x][f(x), x]$$

$$+ 15[f(x), x][[y, x], x]f(x) + 4f(x)[y, x][[f(x), x], x]$$

$$+ 6f(x)[[y, x], x][f(x), x] + 4f(x)[[[y, x], x], x]f(x)$$

$$= 0, \quad x, y \in R.$$
(36)

On the other hand, taking $4\times(20)$ from (32) we have

$$10[[f(x), x], x]y[[f(x), x], x] + 20[[f(x), x], x][y, x][f(x), x]$$

$$+ 8[f(x), x][y, x][[f(x), x], x] + 8[f(x), x][[y, x], x][f(x), x]$$

$$+ 15[[f(x), x], x][[y, x], x]f(x) + 4[f(x), x][[[y, x], x], x]f(x)$$

$$= 0, \quad x, y \in R.$$
(37)

Subtracting (33) from (37), we obtain

$$5[[f(x), x], x]y[[f(x), x], x] + 5[[f(x), x], x][y, x][f(x), x]$$

$$+ 4[f(x), x][y, x][[f(x), x], x] + 2[f(x), x][[y, x], x][f(x), x]$$

$$= 0, \quad x, y \in R.$$
(38)

And again, comparing (35) with (38), it follows that

$$[[f(x), x], x][y, x][f(x), x] - [f(x), x][y, x][[f(x), x], x] = 0, \quad x, y \in R.$$
(39)

And also, applying (RA) to (25), we get

$$10[f(x), x]y[[f(x), x], x] + 20f(x)[y, x][[f(x), x], x]$$

$$+ 5[[f(x), x], x]y[f(x), x] + 15[f(x), x][y, x][f(x), x]$$

$$+ 15f(x)[[y, x], x][f(x), x] + 4[[f(x), x], x][y, x]f(x)$$

$$+ 6[f(x), x][[y, x], x]f(x) + 4f(x)[[[y, x], x], x]f(x)$$

$$= 0, \quad x, y \in R. \tag{40}$$

Thus, taking (40) from (36) we have

$$5[[f(x), x], x]y[f(x), x] + 16[[f(x), x], x][y, x]f(x)$$

$$-5[f(x), x]y[[f(x), x], x] + 9[f(x), x][[y, x], x]f(x)$$

$$-16f(x)[y, x][[f(x), x], x] - 9f(x)[[y, x], x][f(x), x]$$

$$= 0, \quad x, y \in R.$$

$$(41)$$

Applying (RA) to (41), we get

$$5[[f(x), x], x]y[[f(x), x], x] + 16[[f(x), x], x][y, x][f(x), x]$$

$$+ 9[f(x), x][[y, x], x][f(x), x] - 9f(x)[[y, x], x][[f(x), x], x]$$

$$= 0, \quad x, y \in R.$$

$$(42)$$

Hence, comparing (22) with (32), one obtains

$$15([[f(x), x], x][[y, x], x]f(x) - f(x)[[y, x], x][[f(x), x], x])$$

$$+ 4([[f(x), x], x][[[y, x], x], x]e(x) - e(x)[[[y, x], x], x][[f(x), x], x])$$

$$= 0, \quad x, y \in R.$$

$$(43)$$

And also, subtracting $(16)\times[f(x),x]$ from $[f(x),x]\times(17)$ we arrive at

$$5([f(x), x][[[y, x], x], x]f(x) - f(x)[[[y, x], x], x][f(x), x])$$

$$+ ([f(x), x][[[[y, x], x], x], x]e(x) - e(x)[[[[y, x], x], x], x][f(x), x])$$

$$= 0, \quad x, y \in R.$$

$$(44)$$

(20) added to (19) gives

$$([[f(x), x], x][[[y, x], x], x]e(x) - e(x)[[[y, x], x], x][[f(x), x], x])$$

$$- ([f(x), x][[[y, x], x], x]f(x) - f(x)[[[y, x], x], x][f(x), x])$$

$$= 0, \quad x, y \in R.$$

$$(45)$$

On the other hand, applying (LA) to (41) we have

$$-5[[f(x), x], x]y[[f(x), x], x] - 16[f(x), x][y, x][[f(x), x], x]$$

$$-9[f(x), x][[y, x], x][f(x), x] + 9[[f(x), x], x][[y, x], x]f(x)$$

$$= 0, \quad x, y \in R.$$
(46)

And so, combining (42) with (46), and using (39) and the condition $char(R) \neq 3$ one obtains

$$[[f(x), x], x][[y, x], x]f(x) - f(x)[[y, x], x][[f(x), x], x] = 0, \quad x, y \in R.$$
(47)

Comparing (43) with (47), and using the assumption that $char(R) \neq 2$ we arrive at

$$[[f(x), x], x][[[y, x], x], x]e(x) - e(x)[[[y, x], x], x][[f(x), x], x]$$

$$= 0, \quad x, y \in R.$$
(48)

And also, it follows from (45), (48) that

$$[f(x), x][[[y, x], x], x]f(x) - f(x)[[[y, x], x], x][f(x), x] = 0, \quad x, y \in R.$$
(49)

From now on, we use the relations (47), (48), and (49) without specific reference.

From (35) and (39), we have

$$5[[f(x), x], x]y[[f(x), x], x] + 9[[f(x), x], x][y, x][f(x), x] + 2[f(x), x][[y, x], x][f(x), x] = 0, \quad x, y \in R.$$

$$(50)$$

And, subtracting $2 \times (42)$ from $9 \times (50)$ it follows that

$$35[[f(x), x], x]y[[f(x), x], x] + 49[[f(x), x], x][y, x][f(x), x]$$

$$+ 18[[f(x), x], x][[y, x], x]f(x) = 0, \quad x, y \in R.$$
(51)

And, replacing [y, x] for y in (36), it is obvious that

$$15[[f(x), x], x][y, x][f(x), x] + 24[[f(x), x], x][[y, x], x]f(x)$$

$$+ 15[f(x), x][[y, x], x][f(x), x] + 21f(x)[[[y, x], x], x][f(x), x]$$

$$+ 4f(x)[[[[y, x], x], x], x]f(x) = 0, \quad x, y \in R.$$
(52)

Applying (LA) to (16), we get

$$10[[f(x), x], x][[y, x], x] + 5[f(x), x][[[y, x], x], x] + f(x)[[[[y, x], x], x], x] = 0, \quad x, y \in R.$$
(53)

Thus, multiplying (53) by f(x) on the right we have

$$10[[f(x), x], x][[y, x], x]f(x) + 5[f(x), x][[[y, x], x], x]f(x) + f(x)[[[[y, x], x], x], x]f(x) = 0, \quad x, y \in R.$$
 (54)

And so, taking $4 \times (54)$ from (52), we obtain

$$15[[f(x), x], x][y, x][f(x), x] - 16[[f(x), x], x][[y, x], x]f(x)$$

$$+ 15[f(x), x][[y, x], x][f(x), x] + f(x)[[[y, x], x], x][f(x), x]$$

$$= 0, x, y \in R.$$

$$(55)$$

On the other hand, subtracting $4\times(55)$ from (33) it follows that

$$5[[f(x), x], x]y[[f(x), x], x] - 41[[f(x), x], x][y, x][f(x), x]$$

$$+ 79[[f(x), x], x][[y, x], x]f(x) - 54[f(x), x][[y, x], x][f(x), x]$$

$$= 0, \quad x, y \in R.$$
(56)

Combining $27 \times (50)$ with (56), we arrive at

$$140[[f(x), x], x]y[[f(x), x], x] + 202[[f(x), x], x][y, x][f(x), x]$$

$$+79[[f(x), x], x][[y, x], x]f(x) = 0, x, y \in R.$$
(57)

Furthemore, taking $18\times(57)$ from $79\times(51)$, and using the condition $char(R) \neq 5$ it follows that

$$49[[f(x), x], x]y[[f(x), x], x] + 47[[f(x), x], x][y, x][f(x), x]$$

$$= 0, \quad x, y \in R.$$
(58)

Replacing y by [y, x] in $(16) \times f(x)$, we have

$$10[[f(x), x], x][[y, x], x]f(x) + 10[f(x), x][[[y, x], x], x]f(x)$$

$$+ 5f(x)[[[[y, x], x], x], x]f(x) + e(x)[[[[[y, x], x], x], x], x]f(x)$$

$$= 0, \quad x, y \in R.$$
(59)

But, applying (RA) to (17), we get

$$10[[y, x], x][[f(x), x], x] + 5[[[y, x], x], x][f(x), x] + [[[[y, x], x], x], x]f(x)$$

$$= 0, \quad x, y \in R.$$
(60)

And also, putting [y, x] instead of y in (60) we arrive at

$$10[[[y,x],x],x][[f(x),x],x] + 5[[[[y,x],x],x],x][f(x),x] + [[[[[y,x],x],x],x],x]f(x) = 0, x,y \in R.$$
(61)

Comparing (59) with $e(x)\times(61)$, we obtain

$$10[[f(x), x], x][[y, x], x]f(x) + 10[f(x), x][[[y, x], x], x]f(x)$$

$$+ 5f(x)[[[[y, x], x], x], x]f(x) - 10e(x)[[[y, x], x], x][[f(x), x], x]$$

$$- 5e(x)[[[[y, x], x], x], x][f(x), x] = 0, x, y \in R.$$

$$(62)$$

And, combining $(16)\times 5[f(x),x]$ with (62) it follows that

$$50[[f(x), x], x][y, x][f(x), x] + 10[[f(x), x], x][[y, x], x]f(x)$$

$$-10[[f(x), x], x][[[y, x], x], x]e(x) + 50[f(x), x][[y, x], x][f(x), x]$$

$$+35[f(x), x][[[y, x], x], x]f(x) + 5f(x)[[[[y, x], x], x], x]f(x)$$

$$= 0, \quad x, y \in R.$$

$$(63)$$

Taking $5 \times (54)$ from (63), we have

$$50[[f(x), x], x][y, x][f(x), x] - 40[[f(x), x], x][[y, x], x]f(x)$$

$$-10[[f(x), x], x][[[y, x], x], x]e(x) + 50[f(x), x][[y, x], x][f(x), x]$$

$$+10[f(x), x][[[y, x], x], x]f(x) = 0, \quad x, y \in R.$$
(64)

And again, subtracting (64) from $10\times(55)$, and using $\operatorname{char}(R)\neq 2,5$ we get

$$\begin{aligned} &10[[f(x),x],x][y,x][f(x),x] - 12[[f(x),x],x][[y,x],x]f(x) \\ &+ [[f(x),x],x][[[y,x],x],x]e(x) + 10[f(x),x][[y,x],x][f(x),x] \\ &= 0, \quad x,y \in R. \end{aligned} \tag{65}$$

Comparing $5 \times (50)$ with (65), we obtain

$$25[[f(x), x], x]y[[f(x), x], x] + 35[[f(x), x], x][y, x][f(x), x]$$

$$+ 12[[f(x), x], x][[y, x], x]f(x) - [[f(x), x], x][[[y, x], x], x]e(x)$$

$$= 0, \quad x, y \in R.$$

$$(66)$$

And again, (22) added to $4\times(66)$ makes the following:

$$110[[f(x), x], x]y[[f(x), x], x] + 160[[f(x), x], x][y, x][f(x), x] + 63[[f(x), x], x][[y, x], x]f(x) = 0, \quad x, y \in R.$$

$$(67)$$

Thus, taking $2\times(67)$ from $7\times(51)$, we have

$$25[[f(x), x], x]y[[f(x), x], x] + 23[[f(x), x], x][y, x][f(x), x]$$

$$= 0, \quad x, y \in R.$$
(68)

Hence, subtracting $23\times(58)$ from $47\times(68)$, and using the assumption that $char(R) \neq 2, 3$ we arrive at

$$[[f(x), x], x]y[[f(x), x], x] = 0, \quad x, y \in R.$$
(69)

Therefore, by semiprimeness of R it is immediate from (69) that

$$[[f(x), x], x] = 0, \quad x, y \in R.$$
 (70)

Therefore by Theorem 2 in [2] we obtain D = 0. The proof of the theorem is complete.

Let Inv(R) denote the set of all invertible elements in a ring R with identity.

THEOREM 2.2. Let R be a noncommutative semiprime ring with $char(R) \neq 2$, 3, and 5. Suppose there exists a derivation $D: R \longrightarrow R$ such that the mapping $x \longmapsto [[[Dx, x], x], x]$ is centralizing on R. And assume for some $m \in N$, $(Dx)^m = 0$ for all $x \in R$. Then we have D = 0.

PROOF. The given assumptions and the relation (70) satisfy the conditions of Theorem 2.1 in [1]. And so, we have D = 0.

Let [R, R] denote the set of all commutators [x, y] for $x, y \in R$.

THEOREM 2.3. Let R be a noncommutative semiprime ring with identity and char $(R) \neq 2$, 3, and 5. Suppose there exists a derivation $D: R \longrightarrow R$ such that the mapping $x \longmapsto [[[Dx, x], x], x]$ is centralizing on R. If $Inv(R) \cap [R, R]$ is nonempty, then we have $D = \mathbf{0}$.

PROOF. The given assumptions and the relation (70) satisfy the conditions of Theorem 2.2 in [1]. And so, we have D = 0.

The following theorem is due to Vukman [3].

THEOREM 2.4. Let A be a noncommutative Banach algebra, and let $D: A \longrightarrow A$ be a continuous linear Jordan derivation. If $[[[Dx, x], x], x], x] \in rad(A)$ for all $x \in A$, then D maps A into rad(A).

PROOF. The proof goes through in the same way as the proof of Theorem 2 in Vukman's paper [3].

When a Banach algebra is semisimple, one can prove the following result.

THEOREM 2.5. Let A be a noncommutative semisimple Banach algebra. Suppose there exists a linear Jordan derivation $D: A \longrightarrow A$, such that the mapping $x \mapsto [[[Dx, x], x], x]$ is commuting on A. In this case D = 0.

REFERENCES

- 1. K.W. Jun and B.D. Kim, On derivations in semiprime rings and Banach algebras, Preprint (1994).
- 2. J. Vukman, Two results concerning symmetric bi-derivations on prime rings, Aequationes Math. 40 (1990), 181-189.
- 3. J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), 877-884.

DEPARTMENT OF MATHEMATICS
KANGNUNG NATIONAL UNIVERSITY
KANGNUNG, 210-702, KOREA

DEPARTMENT OF MATHEMATICS EDUCATION KONGJU NATIONAL TEACHER'S COLLEGE KONGJU, 314-060, KOREA