DOI QR코드

DOI QR Code

UNIQUENESS OF TOPOLOGICAL SOLUTIONS FOR THE GUDNASON MODEL

  • Kim, Soojung (Department of Mathematics Soongsil University) ;
  • Lee, Youngae (Department of Mathematics Education Teachers College Kyungpook National University)
  • Received : 2020.05.23
  • Accepted : 2020.09.21
  • Published : 2021.07.01

Abstract

In this paper, we consider the Gudnason model of 𝒩 = 2 supersymmetric field theory, where the gauge field dynamics is governed by two Chern-Simons terms. Recently, it was shown by Han et al. that for a prescribed configuration of vortex points, there exist at least two distinct solutions for the Gudnason model in a flat two-torus, where a sufficient condition was obtained for the existence. Furthermore, one of these solutions has the asymptotic behavior of topological type. In this paper, we prove that such doubly periodic topological solutions are uniquely determined by the location of their vortex points in a weak-coupling regime.

Keywords

Acknowledgement

S. Kim was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2018R1C1B6003051). Y. Lee was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2018R1C1B6003403).

References

  1. A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957), 1174-1182.
  2. O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, J. High Energy Phys. 2008 (2008), no. 10, 091, 38 pp. https://doi.org/10.1088/1126-6708/2008/10/091
  3. T. Aubin, Nonlinear analysis on manifolds. Monge-Amp'ere equations, Grundlehren der Mathematischen Wissenschaften, 252, Springer-Verlag, New York, 1982. https://doi. org/10.1007/978-1-4612-5734-9
  4. R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi, and A. Yung, Nonabelian superconductors: vortices and confinement in N = 2 SQCD, Nuclear Phys. B 673 (2003), no. 1-2, 187-216. https://doi.org/10.1016/j.nuclphysb.2003.09.029
  5. J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008), no. 6, 065008, 6 pp. https://doi.org/10.1103/PhysRevD.77.065008
  6. D. Bartolucci, C. Chen, C. Lin, and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations 29 (2004), no. 7-8, 1241-1265. https://doi.org/10.1081/PDE-200033739
  7. D. Bartolucci and G. Tarantello, Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Comm. Math. Phys. 229 (2002), no. 1, 3-47. https://doi.org/10.1007/s002200200664
  8. A. Bezryadina, E. Eugenieva, and Z. Chen, Self-trapping and flipping of double-charged vortices in optically induced photonic lattices, Optics Lett. 31 (2006), 2456-2458. https://doi.org/10.1364/OL.31.002456
  9. H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of -∆u = V (x)eu in two dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1223-1253. https://doi.org/10.1080/03605309108820797
  10. L. A. Caffarelli and Y. S. Yang, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Comm. Math. Phys. 168 (1995), no. 2, 321-336. http://projecteuclid.org/euclid.cmp/1104272361 https://doi.org/10.1007/BF02101552
  11. D. Chae and O. Yu. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000), no. 1, 119-142. https://doi.org/10.1007/s002200000302
  12. M. Chaichian and N. F. Nelipa, Introduction to Gauge Field Theories, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1984. https://doi.org/10.1007/978-3-642-82177-6
  13. H. Chan, C.-C. Fu, and C.-S. Lin, Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Comm. Math. Phys. 231 (2002), no. 2, 189-221. https://doi.org/10.1007/s00220-002-0691-6
  14. S. Chen, X. Han, G. Lozano, and F. A. Schaposnik, Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor, J. Differential Equations 259 (2015), no. 6, 2458-2498. https://doi.org/10.1016/j.jde.2015.03.037
  15. X. Chen, S. Hastings, J. B. McLeod, and Y. S. Yang, A nonlinear elliptic equation arising from gauge field theory and cosmology, Proc. Roy. Soc. London Ser. A 446 (1994), no. 1928, 453-478. https://doi.org/10.1098/rspa.1994.0115
  16. W. X. Chen and C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in R2, Duke Math. J. 71 (1993), no. 2, 427-439. https://doi.org/10.1215/S0012-7094-93-07117-7
  17. Z. Chen and C.-S. Lin, Self-dual radial non-topological solutions to a competitive Chern-Simons model, Adv. Math. 331 (2018), 484-541. https://doi.org/10.1016/j.aim.2018.04.018
  18. Z. Chen and C.-S. Lin, A new type of non-topological bubbling solutions to a competitive Chern-Simons model, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), no. 1, 65-108.
  19. S. Chern and J. Simons, Some cohomology classes in principal fiber bundles and their application to riemannian geometry, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 791-794. https://doi.org/10.1073/pnas.68.4.791
  20. K. Choe, Uniqueness of the topological multivortex solution in the self-dual Chern-Simons theory, J. Math. Phys. 46 (2005), no. 1, 012305, 22 pp. https://doi.org/10.1063/1.1834694
  21. K. Choe and N. Kim, Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation, Ann. Inst. H. Poincare Anal. Non Lineaire 25 (2008), no. 2, 313-338. https://doi.org/10.1016/j.anihpc.2006.11.012
  22. K. Choe, N. Kim, and C.-S. Lin, Existence of mixed type solutions in the SU(3) Chern-Simons theory in ℝ2, Calc. Var. Partial Differential Equations 56 (2017), no. 2, Paper No. 17, 30 pp. https://doi.org/10.1007/s00526-017-1119-7
  23. M. del Pino, P. Esposito, P. Figueroa, and M. Musso, Nontopological condensates for the self-dual Chern-Simons-Higgs model, Comm. Pure Appl. Math. 68 (2015), no. 7, 1191-1283. https://doi.org/10.1002/cpa.21548
  24. Y.-W. Fan, Y. Lee, and C.-S. Lin, Mixed type solutions of the SU(3) models on a torus, Comm. Math. Phys. 343 (2016), no. 1, 233-271. https://doi.org/10.1007/s00220-015-2532-4
  25. F. Gladiali, M. Grossi, and J. Wei, On a general SU(3) Toda system, Calc. Var. Partial Differential Equations 54 (2015), no. 4, 3353-3372. https://doi.org/10.1007/s00526-015-0906-2
  26. S. B. Gudnason, Non-abelian Chern-Simons vortices with generic gauge groups, Nuclear Phys. B 821 (2009), no. 1-2, 151-169. https://doi.org/10.1016/j.nuclphysb.2009.06.014
  27. S. B. Gudnason, Fractional and semi-local non-Abelian Chern-Simons vortices, Nuclear Phys. B 840 (2010), no. 1-2, 160-185. https://doi.org/10.1016/j.nuclphysb.2010.07.004
  28. A. Gustavsson, Algebraic structures on parallel M2 branes, Nuclear Phys. B 811 (2009), no. 1-2, 66-76. https://doi.org/10.1016/j.nuclphysb.2008.11.014
  29. J. Han, Existence of topological multivortex solutions in the self-dual gauge theories, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 6, 1293-1309. https://doi.org/10.1017/S030821050000069X
  30. J. Han, Asymptotic limit for condensate solutions in the abelian Chern-Simons Higgs model, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1839-1845. https://doi.org/10.1090/S0002-9939-02-06737-0
  31. X. Han and G. Huang, Existence theorems for a general 2 × 2 non-Abelian Chern-Simons-Higgs system over a torus, J. Differential Equations 263 (2017), no. 2, 1522-1551. https://doi.org/10.1016/j.jde.2017.03.017
  32. X. Han, C. Lin, G. Tarantello, and Y. Yang, Chern-Simons vortices in the Gudnason model, J. Funct. Anal. 267 (2014), no. 3, 678-726. https://doi.org/10.1016/j.jfa.2014.05.009
  33. X. Han, G. Tarantello, Doubly periodic self-dual vortices in a relativistic non-Abelian Chern-Simons model, Calc. Var. and PDE. https://doi.org/10.1007/s00526-013-0615-7
  34. X. Han, G. Tarantello, Non-topological vortex configurations in the ABJM model, Comm. Math. Phys. 352 (2017), no. 1, 345-385. https://doi.org/10.1007/s00220-016-2817-2
  35. A. Hanany, M. J. Strassler, and A. Zaffaroni, Confinement and strings in MQCD, Nuclear Phys. B 513 (1998), no. 1-2, 87-118. https://doi.org/10.1016/S0550-3213(97)00651-2
  36. A. Hanany and D. Tong, Vortices, instantons and branes, J. High Energy Phys. 2003 (2003), no. 7, 037, 28 pp. https://doi.org/10.1088/1126-6708/2003/07/037
  37. J. Hong, Y. Kim, and P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett. 64 (1990), no. 19, 2230-2233. https://doi.org/10.1103/PhysRevLett.64.2230
  38. K. Huang, Quarks, Leptons & Gauge Fields, World Scientific Publishing Co., Singapore, 1982.
  39. H.-Y. Huang and C.-S. Lin, Classification of the entire radial self-dual solutions to non-Abelian Chern-Simons systems, J. Funct. Anal. 266 (2014), no. 12, 6796-6841. https://doi.org/10.1016/j.jfa.2014.03.007
  40. S. Inouye, S. Gupta, T. Rosenband, A. P. Chikkatur, A. Gorlitz, T. L. Gustavson, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, Observation of vortex phase singularities in Bose-Einstein condensates, Phys. Rev. Lett. 87 (2001), 080402. https://doi.org/10.1103/PhysRevLett.87.080402
  41. R. Jackiw and E. J. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990), no. 19, 2234-2237. https://doi.org/10.1103/PhysRevLett.64.2234
  42. A. Jaffe and C. Taubes, Vortices and Monopoles, Progress in Physics, 2, Birkhauser, Boston, MA, 1980.
  43. B. Julia, A. Zee, Poles with both magnetic and electric charges in non-Abelian gauge theory, Phys. Rev. D 11 (1975) 2227-2232. https://doi.org/10.1103/PhysRevD.11.2227
  44. Y. Kawaguchi and T. Ohmi, Splitting instability of a multiply charged vortex in a Bose-Einstein condensate, Phys. Rev. A 70 (2004), 043610. https://doi.org/10.1103/PhysRevA.70.043610
  45. D. I. Khomskii and A. Freimuth, Charged vortices in high temperature superconductors, Phys. Rev. Lett. 75 (1995), 1384-1386. https://doi.org/10.1103/PhysRevLett.75.1384
  46. Y. Lee, The asymptotic behavior of Chern-Simons vortices for Gudnason model, preprint.
  47. C.-S. Lin and S. Yan, Bubbling solutions for relativistic abelian Chern-Simons model on a torus, Comm. Math. Phys. 297 (2010), no. 3, 733-758. https://doi.org/10.1007/s00220-010-1056-1
  48. C.-S. Lin and S. Yan, Bubbling solutions for the SU(3) Chern-Simons model on a torus, Comm. Pure Appl. Math. 66 (2013), no. 7, 991-1027. https://doi.org/10.1002/cpa.21454
  49. C.-S. Lin and S. Yan, Existence of bubbling solutions for Chern-Simons model on a torus, Arch. Ration. Mech. Anal. 207 (2013), no. 2, 353-392. https://doi.org/10.1007/s00205-012-0575-7
  50. A. Marshakov and A. Yung, Non-abelian confinement via abelian flux tubes in softly broken N = 2 SUSY QCD, Nuclear Phys. B 647 (2002), no. 1-2, 3-48. https://doi.org/10.1016/S0550-3213(02)00893-3
  51. Y. Matsuda, K. Nozakib, and K. Kumagaib, Charged vortices in high temperature superconductors probed by nuclear magnetic resonance, J. Phys. Chem. Solids 63 (2002), 1061-1063. https://doi.org/10.1016/S0022-3697(02)00116-6
  52. M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal. 145 (1998), no. 2, 161-195. https://doi.org/10.1007/s002050050127
  53. M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differential Equations 9 (1999), no. 1, 31-94. https://doi.org/10.1007/s005260050132
  54. M. Nolasco and G. Tarantello, Vortex condensates for the SU(3) Chern-Simons theory, Comm. Math. Phys. 213 (2000), no. 3, 599-639. https://doi.org/10.1007/s002200000252
  55. A. Poliakovsky and G. Tarantello, On non-topological solutions for planar Liouville systems of Toda-type, Comm. Math. Phys. 347 (2016), no. 1, 223-270. https://doi.org/10.1007/s00220-016-2662-3
  56. M. K. Prasad and C. M. Sommerfield, Exact classical solutions for the 't Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975), 760-762. https://doi.org/10.1103/PhysRevLett.35.760
  57. L. H. Ryder, Quantum Field Theory, second edition, Cambridge University Press, Cambridge, 1996. https://doi.org/10.1017/CBO9780511813900
  58. S. I. Shevchenko, Charged vortices in superfluid systems with pairing of spatially separated carriers, Phys. Rev. B 67 (2003), 214515. https://doi.org/10.1103/PhysRevB.67.214515
  59. M. Shifman and A. Yung, Supersymmetric solitons, Rev. Modern Phys. 79 (2007), no. 4, 1139-1196. https://doi.org/10.1103/RevModPhys.79.1139
  60. M. Shifman and A. Yung, Supersymmetric Solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2009. https://doi.org/10.1017/CBO9780511575693
  61. J. B. Sokoloff, Charged vortex excitations in quantum Hall systems, Phys. Rev. B 31 (1985), 1924-1928. https://doi.org/10.1103/PhysRevB.31.1924
  62. J. Spruck and Y. S. Yang, Topological solutions in the self-dual Chern-Simons theory: existence and approximation, Ann. Inst. H. Poincare Anal. Non Lineaire 12 (1995), no. 1, 75-97. https://doi.org/10.1016/S0294-1449(16)30168-8
  63. J. Spruck and Y. S. Yang, The existence of nontopological solitons in the self-dual Chern-Simons theory, Comm. Math. Phys. 149 (1992), no. 2, 361-376. http://projecteuclid.org/euclid.cmp/1104251227 https://doi.org/10.1007/BF02097630
  64. G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996), no. 8, 3769-3796. https://doi.org/10.1063/1.531601
  65. G. Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological-type, Calc. Var. Partial Differential Equations 29 (2007), no. 2, 191-217. https://doi.org/10.1007/s00526-006-0062-9
  66. G. Tarantello, Selfdual gauge field vortices, Progress in Nonlinear Differential Equations and their Applications, 72, Birkhauser Boston, Inc., Boston, MA, 2008. https://doi.org/10.1007/978-0-8176-4608-0
  67. G. Tarantello, Analytical issues in the construction of self-dual Chern-Simons vortices, Milan J. Math. 84 (2016), no. 2, 269-298. https://doi.org/10.1007/s00032-016-0259-0
  68. G. 't Hooft, A property of electric and magnetic flux in non-Abelian gauge theories, Nuclear Phys. B 153 (1979), no. 1-2, 141-160. https://doi.org/10.1016/0550-3213(79)90465-6
  69. R. Wang, The existence of Chern-Simons vortices, Comm. Math. Phys. 137 (1991), no. 3, 587-597. http://projecteuclid.org/euclid.cmp/1104202742 https://doi.org/10.1007/BF02100279
  70. Y. Yang, The relativistic non-abelian Chern-Simons equations, Comm. Math. Phys. 186 (1997), no. 1, 199-218. https://doi.org/10.1007/BF02885678
  71. Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-6548-9