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SPECTRAL PROPERTIES OF k-QUASI-2-ISOMETRIC
OPERATORS

JUNLI SHEN 2 AND FEI ZUuo P *

ABSTRACT. Let T be a bounded linear operator on a complex Hilbert space H. For
a positive integer k, an operator T is said to be a k-quasi-2-isometric operator if
T*F(T*2T? — 2T*T + I)T* = 0, which is a generalization of 2-isometric operator.
In this paper, we consider basic structural properties of k-quasi-2-isometric opera-
tors. Moreover, we give some examples of k-quasi-2-isometric operators. Finally, we
prove that generalized Weyl’s theorem holds for polynomially k-quasi-2-isometric
operators.

1. INTRODUCTION

Let H be an infinite dimensional separable Hilbert space. We denote by B(H)
the algebra of all bounded linear operators on H, write N(T') and R(T') for the
null space and range space of T, and also, write o(T"), 0,(T) and isoo(T") for the
spectrum, the approximate point spectrum and the isolated point spectrum of T,
respectively.

An operator T is called Fredholm if R(T) is closed, a(T) = dim N(T) < oo
and B(T) = dimH/R(T) < oo. Moreover if i(T) = a(T) — B(T) = 0, then
T is called Weyl. The Weyl spectrum w(7T') of T is defined by w(T) := {\ €
C : T — X is not Weyl}. Following [12], we say that Weyl’s theorem holds for 7' if
o(T)\w(T) = moo(T"), where mpo(T") := {\ € isoc(T) : 0 < dimN (T — \) < oo}.

More generally, Berkani investigated B-Fredholm theory (see [4, 5, 6]). An op-
erator T is called B-Fredholm if there exists n € N such that R(T") is closed
and the induced operator Tj, : R(I") > * — Tx € R(T") is Fredholm, i..,
R(Ty,)) = R(T"*) is closed, a(T},) < oo and 3(T},)) = dim R(T™)/R(T},) < .
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Similarly, a B-Fredholm operator T is called B-Weyl if z(T[n}) = 0. The B-Weyl
spectrum opw (7)) is defined by opw (T) = {A € C: T — X is not B-Weyl}. We
say that generalized Weyl’s theorem holds for T if o(T) \ opw (T) = E(T), where
E(T) denotes the set of all isolated points of the spectrum which are eigenvalues
(no restriction on multiplicity). Note that, if generalized Weyl’s theorem holds for
T, then so does Weyl’s theorem [5].

In [1] Agler obtained certain disconjugacy and Sturm-Lioville results for a subclass
of the Toeplitz operators. These results were suggested by the study of operators T’

which satisfies the equation,
T*T? —2T*T + 1 = 0.

Such T" are natural generalizations of isometric operators (17*71" = I) and are called
2-isometric operators. It is known that an isometric operator is a 2-isometric opera-
tor. 2-isometric operators have been studied by many authors and they have many
interesting properties (see [2, 3, 7, 8, 9, 14]).

In order to extend 2-isometric operators we introduce k-quasi-2-isometric opera-

tors defined as follows:

Definition 1.1. For a positive integer k, an operator T is said to be a k-quasi-2-

isometric operator if

TH(T**T? - 21*T + 1) T* = 0.

It is clear that each 2-isometric operator is a k-quasi-2-isometric operator and
each k-quasi-2-isometric operator is a (k + 1)-quasi-2-isometric operator.

In this paper we give a necessary and sufficient condition for T" to be a k-quasi-2-
isometric operator. Moreover, we study characterizations of weighted shift operators
which are k-quasi-2-isometric operators. Finally, we prove polynomially k-quasi-2-

isometric operators satisfy generalized Weyl’s theorem.

2. MAIN RESULTS

We begin with the following theorem which is the essence of this paper; it is a

structure theorem for k-quasi-2-isometric operators.

Theorem 2.1. If T* does not have a dense range, then the following statements
are equivalent:

(1) T is a k-quasi-2-isometric operator;
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(2) T = ( (7;1 ;2 > on H = R(T*)@® N(T**), where T} is a 2-isometric operator
3

and T¥ = 0. Furthermore, o(T) = o(T1) U {0}.

Proof. (1) = (2) Consider the matrix representation of 7" with respect to the de-
composition H = R(T*) @& N(T**) :

_(Th Ty
EE)

Let P be the projection onto R(T*). Since T is a k-quasi-2-isometric operator, we

have
P(T**T? — 2T*T + I)P = 0.
Therefore
T2TE - 2T7T + 1 = 0.
On the other hand, for any x = (z1,22) € H, we have

(T¥xy,29) = (TF(I — P)z, (I — P)z) = (I — P)z, T**(I — P)x) =0,

which implies T = 0.

Since o(T)UM = o(T1)Uo(T3), where M is the union of the holes in o(7") which
happen to be subset of o(71) N o(T3) by Corollary 7 of [11], and o(T1) N o(T3) has
no interior point and 73 is nilpotent, we have o(T) = o(71) U {0}.

(2) = (1) Suppose that T = < OTl % ) on H = R(TF) @ N(T**), where T;2T? —

2771y + I =0 and T¥ = 0. Since
k=1 . .
TF S Ty

k _
T - j:O 9

0 0

we have

(17212 — 2T*T + I)T*

B T1 TQ *k
“\lo n
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(TN (TR (T (TR
0 T3 0 T3 0 T3 0 T3

XTlTQ’“
0 T

k-1 . .
Tk DTE kD ) Ty
— J=
- k=l o N k=1l o k=l
(X T{TRT5 )" DTy (X [Ty /) D Y Ty
j=0 j=0 j=0
where D = T72T2 — 2T¢Ty + 1. Tt follows that T*¥(T*2T2% — 27*T + I)T* = 0 on
H = R(T**) @ N(T*). Thus T is a k-quasi-2-isometric operator. O
T T3

Corollary 2.2. If T = 1s a k-quasi-2-isometric operator and 17 is

0 13
invertible, then T is similar to a direct sum of a 2-isometric operator and a nilpotent

operator.

Proof. Since Ty is invertible, we have o(11) N o(T3) = ¢. Then there exists an

-1
operator S such that 775 — ST3 = T» [15]. Since ( é f > = < é —S} ) , it

(FR)-(05) ()0

Corollary 2.3. If T is a k-quasi-2-isometric operator and R(T*) is dense, then T

follows that

0

18 a 2-1someltric operator.
Proof. This is a result of Theorem 2.1. O

Corollary 2.4. If T is a k-quasi-2-isometric operator, then so is T™ for every

natural number n.
Proof. We decompose T' as

AT Hiyrerny «k
T—<0 T3> on H = R(T*) & N(T*).

Then by Theorem 2.1, Ty2T? — 27711 + I = 0. Hence T} is a 2-isometric operator,

by [14, Theorem 2.1], T7* is a 2-isometric operator. Since
P
T Ty TT;
T = ! EO 1273 on H = R(TF) & N(T*%),
0 T
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T™ is a k-quasi-2-isometric operator for every natural number n by Theorem 2.1. [

Lemma 2.5. T is a k-quasi-2-isometric operator if and only if
17522 |? + || TF|[* = 2| T ||
for every x € H.
Theorem 2.6. Let T be a k-quasi-2-isometric operator and M be an invariant
subspace for T'. Then the restriction T'|ps is also a k-quasi-2-isometric operator.
Proof. For x € M, we have
E+1,_,(12 k+1,,(12
2/[(T|ae)™ ]| =2|| T |
=175 2] | + || T2 = [|(Tar) 2] + | (T ar) ]

Thus T'|as is a k-quasi-2-isometric operator. ]
Example 2.7. Given a bounded sequence « : ap,aq, s, ... (called weights), the
unilateral weighted shift W, associated with « is the operator on lo defined by
Waen = apensq for all n > 0, where {e,}2%, is the canonical orthogonal basis

for Iy and |ay,| # 0 for each n > 0. Then the following statement holds: W, is a

k-quasi-2-isometric operator if and only if

0 0 0 0 0
ap 0 0 0 0
10 a0 0 0
Wa 0 0 ay 0 0 ’
0 0

where
o loms1]? = 2an? +1=0 (n =k, k+1,k+2,---).

Proof. By calculation, WiW,, = |ag|?®|a1|?®|as]?®- -+ and W22W2 = |ag|*|aq |*®
|1 |?|az|? @ |az|?las|? @ - - -, by definition, W, is a k-quasi-2-isometric operator if
and only if |an[?|ani1]? = 20an? +1=0 (n =k, k+1,k+2,---). O

Remark 2.8. Let W, be the unilateral weighted shift with weight sequence (o, )n>0
and |ay,| # 0 for each n > 0. From Example 2.7 we obtain the following characteri-
zations:

1. W, is a k-quasi-2-isometric operator if and only if
(n—k+1)|ag|* — (n—k)
(n—k)lag? = (n—k—1)

’an|2 =
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for n > k.
2. {|an|} is a decreasing sequence of real numbers converging to 1 for n > k.
3. V2> |ay| >1forn >k +1.
4. Let 2 = |ag|, 1 = |ags1| = |ags2| = |agkys] = ---. Then W, is a (k + 1)-quasi-

2-isometric operator but not a k-quasi-2-isometric operator.

In the sequel, we focus on polynomially k-quasi-2-isometric operators.

We say that T is a polynomially k-quasi-2-isometric operator if there exists a
nonconstant complex polynomial p such that p(7T) is a k-quasi-2-isometric operator.
It is clear that a k-quasi-2-isometric operator is a polynomially k-quasi-2-isometric
operator. The following example provides an operator which is a polynomially k-

quasi-2-isometric operator but not a k-quasi-2-isometric operator.

I 0
I 1

2-isometric operator but not a k-quasi-2-isometric operator.

L (1T
T‘(oz’

Example 2.9. Let T = € B(la ®l3). Then T is a polynomially k-quasi-

Proof. Since

we have
¥22 ok (2 O
T*°T 2TT—|—I—<O 0 )
Then
T*k(T*2T2—2T*T+1)Tk:<(2)I 8);&0.

Therefore T is not a k-quasi-2-isometric operator.
On the other hand, consider the complex polynomial h(z) = (z —1)? + 1. Then

h(T) = I, and hence T is a polynomially k-quasi-2-isometric operator. ]

Recall that an operator T is said to be isoloid if every isolated point of o(T') is an
eigenvalue of T and polaroid if every isolated point of o(T') is a pole of the resolvent
of T. In general, if T" is polaroid, then it is isoloid. However, the converse is not

true.

Theorem 2.10. Let T be a polynomially k-quasi-2-isometric operator. Then T is

polaroid.

Proof. We first show that a k-quasi-2-isometric operator is polaroid. We consider
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the following two cases: Case I: If the range of T* is dense, then T is a 2-isometric
operator, T is polaroid. Since an invertible 2-isometric operator is a unitary operator
by [2, Proposition 1.23], and if T is a non-invertible 2-isometric operator, then
isoo (T) is empty.
Case II: If the range of T* is not dense, by Theorem 2.1, we have

(T Ty _ i wk
T_<O Tg)onH—R(T)EBN(T ).

Let A € isoo(T). Suppose that T; is a non-invertible 2-isometric operator. Then
o(T) = D, where D is the closed unit disk. Since o(7") = o(71) U {0}, we have
isoo (1) is empty; thus T} is a invertible 2-isometric operator and A € isoo(T}) or
A = 0, T is a unitary operator, T3 is nilpotent. It is easy to prove that T — A
has finite ascent and descent, i.e., A is a pole of the resolvent of T, therefore T is
polaroid.

Next we show that a polynomially k-quasi-2-isometric operator is polaroid. If
T is a polynomially k-quasi-2-isometric operator, then p(T') is a k-quasi-2-isometric
operator for some nonconstant polynomial p. Hence it follows from the first part of
the proof that p(T") is polaroid. Now apply [10, Lemma 3.3] to conclude that p(T")
polaroid implies T' polaroid. [l

Corollary 2.11. Let T be a polynomially k-quasi-2-isometric operator. Then T is

1soloid.

An operator T is said to has the single valued extension property (abbreviated
SVEP) if, for every open subset G of C, any analytic function f : G — H such that
(T'—z)f(2) =0 on G, we have f(z) =0 on G.

Theorem 2.12. Let T be a polynomially k-quasi-2-isometric operator. Then T has
SVEP.

Proof. We first suppose that T is a k-quasi-2-isometric operator. We consider the
following two cases:

Case I: If the range of T% is dense, then T is a 2-isometric operator, 7" has SVEP
by [8, Theorem 2].

Case II: If the range of T* is not dense, by Theorem 2.1, we have

(T Ty _ i wk
T(O TS)OHHR(T)EBN(T ).

Suppose (T — 2)f(z) = 0, f(2) = f1(2) @ fa(z) on H = R(T*) @ N(T**). Then we
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can write
( Th—z Ty > < f1(2) ) _ ( (T — 2) f1(2) + Ta fa(2) > —0
0 T3-z2 fa(z) (T — 2) f2(2) '
And T3 is nilpotent, T3 has SVEP, hence fa(z) =0, (11 — 2) fi(z) = 0. Since T3 is a
2-isometric operator, 71 has SVEP by [8, Theorem 2], then f;(z) = 0. Consequently,
T has SVEP.
Now suppose that 7" is a polynomially k-quasi-2-isometric operator. Then p(T)
is a k-quasi-2-isometric operator for some nonconstant complex polynomial p, and
hence p(T') has SVEP. Therefore, T has SVEP by [13, Theorem 3.3.9]. O

Since the SVEP for T entails that generalized Browder’s theorem holds for 7', i.e.
opw(T) = op(T), where op(T) denotes the Drazin spectrum, a sufficient condition
for an operator T satisfying generalized Browder’s theorem to satisfy generalized
Weyl’s theorem is that T is polaroid. In [14], Patel showed that Weyl’s theorem

holds for 2-isometric operator. Then we have the following result:

Theorem 2.13. If T is a polynomially k-quasi-2-isometric operator, then general-

ized Weyl’s theorem holds for T, so does Weyl’s theorem.

Proof. Tt is obvious from Theorem 2.10, Theorem 2.12 and the statements of the

above. O
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