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SPECTRAL PROPERTIES OF k-QUASI-2-ISOMETRIC
OPERATORS

Junli Shen a and Fei Zuo b, ∗

Abstract. Let T be a bounded linear operator on a complex Hilbert space H. For
a positive integer k, an operator T is said to be a k-quasi-2-isometric operator if
T ∗k(T ∗2T 2 − 2T ∗T + I)T k = 0, which is a generalization of 2-isometric operator.
In this paper, we consider basic structural properties of k-quasi-2-isometric opera-
tors. Moreover, we give some examples of k-quasi-2-isometric operators. Finally, we
prove that generalized Weyl’s theorem holds for polynomially k-quasi-2-isometric
operators.

1. Introduction

Let H be an infinite dimensional separable Hilbert space. We denote by B(H)
the algebra of all bounded linear operators on H, write N(T ) and R(T ) for the
null space and range space of T , and also, write σ(T ), σa(T ) and isoσ(T ) for the
spectrum, the approximate point spectrum and the isolated point spectrum of T ,
respectively.

An operator T is called Fredholm if R(T ) is closed, α(T ) = dimN(T ) < ∞
and β(T ) = dimH/R(T ) < ∞. Moreover if i(T ) = α(T ) − β(T ) = 0, then
T is called Weyl. The Weyl spectrum w(T ) of T is defined by w(T ) := {λ ∈
C : T − λ is not Weyl}. Following [12], we say that Weyl’s theorem holds for T if
σ(T )\w(T ) = π00(T ), where π00(T ) := {λ ∈ isoσ(T ) : 0 < dimN(T − λ) < ∞}.

More generally, Berkani investigated B-Fredholm theory (see [4, 5, 6]). An op-
erator T is called B-Fredholm if there exists n ∈ N such that R(Tn) is closed
and the induced operator T[n] : R(Tn) 3 x → Tx ∈ R(Tn) is Fredholm, i.e.,
R(T[n]) = R(Tn+1) is closed, α(T[n]) < ∞ and β(T[n]) = dimR(Tn)/R(T[n]) < ∞.

Received by the editors July 04, 2015. Accepted July 14, 2015.
2010 Mathematics Subject Classification. 47A10, 47B20.
Key words and phrases. k-quasi-2-isometric operator, polaroid, generalized Weyl’s theorem.
∗Corresponding author.

c© 2015 Korean Soc. Math. Educ.

275



276 Junli Shen & Fei Zuo

Similarly, a B-Fredholm operator T is called B-Weyl if i(T[n]) = 0. The B-Weyl
spectrum σBW (T ) is defined by σBW (T ) = {λ ∈ C : T − λ is not B-Weyl}. We
say that generalized Weyl’s theorem holds for T if σ(T ) \ σBW (T ) = E(T ), where
E(T ) denotes the set of all isolated points of the spectrum which are eigenvalues
(no restriction on multiplicity). Note that, if generalized Weyl’s theorem holds for
T , then so does Weyl’s theorem [5].

In [1] Agler obtained certain disconjugacy and Sturm-Lioville results for a subclass
of the Toeplitz operators. These results were suggested by the study of operators T

which satisfies the equation,

T ∗2T 2 − 2T ∗T + I = 0.

Such T are natural generalizations of isometric operators (T ∗T = I) and are called
2-isometric operators. It is known that an isometric operator is a 2-isometric opera-
tor. 2-isometric operators have been studied by many authors and they have many
interesting properties (see [2, 3, 7, 8, 9, 14]).

In order to extend 2-isometric operators we introduce k-quasi-2-isometric opera-
tors defined as follows:

Definition 1.1. For a positive integer k, an operator T is said to be a k-quasi-2-
isometric operator if

T ∗k(T ∗2T 2 − 2T ∗T + I)T k = 0.

It is clear that each 2-isometric operator is a k-quasi-2-isometric operator and
each k-quasi-2-isometric operator is a (k + 1)-quasi-2-isometric operator.

In this paper we give a necessary and sufficient condition for T to be a k-quasi-2-
isometric operator. Moreover, we study characterizations of weighted shift operators
which are k-quasi-2-isometric operators. Finally, we prove polynomially k-quasi-2-
isometric operators satisfy generalized Weyl’s theorem.

2. Main Results

We begin with the following theorem which is the essence of this paper; it is a
structure theorem for k-quasi-2-isometric operators.

Theorem 2.1. If T k does not have a dense range, then the following statements
are equivalent:

(1) T is a k-quasi-2-isometric operator;



SPECTRAL PROPERTIES OF k-QUASI-2-ISOMETRIC OPERATORS 277

(2) T =
(

T1 T2

0 T3

)
on H = R(T k)⊕N(T ∗k), where T1 is a 2-isometric operator

and T k
3 = 0. Furthermore, σ(T ) = σ(T1) ∪ {0}.

Proof. (1) ⇒ (2) Consider the matrix representation of T with respect to the de-
composition H = R(T k)⊕N(T ∗k) :

T =
(

T1 T2

0 T3

)
.

Let P be the projection onto R(T k). Since T is a k-quasi-2-isometric operator, we
have

P (T ∗2T 2 − 2T ∗T + I)P = 0.

Therefore

T ∗21 T 2
1 − 2T ∗1 T1 + I = 0.

On the other hand, for any x = (x1, x2) ∈ H, we have

(T k
3 x2, x2) = (T k(I − P )x, (I − P )x) = ((I − P )x, T ∗k(I − P )x) = 0,

which implies T k
3 = 0.

Since σ(T )∪M = σ(T1)∪σ(T3), where M is the union of the holes in σ(T ) which
happen to be subset of σ(T1) ∩ σ(T3) by Corollary 7 of [11], and σ(T1) ∩ σ(T3) has
no interior point and T3 is nilpotent, we have σ(T ) = σ(T1) ∪ {0}.
(2) ⇒ (1) Suppose that T =

(
T1 T2

0 T3

)
on H = R(T k)⊕N(T ∗k), where T ∗21 T 2

1 −
2T ∗1 T1 + I = 0 and T k

3 = 0. Since

T k =


 T k

1

k−1∑
j=0

T j
1 T2T

k−1−j
3

0 0


 ,

we have

T ∗k(T ∗2T 2 − 2T ∗T + I)T k

=
(

T1 T2

0 T3

)∗k
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×
((

T1 T2

0 T3

)∗2 (
T1 T2

0 T3

)2

− 2
(

T1 T2

0 T3

)∗(
T1 T2

0 T3

)
+ I

)

×
(

T1 T2

0 T3

)k

=




T ∗k1 DT k
1 T ∗k1 D

k−1∑
j=0

T j
1 T2T

k−1−j
3

(
k−1∑
j=0

T j
1 T2T

k−1−j
3 )∗DT k

1 (
k−1∑
j=0

T j
1 T2T

k−1−j
3 )∗D

k−1∑
j=0

T j
1 T2T

k−1−j
3




where D = T ∗21 T 2
1 − 2T ∗1 T1 + I. It follows that T ∗k(T ∗2T 2 − 2T ∗T + I)T k = 0 on

H = R(T ∗k)⊕N(T k). Thus T is a k-quasi-2-isometric operator. ¤

Corollary 2.2. If T =
(

T1 T2

0 T3

)
is a k-quasi-2-isometric operator and T1 is

invertible, then T is similar to a direct sum of a 2-isometric operator and a nilpotent
operator.

Proof. Since T1 is invertible, we have σ(T1) ∩ σ(T3) = φ. Then there exists an

operator S such that T1S − ST3 = T2 [15]. Since
(

I S
0 I

)−1

=
(

I −S
0 I

)
, it

follows that

T =
(

T1 T2

0 T3

)
=

(
I S
0 I

)−1 (
T1 0
0 T3

)(
I S
0 I

)
.

¤

Corollary 2.3. If T is a k-quasi-2-isometric operator and R(T k) is dense, then T

is a 2-isometric operator.

Proof. This is a result of Theorem 2.1. ¤

Corollary 2.4. If T is a k-quasi-2-isometric operator, then so is Tn for every
natural number n.

Proof. We decompose T as

T =
(

T1 T2

0 T3

)
on H = R(T k)⊕N(T ∗k).

Then by Theorem 2.1, T ∗21 T 2
1 − 2T ∗1 T1 + I = 0. Hence T1 is a 2-isometric operator,

by [14, Theorem 2.1], Tn
1 is a 2-isometric operator. Since

Tn =


 Tn

1

n−1∑
j=0

T j
1 T2T

n−1−j
3

0 Tn
3


 on H = R(T k)⊕N(T ∗k),
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Tn is a k-quasi-2-isometric operator for every natural number n by Theorem 2.1. ¤

Lemma 2.5. T is a k-quasi-2-isometric operator if and only if

||T k+2x||2 + ||T kx||2 = 2||T k+1x||2

for every x ∈ H.

Theorem 2.6. Let T be a k-quasi-2-isometric operator and M be an invariant
subspace for T . Then the restriction T |M is also a k-quasi-2-isometric operator.

Proof. For x ∈ M , we have

2||(T |M )k+1x||2 =2||T k+1x||2

=||T k+2x||2 + ||T kx||2 = ||(T |M )k+2x||2 + ||(T |M )kx||2.
Thus T |M is a k-quasi-2-isometric operator. ¤

Example 2.7. Given a bounded sequence α : α0, α1, α2, . . . (called weights), the
unilateral weighted shift Wα associated with α is the operator on l2 defined by
Wαen = αnen+1 for all n ≥ 0, where {en}∞n=0 is the canonical orthogonal basis
for l2 and |αn| 6= 0 for each n ≥ 0. Then the following statement holds: Wα is a
k-quasi-2-isometric operator if and only if

Wα =




0 0 0 0 0 · · ·
α0 0 0 0 0 · · ·
0 α1 0 0 0 · · ·
0 0 α2 0 0 · · ·
0 0 0 α3 0 · · ·
· · · · · · · · · · · · · · · · · ·




,

where
|αn|2|αn+1|2 − 2|αn|2 + 1 = 0 (n = k, k + 1, k + 2, · · · ).

Proof. By calculation, W ∗
αWα = |α0|2⊕|α1|2⊕|α2|2⊕· · · and W ∗2

α W 2
α = |α0|2|α1|2⊕

|α1|2|α2|2 ⊕ |α2|2|α3|2 ⊕ · · · , by definition, Wα is a k-quasi-2-isometric operator if
and only if |αn|2|αn+1|2 − 2|αn|2 + 1 = 0 (n = k, k + 1, k + 2, · · · ). ¤

Remark 2.8. Let Wα be the unilateral weighted shift with weight sequence (αn)n≥0

and |αn| 6= 0 for each n ≥ 0. From Example 2.7 we obtain the following characteri-
zations:

1. Wα is a k-quasi-2-isometric operator if and only if

|αn|2 =
(n− k + 1)|αk|2 − (n− k)
(n− k)|αk|2 − (n− k − 1)
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for n ≥ k.
2. {|αn|} is a decreasing sequence of real numbers converging to 1 for n ≥ k.
3.
√

2 ≥ |αn| ≥ 1 for n ≥ k + 1.
4. Let 2 = |αk|, 1 = |αk+1| = |αk+2| = |αk+3| = · · · . Then Wα is a (k + 1)-quasi-

2-isometric operator but not a k-quasi-2-isometric operator.

In the sequel, we focus on polynomially k-quasi-2-isometric operators.
We say that T is a polynomially k-quasi-2-isometric operator if there exists a

nonconstant complex polynomial p such that p(T ) is a k-quasi-2-isometric operator.
It is clear that a k-quasi-2-isometric operator is a polynomially k-quasi-2-isometric
operator. The following example provides an operator which is a polynomially k-
quasi-2-isometric operator but not a k-quasi-2-isometric operator.

Example 2.9. Let T =
(

I 0
I I

)
∈ B(l2 ⊕ l2). Then T is a polynomially k-quasi-

2-isometric operator but not a k-quasi-2-isometric operator.

Proof. Since

T ∗ =
(

I I
0 I

)
,

we have

T ∗2T 2 − 2T ∗T + I =
(

2I 0
0 0

)
.

Then

T ∗k(T ∗2T 2 − 2T ∗T + I)T k =
(

2I 0
0 0

)
6= 0.

Therefore T is not a k-quasi-2-isometric operator.
On the other hand, consider the complex polynomial h(z) = (z − 1)2 + 1. Then

h(T ) = I, and hence T is a polynomially k-quasi-2-isometric operator. ¤

Recall that an operator T is said to be isoloid if every isolated point of σ(T ) is an
eigenvalue of T and polaroid if every isolated point of σ(T ) is a pole of the resolvent
of T . In general, if T is polaroid, then it is isoloid. However, the converse is not
true.

Theorem 2.10. Let T be a polynomially k-quasi-2-isometric operator. Then T is
polaroid.

Proof. We first show that a k-quasi-2-isometric operator is polaroid. We consider
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the following two cases: Case I: If the range of T k is dense, then T is a 2-isometric
operator, T is polaroid. Since an invertible 2-isometric operator is a unitary operator
by [2, Proposition 1.23], and if T is a non-invertible 2-isometric operator, then
isoσ(T ) is empty.
Case Π: If the range of T k is not dense, by Theorem 2.1, we have

T =
(

T1 T2

0 T3

)
on H = R(T k)⊕N(T ∗k).

Let λ ∈ isoσ(T ). Suppose that T1 is a non-invertible 2-isometric operator. Then
σ(T ) = D, where D is the closed unit disk. Since σ(T ) = σ(T1) ∪ {0}, we have
isoσ(T ) is empty; thus T1 is a invertible 2-isometric operator and λ ∈ isoσ(T1) or
λ = 0, T1 is a unitary operator, T3 is nilpotent. It is easy to prove that T − λ

has finite ascent and descent, i.e., λ is a pole of the resolvent of T , therefore T is
polaroid.

Next we show that a polynomially k-quasi-2-isometric operator is polaroid. If
T is a polynomially k-quasi-2-isometric operator, then p(T ) is a k-quasi-2-isometric
operator for some nonconstant polynomial p. Hence it follows from the first part of
the proof that p(T ) is polaroid. Now apply [10, Lemma 3.3] to conclude that p(T )
polaroid implies T polaroid. ¤

Corollary 2.11. Let T be a polynomially k-quasi-2-isometric operator. Then T is
isoloid.

An operator T is said to has the single valued extension property (abbreviated
SVEP) if, for every open subset G of C, any analytic function f : G → H such that
(T − z)f(z) ≡ 0 on G, we have f(z) ≡ 0 on G.

Theorem 2.12. Let T be a polynomially k-quasi-2-isometric operator. Then T has
SVEP.

Proof. We first suppose that T is a k-quasi-2-isometric operator. We consider the
following two cases:
Case I: If the range of T k is dense, then T is a 2-isometric operator, T has SVEP
by [8, Theorem 2].
Case Π: If the range of T k is not dense, by Theorem 2.1, we have

T =
(

T1 T2

0 T3

)
on H = R(T k)⊕N(T ∗k).

Suppose (T − z)f(z) = 0, f(z) = f1(z)⊕ f2(z) on H = R(T k) ⊕N(T ∗k). Then we
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can write(
T1 − z T2

0 T3 − z

)(
f1(z)
f2(z)

)
=

(
(T1 − z)f1(z) + T2f2(z)

(T3 − z)f2(z)

)
= 0.

And T3 is nilpotent, T3 has SVEP, hence f2(z) = 0, (T1 − z)f1(z) = 0. Since T1 is a
2-isometric operator, T1 has SVEP by [8, Theorem 2], then f1(z) = 0. Consequently,
T has SVEP.

Now suppose that T is a polynomially k-quasi-2-isometric operator. Then p(T )
is a k-quasi-2-isometric operator for some nonconstant complex polynomial p, and
hence p(T ) has SVEP. Therefore, T has SVEP by [13, Theorem 3.3.9]. ¤

Since the SVEP for T entails that generalized Browder’s theorem holds for T , i.e.
σBW (T ) = σD(T ), where σD(T ) denotes the Drazin spectrum, a sufficient condition
for an operator T satisfying generalized Browder’s theorem to satisfy generalized
Weyl’s theorem is that T is polaroid. In [14], Patel showed that Weyl’s theorem
holds for 2-isometric operator. Then we have the following result:

Theorem 2.13. If T is a polynomially k-quasi-2-isometric operator, then general-
ized Weyl’s theorem holds for T , so does Weyl’s theorem.

Proof. It is obvious from Theorem 2.10, Theorem 2.12 and the statements of the
above. ¤

References

1. J. Agler: A disconjugacy theorem for Toeplitz operators. Amer. J. Math. 112 (1990),
no. 1, 1-14.

2. J. Agler & M. Stankus: m-isometric transformations of Hilbert space. I. Integral Equ.
Oper. Theory 21 (1995), no. 4, 383-429.

3. T. Bermudez, A. Martinon & E. Negrin: Weighted shift operators which are m-
isometry. Integral Equ. Oper. Theory 68 (2010), 301-312.

4. M. Berkani & A. Arroud: Generalized Weyl’s theorem and hyponormal operators. J.
Austra. Math. Soc. 76 (2004), no. 2, 291-302.

5. M. Berkani & J.J. Koliha: Weyl type theorems for bounded linear operators. Acta Sci.
Math.(Szeged) 69 (2003), no. 1-2, 359-376.

6. M. Berkani & M. Sarih: On semi B-Fredholm operators. Glasgow Math. J. 43 (2001),
no. 3, 457-465.
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