Browse > Article
http://dx.doi.org/10.4134/JKMS.j200294

UNIQUENESS OF TOPOLOGICAL SOLUTIONS FOR THE GUDNASON MODEL  

Kim, Soojung (Department of Mathematics Soongsil University)
Lee, Youngae (Department of Mathematics Education Teachers College Kyungpook National University)
Publication Information
Journal of the Korean Mathematical Society / v.58, no.4, 2021 , pp. 873-894 More about this Journal
Abstract
In this paper, we consider the Gudnason model of 𝒩 = 2 supersymmetric field theory, where the gauge field dynamics is governed by two Chern-Simons terms. Recently, it was shown by Han et al. that for a prescribed configuration of vortex points, there exist at least two distinct solutions for the Gudnason model in a flat two-torus, where a sufficient condition was obtained for the existence. Furthermore, one of these solutions has the asymptotic behavior of topological type. In this paper, we prove that such doubly periodic topological solutions are uniquely determined by the location of their vortex points in a weak-coupling regime.
Keywords
Uniqueness; topological solution; Green representation formula; perturbation; doubly periodic solution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. 't Hooft, A property of electric and magnetic flux in non-Abelian gauge theories, Nuclear Phys. B 153 (1979), no. 1-2, 141-160. https://doi.org/10.1016/0550-3213(79)90465-6   DOI
2 R. Wang, The existence of Chern-Simons vortices, Comm. Math. Phys. 137 (1991), no. 3, 587-597. http://projecteuclid.org/euclid.cmp/1104202742   DOI
3 L. A. Caffarelli and Y. S. Yang, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Comm. Math. Phys. 168 (1995), no. 2, 321-336. http://projecteuclid.org/euclid.cmp/1104272361   DOI
4 A. Marshakov and A. Yung, Non-abelian confinement via abelian flux tubes in softly broken N = 2 SUSY QCD, Nuclear Phys. B 647 (2002), no. 1-2, 3-48. https://doi.org/10.1016/S0550-3213(02)00893-3   DOI
5 C.-S. Lin and S. Yan, Bubbling solutions for relativistic abelian Chern-Simons model on a torus, Comm. Math. Phys. 297 (2010), no. 3, 733-758. https://doi.org/10.1007/s00220-010-1056-1   DOI
6 C.-S. Lin and S. Yan, Bubbling solutions for the SU(3) Chern-Simons model on a torus, Comm. Pure Appl. Math. 66 (2013), no. 7, 991-1027. https://doi.org/10.1002/cpa.21454   DOI
7 Y. Matsuda, K. Nozakib, and K. Kumagaib, Charged vortices in high temperature superconductors probed by nuclear magnetic resonance, J. Phys. Chem. Solids 63 (2002), 1061-1063.   DOI
8 M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differential Equations 9 (1999), no. 1, 31-94. https://doi.org/10.1007/s005260050132   DOI
9 M. K. Prasad and C. M. Sommerfield, Exact classical solutions for the 't Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975), 760-762.   DOI
10 Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-6548-9
11 D. Bartolucci, C. Chen, C. Lin, and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations 29 (2004), no. 7-8, 1241-1265. https://doi.org/10.1081/PDE-200033739   DOI
12 Y. Yang, The relativistic non-abelian Chern-Simons equations, Comm. Math. Phys. 186 (1997), no. 1, 199-218. https://doi.org/10.1007/BF02885678   DOI
13 D. Bartolucci and G. Tarantello, Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Comm. Math. Phys. 229 (2002), no. 1, 3-47. https://doi.org/10.1007/s002200200664   DOI
14 M. Nolasco and G. Tarantello, Vortex condensates for the SU(3) Chern-Simons theory, Comm. Math. Phys. 213 (2000), no. 3, 599-639. https://doi.org/10.1007/s002200000252   DOI
15 D. I. Khomskii and A. Freimuth, Charged vortices in high temperature superconductors, Phys. Rev. Lett. 75 (1995), 1384-1386.   DOI
16 K. Choe, N. Kim, and C.-S. Lin, Existence of mixed type solutions in the SU(3) Chern-Simons theory in ℝ2, Calc. Var. Partial Differential Equations 56 (2017), no. 2, Paper No. 17, 30 pp. https://doi.org/10.1007/s00526-017-1119-7   DOI
17 Y. Kawaguchi and T. Ohmi, Splitting instability of a multiply charged vortex in a Bose-Einstein condensate, Phys. Rev. A 70 (2004), 043610.   DOI
18 A. Jaffe and C. Taubes, Vortices and Monopoles, Progress in Physics, 2, Birkhauser, Boston, MA, 1980.
19 T. Aubin, Nonlinear analysis on manifolds. Monge-Amp'ere equations, Grundlehren der Mathematischen Wissenschaften, 252, Springer-Verlag, New York, 1982. https://doi. org/10.1007/978-1-4612-5734-9
20 R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi, and A. Yung, Nonabelian superconductors: vortices and confinement in N = 2 SQCD, Nuclear Phys. B 673 (2003), no. 1-2, 187-216. https://doi.org/10.1016/j.nuclphysb.2003.09.029   DOI
21 H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of -∆u = V (x)eu in two dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1223-1253. https://doi.org/10.1080/03605309108820797   DOI
22 M. Chaichian and N. F. Nelipa, Introduction to Gauge Field Theories, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1984. https://doi.org/10.1007/978-3-642-82177-6
23 H. Chan, C.-C. Fu, and C.-S. Lin, Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Comm. Math. Phys. 231 (2002), no. 2, 189-221. https://doi.org/10.1007/s00220-002-0691-6   DOI
24 A. Bezryadina, E. Eugenieva, and Z. Chen, Self-trapping and flipping of double-charged vortices in optically induced photonic lattices, Optics Lett. 31 (2006), 2456-2458.   DOI
25 A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957), 1174-1182.
26 O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, J. High Energy Phys. 2008 (2008), no. 10, 091, 38 pp. https://doi.org/10.1088/1126-6708/2008/10/091   DOI
27 J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008), no. 6, 065008, 6 pp. https://doi.org/10.1103/PhysRevD.77.065008   DOI
28 D. Chae and O. Yu. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000), no. 1, 119-142. https://doi.org/10.1007/s002200000302   DOI
29 S. Chen, X. Han, G. Lozano, and F. A. Schaposnik, Existence theorems for non-Abelian Chern-Simons-Higgs vortices with flavor, J. Differential Equations 259 (2015), no. 6, 2458-2498. https://doi.org/10.1016/j.jde.2015.03.037   DOI
30 S. B. Gudnason, Fractional and semi-local non-Abelian Chern-Simons vortices, Nuclear Phys. B 840 (2010), no. 1-2, 160-185. https://doi.org/10.1016/j.nuclphysb.2010.07.004   DOI
31 J. Han, Asymptotic limit for condensate solutions in the abelian Chern-Simons Higgs model, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1839-1845. https://doi.org/10.1090/S0002-9939-02-06737-0   DOI
32 X. Han, G. Tarantello, Doubly periodic self-dual vortices in a relativistic non-Abelian Chern-Simons model, Calc. Var. and PDE. https://doi.org/10.1007/s00526-013-0615-7   DOI
33 K. Choe, Uniqueness of the topological multivortex solution in the self-dual Chern-Simons theory, J. Math. Phys. 46 (2005), no. 1, 012305, 22 pp. https://doi.org/10.1063/1.1834694   DOI
34 X. Chen, S. Hastings, J. B. McLeod, and Y. S. Yang, A nonlinear elliptic equation arising from gauge field theory and cosmology, Proc. Roy. Soc. London Ser. A 446 (1994), no. 1928, 453-478. https://doi.org/10.1098/rspa.1994.0115   DOI
35 W. X. Chen and C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in R2, Duke Math. J. 71 (1993), no. 2, 427-439. https://doi.org/10.1215/S0012-7094-93-07117-7   DOI
36 Z. Chen and C.-S. Lin, Self-dual radial non-topological solutions to a competitive Chern-Simons model, Adv. Math. 331 (2018), 484-541. https://doi.org/10.1016/j.aim.2018.04.018   DOI
37 Z. Chen and C.-S. Lin, A new type of non-topological bubbling solutions to a competitive Chern-Simons model, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), no. 1, 65-108.
38 S. Chern and J. Simons, Some cohomology classes in principal fiber bundles and their application to riemannian geometry, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 791-794. https://doi.org/10.1073/pnas.68.4.791   DOI
39 K. Choe and N. Kim, Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation, Ann. Inst. H. Poincare Anal. Non Lineaire 25 (2008), no. 2, 313-338. https://doi.org/10.1016/j.anihpc.2006.11.012   DOI
40 M. del Pino, P. Esposito, P. Figueroa, and M. Musso, Nontopological condensates for the self-dual Chern-Simons-Higgs model, Comm. Pure Appl. Math. 68 (2015), no. 7, 1191-1283. https://doi.org/10.1002/cpa.21548   DOI
41 Y.-W. Fan, Y. Lee, and C.-S. Lin, Mixed type solutions of the SU(3) models on a torus, Comm. Math. Phys. 343 (2016), no. 1, 233-271. https://doi.org/10.1007/s00220-015-2532-4   DOI
42 F. Gladiali, M. Grossi, and J. Wei, On a general SU(3) Toda system, Calc. Var. Partial Differential Equations 54 (2015), no. 4, 3353-3372. https://doi.org/10.1007/s00526-015-0906-2   DOI
43 K. Huang, Quarks, Leptons & Gauge Fields, World Scientific Publishing Co., Singapore, 1982.
44 S. B. Gudnason, Non-abelian Chern-Simons vortices with generic gauge groups, Nuclear Phys. B 821 (2009), no. 1-2, 151-169. https://doi.org/10.1016/j.nuclphysb.2009.06.014   DOI
45 A. Gustavsson, Algebraic structures on parallel M2 branes, Nuclear Phys. B 811 (2009), no. 1-2, 66-76. https://doi.org/10.1016/j.nuclphysb.2008.11.014   DOI
46 J. Han, Existence of topological multivortex solutions in the self-dual gauge theories, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 6, 1293-1309. https://doi.org/10.1017/S030821050000069X   DOI
47 A. Hanany, M. J. Strassler, and A. Zaffaroni, Confinement and strings in MQCD, Nuclear Phys. B 513 (1998), no. 1-2, 87-118. https://doi.org/10.1016/S0550-3213(97)00651-2   DOI
48 A. Hanany and D. Tong, Vortices, instantons and branes, J. High Energy Phys. 2003 (2003), no. 7, 037, 28 pp. https://doi.org/10.1088/1126-6708/2003/07/037   DOI
49 X. Han, C. Lin, G. Tarantello, and Y. Yang, Chern-Simons vortices in the Gudnason model, J. Funct. Anal. 267 (2014), no. 3, 678-726. https://doi.org/10.1016/j.jfa.2014.05.009   DOI
50 X. Han and G. Huang, Existence theorems for a general 2 × 2 non-Abelian Chern-Simons-Higgs system over a torus, J. Differential Equations 263 (2017), no. 2, 1522-1551. https://doi.org/10.1016/j.jde.2017.03.017   DOI
51 X. Han, G. Tarantello, Non-topological vortex configurations in the ABJM model, Comm. Math. Phys. 352 (2017), no. 1, 345-385. https://doi.org/10.1007/s00220-016-2817-2   DOI
52 C.-S. Lin and S. Yan, Existence of bubbling solutions for Chern-Simons model on a torus, Arch. Ration. Mech. Anal. 207 (2013), no. 2, 353-392. https://doi.org/10.1007/s00205-012-0575-7   DOI
53 H.-Y. Huang and C.-S. Lin, Classification of the entire radial self-dual solutions to non-Abelian Chern-Simons systems, J. Funct. Anal. 266 (2014), no. 12, 6796-6841. https://doi.org/10.1016/j.jfa.2014.03.007   DOI
54 R. Jackiw and E. J. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990), no. 19, 2234-2237. https://doi.org/10.1103/PhysRevLett.64.2234   DOI
55 J. Hong, Y. Kim, and P. Y. Pac, Multivortex solutions of the abelian Chern-Simons-Higgs theory, Phys. Rev. Lett. 64 (1990), no. 19, 2230-2233. https://doi.org/10.1103/PhysRevLett.64.2230   DOI
56 B. Julia, A. Zee, Poles with both magnetic and electric charges in non-Abelian gauge theory, Phys. Rev. D 11 (1975) 2227-2232.   DOI
57 Y. Lee, The asymptotic behavior of Chern-Simons vortices for Gudnason model, preprint.
58 M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal. 145 (1998), no. 2, 161-195. https://doi.org/10.1007/s002050050127   DOI
59 A. Poliakovsky and G. Tarantello, On non-topological solutions for planar Liouville systems of Toda-type, Comm. Math. Phys. 347 (2016), no. 1, 223-270. https://doi.org/10.1007/s00220-016-2662-3   DOI
60 S. Inouye, S. Gupta, T. Rosenband, A. P. Chikkatur, A. Gorlitz, T. L. Gustavson, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, Observation of vortex phase singularities in Bose-Einstein condensates, Phys. Rev. Lett. 87 (2001), 080402.   DOI
61 L. H. Ryder, Quantum Field Theory, second edition, Cambridge University Press, Cambridge, 1996. https://doi.org/10.1017/CBO9780511813900
62 S. I. Shevchenko, Charged vortices in superfluid systems with pairing of spatially separated carriers, Phys. Rev. B 67 (2003), 214515.   DOI
63 M. Shifman and A. Yung, Supersymmetric solitons, Rev. Modern Phys. 79 (2007), no. 4, 1139-1196. https://doi.org/10.1103/RevModPhys.79.1139   DOI
64 J. Spruck and Y. S. Yang, The existence of nontopological solitons in the self-dual Chern-Simons theory, Comm. Math. Phys. 149 (1992), no. 2, 361-376. http://projecteuclid.org/euclid.cmp/1104251227   DOI
65 M. Shifman and A. Yung, Supersymmetric Solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2009. https://doi.org/10.1017/CBO9780511575693
66 J. B. Sokoloff, Charged vortex excitations in quantum Hall systems, Phys. Rev. B 31 (1985), 1924-1928.   DOI
67 J. Spruck and Y. S. Yang, Topological solutions in the self-dual Chern-Simons theory: existence and approximation, Ann. Inst. H. Poincare Anal. Non Lineaire 12 (1995), no. 1, 75-97. https://doi.org/10.1016/S0294-1449(16)30168-8   DOI
68 G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996), no. 8, 3769-3796. https://doi.org/10.1063/1.531601   DOI
69 G. Tarantello, Selfdual gauge field vortices, Progress in Nonlinear Differential Equations and their Applications, 72, Birkhauser Boston, Inc., Boston, MA, 2008. https://doi.org/10.1007/978-0-8176-4608-0
70 G. Tarantello, Analytical issues in the construction of self-dual Chern-Simons vortices, Milan J. Math. 84 (2016), no. 2, 269-298. https://doi.org/10.1007/s00032-016-0259-0   DOI
71 G. Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological-type, Calc. Var. Partial Differential Equations 29 (2007), no. 2, 191-217. https://doi.org/10.1007/s00526-006-0062-9   DOI